請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21360
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳政鴻 | |
dc.contributor.author | Wan-Ling Chu | en |
dc.contributor.author | 朱琬琳 | zh_TW |
dc.date.accessioned | 2021-06-08T03:32:01Z | - |
dc.date.copyright | 2019-08-22 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-12 | |
dc.identifier.citation | Abdul-Razaq, T., & Potts, C. (1988). Dynamic programming state-space relaxation for single-machine scheduling. Journal of the Operational Research Society, 39(2), 141-152.
Archibald, T. W. (2007). Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems. Journal of the Operational Research Society, 58(7), 948-956. Aviv, Y., & Pazgal, A. (2002). Pricing of short life-cycle products through active learning. Under revision for Management Science. Basak, S., Sengupta, S., & Dubey, A. (2018). A Data-driven Prognostic Architecture for Online Monitoring of Hard Disks Using Deep LSTM Networks. arXiv preprint arXiv:1810.08985. Bellman, R. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60(6), 503-515. Bertsimas, D., & Vayanos, P. (2017). Data-driven learning in dynamic pricing using adaptive optimization. Optimization Online. Bomberger, E. E. (1966). A dynamic programming approach to a lot size scheduling problem. Management Science, 12(11), 778-784. Boukas, E.-K., & Haurie, A. (1990). Manufacturing flow control and preventing maintenance: a stochastic control approach. IEEE Transactions on Automatic Control, 35(9), 1024-1031. Caro, F., & Gallien, J. (2007). Dynamic assortment with demand learning for seasonal consumer goods. Management Science, 53(2), 276-292. Chen, S.-W. (2018). A Deep Neural Network Approach for Dynamic Pricing of Substitutable Flights. Choi, T.-M., Li, D., & Yan, H. (2003). Optimal two-stage ordering policy with Bayesian information updating. Journal of the Operational Research Society, 54(8), 846-859. Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289. Cohen, M. C., Lobel, R., & Perakis, G. (2018). Dynamic pricing through data sampling. Production and Operations Management, 27(6), 1074-1088. De Sa, C., Olukotun, K., & Ré, C. (2014). Global convergence of stochastic gradient descent for some non-convex matrix problems. arXiv preprint arXiv:1411.1134. den Boer, A. V., & Zwart, B. (2015). Dynamic pricing and learning with finite inventories. Operations research, 63(4), 965-978. Dernoncourt, F., & Lee, J. Y. (2016). Optimizing neural network hyperparameters with gaussian processes for dialog act classification. Paper presented at the 2016 IEEE Spoken Language Technology Workshop (SLT). DeShon, R. P. (2002). A generalizability theory perspective on measurement error corrections in validity generalization. Validity generalization: A critical review, 365-402. Do Chung, B., Li, J., Yao, T., Kwon, C., & Friesz, T. L. (2011). Demand learning and dynamic pricing under competition in a state-space framework. IEEE Transactions on Engineering Management, 59(2), 240-249. El Karoui, N., & Quenez, M.-C. (1995). Dynamic programming and pricing of contingent claims in an incomplete market. SIAM journal on Control and Optimization, 33(1), 29-66. Farias, V. F., & Van Roy, B. (2010). Dynamic pricing with a prior on market response. Operations Research, 58(1), 16-29. Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research, 270(2), 654-669. Fu, R., Zhang, Z., & Li, L. (2016). Using LSTM and GRU neural network methods for traffic flow prediction. Paper presented at the 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Gensler, A., Henze, J., Sick, B., & Raabe, N. (2016). Deep Learning for solar power forecasting—An approach using AutoEncoder and LSTM Neural Networks. Paper presented at the 2016 IEEE international conference on systems, man, and cybernetics (SMC). Ghose, T. K., & Tran, T. T. (2009). Dynamic pricing in electronic commerce using neural network. Paper presented at the International Conference on E-Technologies. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Paper presented at the Proceedings of the thirteenth international conference on artificial intelligence and statistics. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232. Hashem, S. (1997). Optimal linear combinations of neural networks. Neural networks, 10(4), 599-614. Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing problems. Journal of the Society for Industrial and Applied mathematics, 10(1), 196-210. Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107-116. Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning long-term dependencies. In: A field guide to dynamical recurrent neural networks. IEEE Press. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. Jordan, M. I., & Mitchell, T. M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255-260. Jun, S., & Choe, Y. (2018). Deep Batch-Normalized LSTM networks with Auxiliary classifier for Skeleton based Action Recognition. Paper presented at the 2018 IEEE International Conference on Image Processing, Applications and Systems (IPAS). Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2016). On large-batch training for deep learning: Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. Kinkaid, W., & Darling, D. A. (1962). An inventory pricing problem. Kong, D. (2004). One dynamic pricing strategy in agent economy using neural network based on online learning. Paper presented at the Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. Kontschieder, P., Fiterau, M., Criminisi, A., & Rota Bulo, S. (2015). Deep neural decision forests. Paper presented at the Proceedings of the IEEE international conference on computer vision. Kutschinski, E., Uthmann, T., & Polani, D. (2003). Learning competitive pricing strategies by multi-agent reinforcement learning. Journal of Economic Dynamics and Control, 27(11-12), 2207-2218. Law, R. (2000). Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tourism Management, 21(4), 331-340. Lawler, E. L. (1990). A dynamic programming algorithm for preemptive scheduling of a single machine to minimize the number of late jobs. Annals of Operations Research, 26(1), 125-133. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436. Lee, C. Y., & Chen, Z. L. (2000). Scheduling jobs and maintenance activities on parallel machines. Naval Research Logistics (NRL), 47(2), 145-165. Lewis, M. (2005). Research note: A dynamic programming approach to customer relationship pricing. Management Science, 51(6), 986-994. Lin, K. Y. (2006). Dynamic pricing with real-time demand learning. European Journal of Operational Research, 174(1), 522-538. Lipton, Z. C., Kale, D. C., Elkan, C., & Wetzel, R. (2015). Learning to diagnose with LSTM recurrent neural networks. arXiv preprint arXiv:1511.03677. Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural network acoustic models. Paper presented at the Proc. icml. Merity, S., Keskar, N. S., & Socher, R. (2017). Regularizing and optimizing LSTM language models. arXiv preprint arXiv:1708.02182. Meyn, S. P. (2005). Workload models for stochastic networks: Value functions and performance evaluation. IEEE Transactions on Automatic Control, 50(8), 1106-1122. Mullen, P. B., Monson, C. K., Seppi, K. D., & Warnick, S. C. (2006). Particle swarm optimization in dynamic pricing. Paper presented at the 2006 IEEE International Conference on Evolutionary Computation. Niu, G., Tang, S., & Zhang, B. (2018). Machine Condition Prediction Based on Long Short Term Memory and Particle Filtering. Paper presented at the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society. Powell, W. B. (2007). Approximate Dynamic Programming: Solving the curses of dimensionality (Vol. 703): John Wiley & Sons. Prechelt, L. (1998). Early stopping-but when? In Neural Networks: Tricks of the trade (pp. 55-69): Springer. Rana, R., & Oliveira, F. S. (2015). Dynamic pricing policies for interdependent perishable products or services using reinforcement learning. Expert Systems with Applications, 42(1), 426-436. Reimers, N., & Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799. Smith, L. N. (2017). Cyclical learning rates for training neural networks. Paper presented at the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2017). Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1), 1929-1958. Wang, W.-F., Qiu, X.-H., Chen, C.-S., Lin, B., & Zhang, H.-M. (2018). Application Research On Long Short-Term Memory Network In Fault Diagnosis. Paper presented at the 2018 International Conference on Machine Learning and Cybernetics (ICMLC). Xia, C. H., & Dube, P. (2007). Dynamic pricing in e‐services under demand uncertainty. Production and Operations Management, 16(6), 701-712. Yuan, M., Wu, Y., & Lin, L. (2016). Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network. Paper presented at the 2016 IEEE International Conference on Aircraft Utility Systems (AUS). Zaremba, W., Sutskever, I., & Vinyals, O. (2014). Recurrent neural network regularization. arXiv preprint arXiv:1409.2329. Zhang, D., & Adelman, D. (2009). An approximate dynamic programming approach to network revenue management with customer choice. Transportation Science, 43(3), 381-394. Zhang, D., & Cooper, W. L. (2009). Pricing substitutable flights in airline revenue management. European Journal of Operational Research, 197(3), 848-861. Zhang, Y., Xiong, R., He, H., & Liu, Z. (2017). A lstm-rnn method for the lithuim-ion battery remaining useful life prediction. Paper presented at the 2017 Prognostics and System Health Management Conference (PHM-Harbin). Zhou, F.-Y. (2017). Dynamic Control of Manufacturing System – A Deep Learning Approach. Zoph, B., & Le, Q. V. (2016). Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21360 | - |
dc.description.abstract | 本研究嘗試結合動態規劃與深度學習技術應用在動態定價與需求學習中,開發出能夠在規劃時程前可以做出良好的初始決策,並且隨著環境回饋進行即時學習與參數優化之模型。
需求學習可以幫助業者理解消費者喜好來達到滿足市場需求之目的,但受限於資料不足及環境不確定性,無法達到最佳的效果。動態規劃雖然以被證實為最佳解的模型,卻因維度詛咒、模型假設與專一性的限制,無法普及於實際應用中。我們提出的方法將解決上述提及之困難。 本研究中,使用販賣一種時效性商品定價模型,以最大化利潤為目標。使用少量歷史銷售資料作為訓練樣本,建構長短期記憶神經網路,用於識別未知的市場環境。再使用動態規劃求解出所有狀態集合下最佳的定價策略資料,訓練出深層神經網路,可重複求解各種模型下的最佳決策。最後結合貝氏學習,隨著環境回饋進行即時參數優化,達到最大化預期利潤之目的。並透過離散事件模擬的方式,驗證在各式各樣的市場環境下,我們的模型與最佳利潤的差異,結果證實,本研究提供的模型可以在未知的環境下也能夠擁有良好的效能。 | zh_TW |
dc.description.abstract | This study attempts to combine dynamic programming with deep learning method in dynamic pricing and demand learning to develop a model that can make good initial decisions before planning horizon begins and conduct online learning and decision optimization. Demand learning can help the business understand consumer preferences and meet demand, but it is limited by insufficient data and environmental uncertainty to achieve the best results. Dynamic programming, although proven to be the best solution, is not universally applicable due to dimensional curses, model assumptions, and specificity limitations. The method we propose will solve the difficulties mentioned above.
In this research, we consider the problem of a dynamic pricing problem for a perishable product with a multiple period lifetime. Use a small amount of historical sales data, we construct a Long short-term memory neural network to identify unknown environments. Then we train a deep neuron network with the optimal pricing strategy to make the pricing policy. Finally, combined with Bayesian learning to improve the ability to adapt to uncertainty. We use discrete simulation to verify the cost different between our model and optimal policies from dynamic programming in a wide variety of market environment. The result shows that our model performs well in unknown environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:32:01Z (GMT). No. of bitstreams: 1 ntu-108-R06546018-1.pdf: 6928444 bytes, checksum: 7250c9b0c780a8f87b45b856d39f1575 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 前言 1 1.1. 研究背景與動機 1 1.2. 研究目的 4 1.3. 研究方法與流程 5 第二章 文獻探討 7 2.1. 需求學習 7 2.2. 動態規劃 8 2.3. 機器學習在動態定價之應用 9 2.4. 深度學習及其應用 9 2.5. 貝氏學習 10 2.6. 小結 11 第三章 長短期記憶神經網路介紹與結構 12 3.1. 資料蒐集 12 3.2. 長短期記憶神經網路結構 15 3.3. 神經網路架構 16 第四章 動態規劃模型與深層神經網路 32 4.1. 問題架構與相關假設 32 4.2. 動態規劃模型 33 4.3. 動態規劃程式 35 4.4. 深層神經網路 36 第五章 參數設定及模型測試 39 5.1. 參數設定 39 5.2. 模型測試 40 第六章 第一種模型驗證與數值分析 43 6.1. 第一種模型演算法流程 43 6.1. 模型驗證環境與方法說明 44 6.2. 模擬結果之數值分析 45 第七章 貝氏學習與第二種模型驗證與數值分析 78 7.1. 貝氏在線學習 78 7.2. 第二種模型演算法流程 78 7.3. 第二種模型驗證與數值分析 79 7.4. 小結 97 第八章 結論與未來研究方向 101 8.1 結論 101 8.2 未來研究方向 101 REFERENCE 102 | |
dc.language.iso | zh-TW | |
dc.title | 利用人工智慧之消費者偏好學習與動態訂價方法 | zh_TW |
dc.title | An Artificial Intelligence Approach for Consumer Preference Learning and Dynamic Pricing | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 藍俊宏,孔令傑,陳文智,洪一薰,余承叡 | |
dc.subject.keyword | 需求學習,動態規劃,深度學習,長短期記憶神經網路,貝氏學習, | zh_TW |
dc.subject.keyword | Demand learning,Dynamic programming,Deep learning,Long short-term memory,Bayesian learning, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201903148 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-12 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。