請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21344完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐百輝 | |
| dc.contributor.author | Wei-Hsuan Lin | en |
| dc.contributor.author | 林維宣 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:31:35Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | Abaunza, H., Castillo, P., Victorino, A., & Lozano, R., 2017. Dual quaternion modeling and control of a quad-rotor aerial manipulator. Journal of Intelligent & Robotic Systems, 88(2-4), pp.267-283.
Alaimo, A., Artale, V., Milazzo, C., & Ricciardello, A., 2013. Comparison between euler and quaternion parametrization in uav dynamics. In AIP Conference Proceedings ,1558(1), pp. 1228-1231. Arun, K. S., Huang, T. S., & Blostein, S. D., 1987. Least-squares fitting of two 3-D point sets. IEEE Transactions on pattern analysis and machine intelligence, (5), pp.698-700. Craig, J. J., 2005. Introduction to robotics: mechanics and control(Vol. 3):Pearson Education Internacional. Daniilidis, K., 1999. Hand-eye calibration using dual quaternions. The International Journal of Robotics Research, 18(3), pp.286-298. Diebel, J., 2006. Representing attitude: Euler angles, unit quaternions, and rotationvectors. Matrix, 58(15-16), pp.1-35. Dornaika, F., & Horaud, R., 1998. Simultaneous robot-world and hand-eye calibration. IEEE transactions on Robotics and Automation, 14(4), pp.617-622. Eggert, D. W., Lorusso, A., & Fisher, R. B., 1997. Estimating 3-D rigid body transformations: a comparison of four major algorithms. Machine vision and applications, 9(5-6), pp.272-290. Faugeras, O. D., & Hebert, M., 1986. The representation, recognition, and locating of 3-D objects. The international journal of robotics research, 5(3), pp.27-52. Goddard, J. S., & Abidi, M. A., 1998. Pose and motion estimation using dual quaternion-based extended Kalman filtering. In Three-Dimensional Image Capture and Applications,Vol.3313, pp. 189-201. Habib, A., & Mazaheri, M., 2015. Quaternion-based solutions for the single photo resection problem. Photogrammetric Engineering & Remote Sensing, 81(3), pp.209-217. Horn, B. K., 1987. Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4),pp. 629-642. Horn, B. K., Hilden, H. M., & Negahdaripour, S., 1988. Closed-form solution of absolute orientation using orthonormal matrices. JOSA A, 5(7), pp.1127-1135. Jia, Y. B. , 2013. Dual quaternion,Department of Computer Science, URL: http://web.cs.iastate.edu/~cs577/handouts/dual-quaternion.pdf (last date accessed: 2 May 2018). Kalantari, M., Hashemi, A., Jung, F., & Guédon, J. P., 2011. A new solution to the relative orientation problem using only 3 points and the vertical direction. Journal of Mathematical Imaging and Vision, 39(3), pp.259-268. Kenwright, B., 2012. A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3D character hierarchies. Lam, T. Y., 2003. Hamilton's quaternions. In Handbook of algebra (Vol. 3, pp.429-454). North-Holland. Li, A., Wang, L., & Wu, D., 2010. Simultaneous robot-world and hand-eye calibration using dual-quaternions and Kronecker product. International Journal of Physical Sciences, 5(10), pp.1530-1536. Lin, Y. H., Chiang, Y. T., Wang, H. S., & Chang, F. R., 2010. Estimation of relative orientation using dual quaternion. IEEE International Conference on System Science and Engineering ,pp. 413-416. Mukundan, R., 2002.Quaternions: From classical mechanics to computer graphics, and beyond. In Proceedings of the 7th Asian Technology conference in Mathematics, pp. 97-105. Olofsson, A., 2010.Modern stereo correspondence algorithms: investigation and evaluation. Sheng, Q. H., Shao, S., Xiao, H., Zhu, F., Wang, Q., & Zhang, B., 2015. Relative orientation dependent on dual quaternions. The Photogrammetric Record, 30(151), pp.300-317. Walker, M. W., Shao, L., & Volz, R. A., 1991. Estimating 3-D location parameters using dual number quaternions. CVGIP: image understanding, 54(3), pp.358-367. Wang, Y., Wang, Y., Wu, K., Yang, H., & Zhang, H. , 2014. A dual quaternion-based, closed-form pairwise registration algorithm for point clouds. ISPRS journal of photogrammetry and remote sensing, 94, pp.63-69. Wolf, P. R., & Dewitt, B. A., 2014. Elements of Photogrammetry: with applications in GIS (Vol. 4): McGraw-Hill New York. Wu, Y., Hu, X., Hu, D., Li, T., & Lian, J., 2005. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE transactions on aerospace and electronic systems, 41(1), pp.110-132. Yang, Y., 2011.Analytic LQR design for spacecraft control system based on quaternion model. Journal of Aerospace Engineering, 25(3), pp.448-453. Zeng, H., Fang, X., Chang, G., & Yang, R. , 2018. A dual quaternion algorithm of the Helmert transformation problem. Earth, Planets and Space, 70(1), pp.26. Zhuang, H., Roth, Z. S., & Sudhakar, R., 1994. Simultaneous robot/world and tool/flange calibration by solving homogeneous transformation equations of the form AX= YB. IEEE Transactions on Robotics and Automation, 10(4), pp.549-554. 丁尚文、王惠南、刘海颖、冯成涛,2009。基于对偶四元数的航天器交会对接位姿视觉测量算法,宇航学报, 30(6),pp.2145-2150. 江刚武、姜挺、王勇、龚辉,2007。基于单位四元数的无初值依赖空间后方 交会. 測繪學報, 36(2), pp.169-175. 李佩璇,2017。對偶四元數應用於攝影測量方位求解,國立臺灣大學土木工程學系碩士論文,台北,台灣。 黃博彥,2007。應用雙四元數同時估測轉動與移動,國立臺灣大學電機工程學系碩士論文,台北,台灣。 鍾潁秀,2010。以限制型卡爾曼濾波器估測位置與姿態,國立臺灣大學電機工程學系碩士論文,台北,台灣。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21344 | - |
| dc.description.abstract | 近年無人飛行載具以及近景攝影測量技術的應用需求日益增加,而攝影測量方位解算是攝影測量作業中的重要問題。在傳統的攝影測量方位解算上,通常是利用共線式、共面式或是七參數轉換公式等非線性的數學模式進行之,此類數學模型是以尤拉角所組成的,其解算方式為將觀測方程式線性化,並給予良好的方位參數初始值以進行迭代計算,而若方位參數的初始值給定不佳,或是攝影姿態變化較大,則可能造成解算系統無法收斂,或是出現奇異解的情形。本研究引進四元數與對偶四元數的概念,並以之求解攝影測量的方位參數,提出不須給定初始值以及無角度奇異解的解算模式。
四元數為描述向量旋轉的工具,其描述向量旋轉的方式為以一個旋轉軸和一個旋轉角描述之,故沒有角度奇異的問題,且具描述方式簡潔的特性。對偶四元數保有四元數描述旋轉的優勢,且其同時描述旋轉與平移。本研究以此種方式描述坐標系統間的轉換關係。 本研究將四元數方法與對偶四元數演算法應用於若干攝影測量方位參數解算議題,如單片後方交會、立體像對相對方位以及獨立模型連結等,達到不須給定初始值、無角度奇異解以及運算效率高等目標。最後將本研究所使用的方法與過去的方法進行比較,成果顯示Walker對偶四元數演算法的成果精度優於SVD對偶四元數演算法者,而以四元數為基礎的方法在姿態準確度的部分有機會與傳統迭代方法者相當。 | zh_TW |
| dc.description.abstract | In recent years, the application of UAV and close-range photogrammetry are increasing. However, the calculation of orientation parameters is an important issue. In the traditional photogrammetry, orientation parameters are usually calculated by using a nonlinear mathematical model such as collinear condition equation or coplanar condition equation. The method is to linearize the observation equation and give a good initial value of the orientation parameters for iterative calculation. If the initial value of the orientation parameters are given poorly, the calculation system cannot converge. And if the shooting attitude changes greatly, singular solutions would appear. This study introduces the concept of quaternion and dual quaternion to solve the orientation parameters of photogrammetry.
The quaternion is a tool for describing the rotation of 3D vectors. It describes the rotation with a rotation axis and a rotation angle, so there is no problem of angular singularity. The dual quaternion can describe both rotation and translation simultaneously. This study shows the transformation between coordinate systems in dual quaternion way. The study applys quaternion method and dual quaternion method to several photogrammetry issues such as Single Photo Resection, Relative Orientation, and Independent Model etc, achieving initial values unrequirment, none of angular singularties, and efficient calculation. At last, the study compares two common-used dual quaternion methods, and makes comparisons between quaternion-based methods and traditional iterative methods. It reveals that outcome precision from Walker method is better than SVD method, and the attitude accuracy from quaternion-based methods is almost equivalent to traditional iterative methods. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:31:35Z (GMT). No. of bitstreams: 1 ntu-108-R06521802-1.pdf: 4436790 bytes, checksum: a2daa5efeb804f357b65f688e45d01c5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄
誌謝 i 摘要 ii Abstract iii 圖目錄 vi 表目錄 vii 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法與流程 3 1.4 論文架構 4 第2章 文獻回顧 5 2.1 以尤拉角為基礎的轉移參數求解方法 5 2.2 四元數與對偶四元數的起源 5 2.3 四元數與對偶四元數的性質 6 2.4 四元數與對偶四元數的求解方法 7 2.5 四元數與對偶四元數的相關應用 11 2.6 不同轉移參數求解方法的比較 14 2.7 本研究的策略 15 第3章 基本概念介紹 17 3.1 旋轉矩陣 17 3.2 四元數 18 3.3 對偶數與對偶向量 26 3.4 對偶四元數 28 第4章 研究方法介紹 37 4.1 坐標系統說明 37 4.2 傳統攝影測量方法 41 4.3 應用四元數方法於攝影測量 44 4.4 對偶四元數演算法 50 第5章 實驗成果與分析 58 5.0 實驗介紹 58 5.1 實驗一、四元數方法的單片後方交會實驗 60 5.1.1 控制點數量測試 60 5.1.2 控制點分布測試 63 5.1.3 不同攝影姿態測試 68 5.2 實驗二、對偶四元數演算法的單片後方交會實驗 70 5.2.1 控制點數量測試 71 5.2.2 控制點分布測試 75 5.3 實驗三、對偶四元數演算法的立體像對相對方位實驗 80 5.3.1 點對數量測試 82 5.3.2 不同攝影姿態測試 85 5.4 實驗四、對偶四元數演算法的連續相對方位實驗 90 5.5 實驗五、對偶四元數演算法的獨立模型法實驗 96 5.6 實驗六、不同對偶四元數演算法的比較實驗 101 5.7 實驗七、以四元數為基礎的方法與傳統攝影測量方法的比較實驗 106 5.7.1 單片後方交會方法的比較實驗 106 5.7.2 相對方位方法的比較實驗 107 5.7.3 獨立模型連結參數求解方法的比較實驗 109 5.8 小結 111 第6章 結論與建議 115 參考文獻 117 | |
| dc.language.iso | zh-TW | |
| dc.title | 應用對偶四元數於攝影測量方位的封閉式解算方法 | zh_TW |
| dc.title | Closed-form solution of
Photogrammetric Orientation Parameters using Dual Quaternion | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱式鴻,黃金聰 | |
| dc.subject.keyword | 初始值,奇異解,線性系統,四元數,對偶四元數, | zh_TW |
| dc.subject.keyword | initial values,singular,linear system,quaternion,dual quaternion, | en |
| dc.relation.page | 119 | |
| dc.identifier.doi | 10.6342/NTU201902161 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
