請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21338完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林正芳,席行正 | |
| dc.contributor.author | Yan-Ze Xiao | en |
| dc.contributor.author | 蕭燕澤 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:31:27Z | - |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-12 | |
| dc.identifier.citation | Abbruzzese, C., Fornari, P., Massidda, R., Vegliò, F., & Ubaldini, S. (1995). Thiosulphate leaching for gold hydrometallurgy. Hydrometallurgy, 39(1), 265-276
Ahmed, I. M., El-Nadi, Y. A., & Daoud, J. A. (2011). Cementation of copper from spent copper-pickle sulfate solution by zinc ash. Hydrometallurgy, 110(1), 62-66 Akbayrak, S., Özçifçi, Z., & Tabak, A. (2019). Noble metal nanoparticles supported on activated carbon: Highly recyclable catalysts in hydrogen generation from the hydrolysis of ammonia borane. Journal of Colloid and Interface Science, 546, 324-332 Al-Saydeh, S. A., El-Naas, M. H., & Zaidi, S. J. (2017). Copper removal from industrial wastewater: A comprehensive review. Journal of Industrial and Engineering Chemistry, 56, 35-44 Andrejkovičová, S., Sudagar, A., Rocha, J., Patinha, C., Hajjaji, W., da Silva, E. F., Velosa, A., & Rocha, F. (2016). The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science, 126, 141-152 Baldé, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P. (2017). The Global E-waste Monitor–2017. Bansal, R. C., & Goyal, M. (2005). Activated carbon adsorption: CRC press. Benoit, J. M., Gilmour, C. C., Mason, R. P., & Heyes, A. (1999). Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology, 33(6), 951-957 Boehm, H. P. (1994). Some aspects of the surface chemistry of carbon blacks and other carbons. 32(5), 759-769 Caprarescu, S., Corobea, M. C., Purcar, V., Spataru, C. I., Ianchis, R., Vasilievici, G., & Vuluga, Z. (2015). San copolymer membranes with ion exchangers for Cu(II) removal from synthetic wastewater by electrodialysis. Journal of Environmental Sciences, 35, 27-37 Carocci, A., Rovito, N., Sinicropi, M. S., & Genchi, G. (2014). Mercury toxicity and neurodegenerative effects. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology (pp. 1-18). Cham: Springer International Publishing. Ceccatelli, S., Daré, E., & Moors, M. (2010). Methylmercury-induced neurotoxicity and apoptosis. Chemico-Biological Interactions, 188(2), 301-308 Chang, H. (2007). When water does not boil at the boiling point. 31(1), 7-11 Chen, C., Apul, O. G., & Karanfil, T. (2017). Removal of bromide from surface waters using silver impregnated activated carbon. Water Research, 113, 223-230 Chen, Y., Guo, X., Wu, F., Huang, Y., & Yin, Z. (2018). Experimental and theoretical studies for the mechanism of mercury oxidation over chlorine and cupric impregnated activated carbon. Applied Surface Science, 458, 790-799 Cheremisinoff, P. N., & Ellerbusch, F. (1978). Carbon adsorption handbook: Ann Arbor Science Publishers. Chingombe, P., Saha, B., & Wakeman, R. J. (2005). Surface modification and characterisation of a coal-based activated carbon. 43(15), 3132-3143 Chiu, C. H., Hsi, H. C., & Lin, C. C. (2014). Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. 126, 138-144 Chiu, C. H., Hsi, H. C., & Lin, H. P. (2015). Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts. 245, 2-9 Chuang, H. Y., Yu, M. S., Chen, C. H., & Chung, T. Y. (2012). Preparation of platinum impregnated activated carbon via vacuum treatment and effect on hydrogen storage rate. Journal of the Taiwan Institute of Chemical Engineers, 43(4), 585-590 Cui, J., & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: a review. Hazard Mater, 158(2-3), 228-256 Dandekar, A., Baker, R. T. K., & Vannice, M. A. (1998). Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS. 36(12), 1821-1831 Dang, H., Liao, Y., Ng, T. W., Huang, G., Xiong, S., Xiao, X., Yang, S., & Wong, P. K. (2016). The simultaneous centralized control of elemental mercury emission and deep desulfurization from the flue gas using magnetic Mn–Fe spinel as a co-benefit of the wet electrostatic precipitator. Fuel Processing Technology, 142, 345-351 Dong, Y., Liu, J. F., Sui, M. R., Qu, Y. P., Ambuchi, J. J., Wang, H. M., & Feng, Y. J. (2017). A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination. Journal of Hazardous Materials, 321, 307-315 EEA. (2012). Directive 2012/19/EU of the European Union and of the council of date on 4 July 2012. Official Journal of the European Union Ferrer, O., Gibert, O., & Cortina, J. L. (2016). Reverse osmosis membrane composition, structure and performance modification by bisulphite, iron(III), bromide and chlorite exposure. Water Research, 103, 256-263 Galbreath, K. C., & Zygarlicke, C. J. (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65-66, 289-310 Goosey, D. M., & Kellner, D. R. (2002). A scoping study end-of-life printed circuit boards. Gros, F., Baup, S., & Aurousseau, M. (2011). Copper cementation on zinc and iron mixtures: Part 1: Results on rotating disc electrode. Hydrometallurgy, 106(1), 127-133 Gutiérrez, G., Cambiella, Á., Benito, J. M., Pazos, C., & Coca, J. (2007). The effect of additives on the treatment of oil-in-water emulsions by vacuum evaporation. Journal of Hazardous Materials, 144(3), 649-654 Holley, E. A., McQuillan, A. J., Craw, D., Kim, J. P., & Sander, S. G. (2007). Mercury mobilization by oxidative dissolution of cinnabar (α-HgS) and metacinnabar (β-HgS). 240(3-4), 313-325 Houston, M. C. (2011). Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. 13(8), 621-627 Hsi, H. C., & Chen, C. T. (2012). Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. 98, 229-235 Hsi, H. C., Rood, M. J., Rostam-Abadi, M., Chen, S., & Chang, R. (2002). Mercury adsorption properties of sulfur-impregnated adsorbents. 128(11), 1080-1089 Hu, C., Zhou, J., Luo, Z., & Cen, K. (2011). Oxidative adsorption of elemental mercury by activated carbon in simulated coal-fired flue gas. Energy & Fuels, 25(1), 154-158 Huang, H. S., Wu, J. M., & Livengood, C. D. (1996). Development of dry control technology for emissions of mercury in flue gas. 13(1), 107-119 Ikhlayel, M. (2018). An integrated approach to establish e-waste management systems for developing countries. Journal of Cleaner Production, 170, 119-130 Jarvis, J., & Meserole, F. (2008). SO {sub 3} effect on mercury control. Power Engineering (Barrington), 112(1) Kanakaraju, D., Ravichandar, S., & Lim, Y. C. (2017). Combined effects of adsorption and photocatalysis by hybrid TiO2/ZnO-calcium alginate beads for the removal of copper. Journal of Environmental Sciences, 55, 214-223 Khaliq, A., Rhamdhani, M., Brooks, G., & Masood, S. (2014). Metal extraction processes for electronic waste and existing industrial routes: a review and australian perspective. Resources, 3(1), 152-179 Kołodzziej, B., & Adamski, Z. (1984). A ferric chloride hydrometallurgical process for recovery of silver from electronic scrap materials. Hydrometallurgy, 12(1), 117-127 Kong, Z., Li, X., Tian, J., Yang, J., & Sun, S. (2014). Comparative study on the adsorption capacity of raw and modified litchi pericarp for removing Cu(II) from solutions. Journal of Environmental Management, 134, 109-116 Korpiel, J. A., & Vidic, R. D. (1997). Effect of sulfur impregnation method on activated carbon uptake of gas-phase mercury. 31(8), 2319-2325 Krishnan, S. V., Gullett, B. K., & Jozewicz, W. (1994). Sorption of elemental mercury by activated carbons. Environ Sci Technol, 28(8), 1506-1512 Krylova, V., & Andrulevičius, M. (2009). Optical, XPS and XRD studies of semiconducting copper sulfide layers on a polyamide film. 2009 Kuehr, R. (2009). Solving the E-waste Problem (Step) Initiative: Annual Report 2008. United Nations University Kulig, K. W., & Ballantyne, B. (1991). Cyanide toxicity. Kwon, J. H., Wilson, L. D., & Sammynaiken, R. (2015). Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon. Journal of Colloid and Interface Science, 457, 388-397 LaDou, J. (2006). Printed circuit board industry. Int J Hyg Environ Health, 209(3), 211-219 Lee, S. J., Seo, Y. C., Jurng, J., & Lee, T. G. (2004). Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmospheric Environment, 38(29), 4887-4893 Li, H., Zhu, L., Wang, J., Li, L., Lee, P., Feng, Y., & Shih, K. (2017). Effect of nitrogen oxides on elemental mercury removal by nanosized mineral sulfide. Environ Sci Technol, 51(15), 8530-8536 Li, H., Zhu, L., Wang, J., Li, L., & Shih, K. (2016). Development of nano-sulfide sorbent for efficient removal of elemental mercury from coal combustion fuel gas. 50(17), 9551-9557 Li, H., Zhu, W., Yang, J., Zhang, M., Zhao, J., & Qu, W. (2018). Sulfur abundant S/FeS 2 for efficient removal of mercury from coal-fired power plants. Fuel, 232, 476-484 Li, J., Xu, X., & Liu, W. (2012). Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones. Waste Management, 32(6), 1209-1212 Li, L., Li, X., Lee, J. Y., Keener, T. C., Liu, Z., & Yao, X. (2012). The effect of surface properties in activated carbon on mercury adsorption. 51(26), 9136-9144 Li, Y. H., Lee, C. W., & Gullett, B. K. (2002). The effect of activated carbon surface moisture on low temperature mercury adsorption. 40(1), 65-72 Liao, Y., Chen, D., Zou, S., Xiong, S., Xiao, X., Dang, H., Chen, T., & Yang, S. (2016). Recyclable naturally derived magnetic pyrrhotite for elemental mercury recovery from flue gas. Environmental Science & Technology, 50(19), 10562-10569 Liu, D. C., Yang, B., Wang, F., Yu, Q. C., Wang, L., & Dai, Y. N. (2012). Research on the removal of impurities from crude nickel by vacuum distillation. Physics Procedia, 32, 363-371 Liu, F., Zhou, K., Chen, Q., Wang, A., & Chen, W. (2019). Application of magnetic ferrite nanoparticles for removal of Cu(II) from copper-ammonia wastewater. Journal of Alloys and Compounds, 773, 140-149 Liu, W., Vidic, R. D., & Brown, T. D. (2000). Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. Environmental Science & Technology, 34(1), 154-159 Liu, W., Vidic, R. D., & Brown, T. D. (2000). Impact of flue gas conditions on mercury uptake by sulfur-impregnated activated carbon. 34(1), 154-159 Liu, W., Xu, H., Liao, Y., Quan, Z., Li, S., Zhao, S., Qu, Z., & Yan, N. (2019). Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. Fuel, 235, 847-854 Lopez-Anton, M. A., Yuan, Y., Perry, R., & Maroto-Valer, M. M. (2010). Analysis of mercury species present during coal combustion by thermal desorption. 89(3), 629-634 Mao, W., Ma, H., & Wang, B. (2010). Performance of batch vacuum distillation process with promoters on coke-plant wastewater treatment. Chemical Engineering Journal, 160(1), 232-238 Matouq, M., Jildeh, N., Qtaishat, M., Hindiyeh, M., & Al Syouf, M. Q. (2015). The adsorption kinetics and modeling for heavy metals removal from wastewater by Moringa pods. Journal of Environmental Chemical Engineering, 3(2), 775-784 Miller, S. J., Dunham, G. E., Olson, E. S., & Brown, T. D. (2000). Flue gas effects on a carbon-based mercury sorbent. 65, 343-363 Moore, G. A., Martellaro, P. J., & Peterson, E. S. (2000). Mercury-sorption characteristics of nanoscale metal sulfides. In A. Sayari & M. Jaroniec (Eds.), Studies in Surface Science and Catalysis (Vol. 129, pp. 765-772): Elsevier. Mullett, M., Pendleton, P., & Badalyan, A. (2012). Removal of elemental mercury from Bayer stack gases using sulfur-impregnated activated carbons. Chemical Engineering Journal, 211-212, 133-142 Mullick, A., & Neogi, S. (2018). Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption. Ultrasonics Sonochemistry, 45, 65-77 Murakami, A., Uddin, M. A., Ochiai, R., Sasaoka, E., & Wu, S. (2010). Study of the mercury sorption mechanism on activated carbon in coal combustion flue gas by the temperature-programmed decomposition desorption technique. Energy & Fuels, 24(8), 4241-4249 Myers, H. S., Fenske, M. R., & Chemistry, E. (1955). Measurement and correlation of vapor pressure data for high boiling hydrocarbons. 47(8), 1652-1658 Nassef, E., & El-Taweel, Y. A. (2015). Removal of copper from wastewater by cementation from simulated leach liquors. 6(1), 1 Oh, Y., Morris, C. D., & Kanatzidis, M. G. (2012). Polysulfide chalcogels with ion-exchange properties and highly efficient mercury vapor sorption. Journal of the American Chemical Society, 134(35), 14604-14608 Olson, E. S., Sharma, R. K., Miller, S. J., & Dunham, G. E. (1999). Mercury in the environment. Proceedings of the Specialty Conference on Mercury in the Environment, 121-126 Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40(22), 4048-4063 Park, Y., & Fray, D. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164(2), 1152-1158 Park, Y. J., & Fray, D. J. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous Materials, 164(2-3), 1152-1158 Pavlish, J. H., Sondreal, E. A., Mann, M. D., Olson, E. S., Galbreath, K. C., Laudal, D. L., & Benson, S. A. (2003). Status review of mercury control options for coal-fired power plants. Fuel Processing Technology, 82(2), 89-165 Perkins, D. N., Brune Drisse, M. N., Nxele, T., & Sly, P. D. (2014). E-waste: a global hazard. Annals of global health, 80(4), 286-295 Presto, A. A., & Granite, E. J. (2007). Impact of sulfur oxides on mercury capture by activated carbon. Environmental Science & Technology, 41(18), 6579-6584 Qiao, S., Chen, J., Li, J., Qu, Z., Liu, P., Yan, N., & Jia, J. (2009). Adsorption and catalytic oxidation of gaseous elemental mercury in flue gas over MnOx/alumina. Industrial & Engineering Chemistry Research, 48(7), 3317-3322 Quinet, P., Proost, J., & Van Lierde, A. (2005). Recovery of precious metals from electronic scrap by hydrometallurgical processing routes. Mining, Metallurgy & Exploration, 22(1), 17-22 Reddy, K. S. K., Al Shoaibi, A., & Srinivasakannan, C. (2018). Mercury removal using metal sulfide porous carbon complex. Process Safety and Environmental Protection, 114, 153-158 Ritcey, G. M. (2006). Solvent extraction in hydrometallurgy: present and future. Tsinghua Science & Technology, 11(2), 137-152 Rodriguez-Reinoso, F., Martin-Martinez, J. M., Prado-Burguete, C., & McEnaney, B. (1987). A standard adsorption isotherm for the characterization of activated carbons. 91(3), 515-516 Rosales-Quintero, A., Vargas-Villamil, F. D., & Arce-Medina, E. (2008). Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation. 130(2-4), 509-518 Sadegh Safarzadeh, M., Bafghi, M. S., Moradkhani, D., & Ojaghi Ilkhchi, M. (2007). A review on hydrometallurgical extraction and recovery of cadmium from various resources. Minerals Engineering, 20(3), 211-220 Satyro, S., Marotta, R., Clarizia, L., Di Somma, I., Vitiello, G., Dezotti, M., Pinto, G., Dantas, R. F., & Andreozzi, R. (2014). Removal of EDDS and copper from waters by TiO2 photocatalysis under simulated UV–solar conditions. Chemical Engineering Journal, 251, 257-268 Scheffler, T. B., & Leao, A. J. (2008). Fabrication of polymer film heat transfer elements for energy efficient multi-effect distillation. 222(1-3), 696-710 ShamsiJazeyi, H., & Kaghazchi, T. (2010). Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 16(5), 852-858 Shamsuddin, M. (1986). Metal recovery from scrap and waste. JOM, 38(2), 24-31 Su, Y., Lin, W., Hou, C., & Den, W. (2014). Performance of integrated membrane filtration and electrodialysis processes for copper recovery from wafer polishing wastewater. Journal of Water Process Engineering, 4, 149-158 Sun, P., Zhang, B., Zeng, X., Luo, G., Li, X., Yao, H., & Zheng, C. (2017). Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel, 200, 100-106 Takaoka, M., Takeda, N., Shimaoka, Y., & Fujiwara, T. (1999). Removal of mercury in flue gas by the reaction with sulfide compounds. Toxicological & Environmental Chemistry, 73(1-2), 1-16 Tan, Z., Sun, L., Xiang, J., Zeng, H., Liu, Z., Hu, S., & Qiu, J. (2012). Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon, 50(2), 362-371 Tavlarides, L. L., Bae, J. H., & Lee, C. K. (1987). Solvent Extraction, Membranes, and Ion Exchange in Hydrometallurgical Dilute Metals Separation (Vol. 22). Tesfaye, F., Lindberg, D., Hamuyuni, J., Taskinen, P., & Hupa, L. (2017). Improving urban mining practices for optimal recovery of resources from e-waste. Minerals Engineering, 111, 209-221 Torres, S., Acien, G., García-Cuadra, F., & Navia, R. (2017). Direct transesterification of microalgae biomass and biodiesel refining with vacuum distillation. Algal Research, 28, 30-38 Travnikov, O. (2012). Atmospheric transport of mercury. 331-365 Uddin, M. A., Yamada, T., Ochiai, R., Sasaoka, E., & Wu, S. (2008). Role of SO 2 for elemental mercury removal from coal combustion flue gas by activated carbon. 22(4), 2284-2289 van Hille, R., Peterson, K., & Lewis, A. (2005). Copper sulphide precipitation in a fluidised bed reactor. 60(10), 2571-2578 Wagner, C. D. (1991). The NIST X-ray photoelectron spectroscopy (XPS) database: National Institute of Standards and Technology. Wang, S. X., Zhang, L., Li, G. H., Wu, Y., Hao, J. M., Pirrone, N., Sprovieri, F., & Ancora, M. P. (2010). Mercury emission and speciation of coal-fired power plants in China. Atmos. Chem. Phys., 10(3), 1183-1192 Wang, X., Tang, P., Xu, Y., Yang, X., & Yu, X. (2016). In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds. International Journal of Biological Macromolecules, 93, 1583-1590 Westwater, J. W. (1958). Boiling of Liquids. In T. B. Drew & J. W. Hoopes (Eds.), Advances in Chemical Engineering (Vol. 2, pp. 1-31): Academic Press. Xiang, W., Liu, J., Chang, M., & Zheng, C. (2012). The adsorption mechanism of elemental mercury on CuO (110) surface. Chemical Engineering Journal, 200-202, 91-96 Xu, H., Shen, B., Yuan, P., Lu, F., Tian, L., & Zhang, X. (2016). The adsorption mechanism of elemental mercury by HNO3-modified bamboo char. 154, 139-146 Xu, Y., Wang, Z., Cheng, X., Xiao, Y., & Shao, L. (2016). Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment. Chemical Engineering Journal, 303, 555-564 Yan, T. Y. (1996). Mercury removal from oil by reactive adsorption. Industrial & Engineering Chemistry Research, 35(10), 3697-3701 Yang, B. (1994). Ion exchange in organic extractant system (Vol. 10). Yang, Z., Li, H., Feng, S., Li, P., Liao, C., Liu, X., Zhao, J., Yang, J., Lee, P., & Shih, K. (2018). Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas. Langmuir, 34(30), 8739-8749 Ye, L., Chai, L., Li, Q., Yan, X., Wang, Q., & Liu, H. (2016). Chemical precipitation granular sludge (CPGS) formation for copper removal from wastewater. 6(115), 114405-114411 Yeddou, A. R., Chergui, S., Chergui, A., Halet, F., Hamza, A., Nadjemi, B., Ould-Dris, A., & Belkouch, J. (2011). Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide in presence of copper-impregnated activated carbon. Minerals Engineering, 24(8), 788-793 Zhang, B., Xu, P., Qiu, Y., Yu, Q., Ma, J., Wu, H., Luo, G., Xu, M., & Yao, H. (2015). Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. 263, 1-8 Zhang, H., Wang, T., Sui, Z., Zhang, Y., Sun, B., & Pan, W. P. (2019). Enhanced mercury removal by transplanting sulfur-containing functional groups to biochar through plasma. 253, 703-712 Zhao, B., Yi, H., Tang, X., Li, Q., Liu, D., & Gao, F. (2016). Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal, 286, 585-593 Zhao, Q., Ye, Z., & Zhang, M. (2010). Treatment of 2,4,6-trinitrotoluene (TNT) red water by vacuum distillation. Chemosphere, 80(8), 947-950 Zhao, S., Pudasainee, D., Duan, Y., Gupta, R., Liu, M., & Lu, J. (2019). A review on mercury in coal combustion process: Content and occurrence forms in coal, transformation, sampling methods, emission and control technologies. Progress in Energy and Combustion Science, 73, 26-64 Zhao, Y., Wang, Z. Q., Zhao, X., Li, W., & Liu, S. X. (2013). Antibacterial action of silver-doped activated carbon prepared by vacuum impregnation. Applied Surface Science, 266, 67-72 Zhou, X., Chen, Q., Tao, Y., & Weng, H. (2011). Effect of vacuum impregnation on the performance of Co/SiO2 Fischer-Tropsch catalyst. Journal of Natural Gas Chemistry, 20(4), 350-355 Zou, S. J., Liao, Y., Xiong, S. C., Huang, N., Geng, Y., & Yang, S. J. (2017). H2S-modified Fe–Ti spinel: A recyclable magnetic sorbent for recovering gaseous elemental mercury from flue gas as a co-benefit of wet electrostatic precipitators. Environmental Science & Technology, 51(6), 3426-3434 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21338 | - |
| dc.description.abstract | 濕式冶金法能夠有效回收電子廢棄物中的金,但最終此方法會產生含銅廢水,一般含銅廢水會以化學沉澱法處置,然而,廢水中金屬離子濃度高,所需強鹼添加量大,使得處理成本隨之提升,且會產生大量汙泥造成二次污染,所以化學沉澱法並非最合適之廢水處理方法;另外此廢水成分包含高濃度的銅離子,具回收之潛力。本研究目的在於處理與再利用含銅廢水,可分為三個部分:第一個部分為使用減壓蒸餾技術去除並回收含銅廢水中金屬,並且定量及定性分析回收結晶固體。第二個部分再利用含銅廢水作為合成硫化銅原料,並藉由真空含浸將硫化銅(CuS)含浸一般商用活性碳(AC),合成硫化銅活性碳(CuSAC)作為吸附材料;最後測試CuSAC在純氮氣及模擬煙氣對汞之吸附能力及不同條件下對其之影響。
測試結果顯示,經減壓蒸餾處理完之廢水可以發現低濃度金屬離子存在,主要是由於突沸現象所造成。不同的操作條件下,溫度與真空度影響蒸餾速率、能耗與突沸程度。在操作條件為溫度60oC與真空度-72 cm Hg,金屬離子去除效率高達99.99%以上。蒸餾出金屬結晶固體經定性及定量分析後,判別主要由鹼式硝酸銅與硝酸鈉組成,並能以水分離結晶固體中硝酸鈉,得到純度92%之鹼式硝酸銅固體。另外,由成本效益評估推算,若以減壓蒸餾取代傳統化學沉澱處理,處理一公升的含銅廢水能夠省下22.49新台幣,因此確認本技術具經濟之可行性。 再利用含銅廢水合成之10、25、50% CuSAC。物化特性分析結果顯示,硫化銅活性碳比表面積與孔體積明顯下降,是由於硫化銅堵塞活性碳的孔洞。SEM圖中可觀察到,在真空含浸下,硫化銅顆粒會先分佈於活性碳孔洞內,在孔洞近飽和後才會在活性碳表面上出現。XRD分析結果證實硫化銅成功由含銅廢水合成,並結晶於活性碳表面上。XPS結果顯示對汞具高親和力之活性位置如S2-、多硫化物與氧官能基被建立在活性碳表面。 在純氮氣條件中,比較三種CuSAC與原始活性碳,結果顯示以50% CuSAC對汞之吸附效果為最佳,並明顯優於原始活性碳。在175°C下,50% CuSAC對汞吸附效果大為下降,因為原先吸附汞而形成之硫化汞,在此溫度下會被分解。相對於氮氣條件,在模擬煙氣條件下汞吸附效果略為減少,主要是由於水氣會與汞競爭吸附。最後,由TPD結果得知CuSAC吸附汞的主要機制為硫化銅在表面與汞鍵結形成硫化汞。 | zh_TW |
| dc.description.abstract | A hydro-metallurgical process can efficiently recycle gold from electronic waste (e-waste), but the process may produce copper (Cu)-containing wastewater. In general, the wastewater is treated by the chemical precipitation, causing sludge disposal as well as an expensive cost for chemical used. Therefore, chemical precipitation is not an adequate method for treating Cu-containing wastewater. The aim of this study was to treat and recycle Cu-containing wastewater. Firstly, vacuum distillation technique was utilized in treatment of Cu-containing wastewater. The qualitative and quantitative analyses were conducted to evaluate the recycling potential of the crystalline solid derived from vacuum distillation process. Secondly, Cu-containing wastewater was reused in synthesizing copper sulfides (CuS), deposited into the pore of activated carbon (AC) to prepare CuSAC by vacuum impregnation. The physical and chemical characterization of CuSAC was subsequently investigated. Finally, the effects of different parameters on the Hg adsorption performance of CuSAC was examined.
The distillate derived from vacuum distillation process was observed with low concentration of metals due to the bumping effect. Different temperature and vacuum degree in vacuum distillation process affected distillation time, energy consumption, and bumping effect. The metals removal efficiency of vacuum distillation process was over 99.99% at 60°C and -72 cm Hg. The crystalline solid derived from vacuum distillation process mainly composed of Cu2NO3(OH)3 and NaNO3, which could be easily separated by water. The Cu2NO3(OH)3 purity of insoluble crystalline solids was 92%, supporting the Cu species of the insoluble crystalline solid was Cu2NO3(OH)3. Through the cost-benefit evaluation of vacuum distillation, to replace the traditional treatment by vacuum distillation would save 22.49 NT$ per liter of wastewater, confirming that vacuum distillation was economic feasible. Among all tested adsorbent, 50% CuSAC exhibited the greatest Hg adsorption performance, which was much larger than raw AC under N2 environment at 75°C. The Hg removal efficiency of 50% CuSAC significantly decreased at 175°C due to the decomposition of HgS. Comparing to N2 environment, simulated flue gas (SFG) slightly inhibited Hg capture of CuSAC because of adsorption competitive between Hg0 and H2O. In addition, TPD results showed that the principle Hg adsorption mechanism of CuSAC was the reaction between sulfur active sites and Hg0 to form HgS on the adsorbent. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:31:27Z (GMT). No. of bitstreams: 1 ntu-108-R06541128-1.pdf: 4217172 bytes, checksum: 6ccb9ac5a5238d67fb19cbf5fe2849ea (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 III Abstract V Content VII List of figures X List of tables XII Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research objectives 3 Chapter 2. Literature Review 4 2.1. The source of Cu containing wastewater 4 2.1.1. The emerging problem of e-waste 4 2.1.2. The gold recycling process of e-waste 6 2.1.3. Cu-containing wastewater from the gold recycling process 10 2.2. Treatment of Cu-containing wastewater 12 2.2.1. Advanced wastewater treatment techniques 12 2.2.2. Vacuum distillation technique 13 2.3. The reuse of Cu-containing wastewater for preparation of CuSAC 14 2.3.1. Hg0 removal by CuS 14 2.3.2. The supporting material of AC 16 2.3.3. The reuse of Cu-containing wastewater 17 2.3.4. The vacuum impregnation method 18 2.4. The application of CuSAC for removal of Hg in simulated flue gas conditions 19 2.4.1. Mercury emissions 19 2.4.2. Mercury emissions controlling technique 21 2.4.3. Influencing parameters on Hg0 adsorption by CuSAC 23 2.4.3.1. Effect of temperature 23 2.4.3.2. Effect of SO2 24 2.4.3.3. Effect of H2O 25 Chapter 3. Materials and Methods 27 3.1. Experimental design 27 3.2. Experimental equipment, analytical instruments and chemical drugs 29 3.3. Treatment of Cu-containing wastewater by vacuum distillation 31 3.3.1. Experiment processure 31 3.3.2. Analysis of crystalline solids 32 3.3.3. Cost-benefit evaluation of wastewater treatment by vacuum distillation 34 3.4. Preparation of CuSAC 37 3.5. Physical and chemical characterization of the CuSAC 38 3.5.1. Specific surface area, pore distribution and pore distribution (BET) 38 3.5.2. Elemental Analysis 39 3.5.3. Scanning Electron Microscopy 39 3.5.4. X-ray Diffraction 39 3.5.5. X-ray Photoelectron Spectroscopy 40 3.6. Hg removal tests 40 3.7. Mercury Temperature–Programmed Desorption (Hg-TPD) 45 Chapter 4. Result and discussion 46 4.1. Treatment of Cu-containing wastewater by vacuum distillation process 46 4.1.1. The properties of Cu-containing wastewater 46 4.1.2. Effect of temperature 46 4.1.3. Effect of vacuum degree 48 4.1.4. Analysis of crystalline solids 50 4.1.4.1. Qualitative analysis 50 4.1.4.2. Quantitative analysis 52 4.1.5. Cost-benefit evaluation of wastewater treament by vacuum distillation 54 4.2. Physical and chemical characterization of CuSAC 58 4.2.1. BET analysis 58 4.2.2. Elemental analysis 61 4.2.3. X-ray diffraction analysis 62 4.2.4. SEM analysis 65 4.2.5. XPS analysis 67 4.3. Hg removal test 75 4.3.1. Hg adsorption performance of different CuSAC samples and AC 75 4.3.2. Effect of different Hg0 inlet concentration 77 4.3.3. Effect of different temperatures 79 4.3.4. Hg adsorption performance of CuSAC under SFG 81 4.3.5. Effect of different H2O and SO2 concentration 83 4.4. Hg-TPD 85 Chapter 5. Conclusions and suggestions 88 5.1. Conclusions 88 5.2. Suggestions 89 References 91 | |
| dc.language.iso | en | |
| dc.title | 以減壓蒸餾技術處理含銅廢水與再利用於活性碳改質創新技術研發 | zh_TW |
| dc.title | Treatment of copper-containing wastewater by vacuum distillation and reuse of waste copper for preparing novel | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江康鈺,王立邦 | |
| dc.subject.keyword | 含銅廢水,減壓蒸餾,真空含浸,硫化銅,活性碳,汞, | zh_TW |
| dc.subject.keyword | copper-containing wastewater,vacuum distillation,vacuum impregnation,copper sulfides,activated carbon,mercury, | en |
| dc.relation.page | 99 | |
| dc.identifier.doi | 10.6342/NTU201903167 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
