請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21318
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許弘明 | |
dc.contributor.author | Kai-Hsuan Wang | en |
dc.contributor.author | 王凱萱 | zh_TW |
dc.date.accessioned | 2021-06-08T03:30:59Z | - |
dc.date.copyright | 2019-08-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-13 | |
dc.identifier.citation | 1. World Health Organization, Global incidence and prevalence of selected curable sexually transmitted infections – 2008. 2012; 1-20.
2. Cotch MF, Pastorek JG 2nd, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG. Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sex Transm Dis. 1997; 24(6):353-360. 3. Shafir SC, Sorvillo FJ, Smith L. Current Issues and Considerations Regarding Trichomoniasis and Human Immunodeficiency Virus in African-Americans. Clin Microbiol Rev. 2009; 22(1):37-45. 4. Stark JR, Judson G, Alderete JF, Mundodi V, Kucknoor AS, Giovannucci EL, Platz EA, Sutcliffe S, Fall K, Kurth T, Ma J, Stampfer MJ, Mucci LA. Prospective Study of Trichomonas vaginalis Infection and Prostate Cancer Incidence and Mortality: Physicians' Health Study. J Natl Cancer Inst. 2009; 101(20):1406-1411. 5. Zhang ZF, Begg CB. Is Trichomonas vaginalis a cause of cervical neoplasia? Results from a combined analysis of 24 studies. Int J Epidemiol. 1994; 23(4): p. 682-690. 6. Dunne RL, Dunn LA, Upcroft P, O'Donoghue PJ, Upcroft JA. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res. 2003; 13(4): 239-249. 7. Meites E, Gaydos CA, Hobbs MM, Kissinger P, Nyirjesy P, Schwebke JR, Secor WE, Sobel JD, Workowski KA. A review of evidence-based care of symptomatic Trichomoniasis and asymptomatic Trichomonas vaginalis infec¬tions. Clin Infect Dis. 2015; 61(8): 837-48. 8. Arroyo R, González-Robles A, Martínez-Palomo A, Alderete JF. Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence. Mol Microbiol. 1993; 7(2): 299-309. 9. Arroyo R, Engbring J, Alderete JF. Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol. 1992; 6(7):853-862. 10. Alvarez-Sánchez ME, Avila-González L, Becerril-García C, Fattel-Facenda LV, Ortega-López J, Arroyo R. A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity. Microb Pathog. 2000; 28(4):193-202. 11. Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite. 2014; 21:54. 12. Quan JH, Kang BH, Cha GH, Zhou W, Koh YB, Yang JB, Yoo HJ, Lee MA, Ryu JS, Noh HT, Kwon J, Lee YH. Trichonomas vaginalis metalloproteinase induces apoptosis of SiHa cells through disrupting the Mcl-1/Bim and Bcl-xL/Bim complexes. PLoS one. 2014; 9(10):e110659. 13. Alderete JF, Provenzano D, Lehker MW. Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog. 1995; 19(2): p. 93-103. 14. Hernández HM, Marcet R, Sarracent J. Biological roles of cysteine proteinases in the pathogenesis of Trichomonas vaginalis. Parasite. 2014; 21:54. 15. Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995; 82(83): 969-974. 16. Wang J, Pantopoulos K. Regulation of cellular iron metabolism. Biochem J. 2011; 434(3): 365-381. 17. Abbaspour N, Hurrell R, Kelishadi R. Review on iron and its importance for human health. J Res Med Sci. 2014; 19(2):164-174. 18. Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J, Quintas-Granados LI, Alvarez-Sánchez ME, Arroyo R. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes Infect. 2012; 14(15): 1411-1427. 19. Kim I, Yetley EA, Calvo MS. Variations in iron-status measures during the menstrual cycle. The American journal of clinical nutrition. 1993; 58(5): 705-709. 20. De Jesus JB, Cuervo P, Junqueira M, Britto C, Silva-Filho FC, Soares MJ, Cupolillo E, Fernandes O, Domont GB. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. 2007; 12:1961-1972. 21. Alderete JF, Nguyen J, Mundodi V, Lehker MW. Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microb Pathog. 2004; 36(5):263-271. 22. Arroyo R, Cárdenas-Guerra RE, Figueroa-Angulo EE, Puente-Rivera J, Zamudio-Prieto O, Ortega-López J. Trichomonas vaginalis Cysteine Proteinases: Iron Response in Gene Expression and Proteolytic Activity. Biomed Res Int. 2015; 2015: 946787. 23. Rendón-Gandarilla FJ, Ramón-Luing Lde L, Ortega-López J, Rosa de Andrade I, Benchimol M, Arroyo R. The TvLEGU-1, a legumain-like cysteine proteinase, plays a key role in Trichomonas vaginalis cytoadherence. Biomed Res Int. 2013; 2013:561979. 24. Hernandez-Gutierrez R, Ortega-López J, Arroyo R. A 39-kDa cysteine proteinase CP39 from Trichomonas vaginalis, which is negatively affected by iron may be involved in trichomonal cytotoxicity. J Eukaryot Microbiol. 2003; 50 Suppl:696-698. 25. Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R. Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes Infect. 2007; 9(14-15):1597-605. 26. Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb. Perspect. Biol. 2018; 10(1). 27. Small JV, Rottner K, Kaverina I, Anderson KI. Assembling an actin cytoskeleton for cell attachment and movement. Biochim Biophys Acta. 1998; 1404(3):271-281. 28. May RC, Machesky LM. Phagocytosis and the actin cytoskeleton. J Cell Sci. 2001; 114(6):1061-1077. 29. Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol. 2010; 11(9):633-643. 30. Janmey PA. The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol. Rev. 1998; 78(3):763-781. 31. Mullins RD, Heuser JA, Pollard TD. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci U S A. 1998; 95(11):6181-6186. 32. Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. PNAS 1999; 96(7) 3739-3744. 33. Cooper JA, Schafer DA. Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol. 2000; 12: 97-103. 34. Winder SJ, Ayscough KR. Actin-binding proteins. Journal of Cell Science 2005; 118: 651-654. 35. Xu J, Wirtz D, Pollard TD. Dynamic cross-linking by alpha-actinin determines the mechanical properties of actin filament networks. J Biol Chem. 1998; 273(16):9570-9576. 36. Klein MG, Shi W, Ramagopal U, Tseng Y, Wirtz D, Kovar DR, Staiger CJ, Almo SC. Structure of the actin crosslinking core of fimbrin. Structure. 2004; 12(6):999-1013. 37. Dalle-Donne I, Rossi R, Giustarini D, Gagliano N, Di Simplicio P, Colombo R, Milzani A. Methionine oxidation as a major cause of the functional impairment of oxidized actin. Free Radic Biol Med. 2002; 32(9):927-937. 38. Aktories K, Lang AE, Schwan C, Mannherz HG. Actin as target for modification by bacterial protein toxins. FEBS J. 2011; 278(23):4526-4543. 39. Stossel TP. From signal to pseudopod. How cells control cytoplasmic actin assembly. J Biol Chem. 1989; 264(31):18261-18264. 40. Weeds A, Maciver S. F-actin capping proteins. Curr Opin Cell Biol. 1993; 5(1):63-69. 41. Yamashita A, Maeda K, Maéda Y. Crystal structure of CapZ: structural basis for actin filament barbed end capping. EMBO J. 2003; 22(7):1529-1538. 42. Mejillano MR, Kojima S, Applewhite DA, Gertler FB, Svitkina TM, Borisy GG. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell. 2004; 118(3):363-373. 43. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003; 112: 453-465. 44. Cooper JA, Sept D. New insights into mechanism and regulation of actin capping protein. Int Rev Cell Mol Biol. 2008; 267:183-206. 45. Ganter M, Rizopoulos Z, Schüler H, Matuschewski K. Pivotal and distinct role for Plasmodium actin capping protein alpha during blood infection of the malaria parasite. Mol Microbiol. 2015 ; 96(1):84-94. 46. Wear MA, Yamashita A, Kim K, Maéda Y, Cooper JA. How capping protein binds the barbed end of the actin filament. Curr Biol. 2003; 13(17):1531-1537. 47. Hart MC, Korshunova YO, Cooper JA. Vertebrates have conserved capping protein alpha isoforms with specific expression patterns. Cell Motil Cytoskeleton. 1997b; 2:120–132. 48. Canton DA, Olsten ME, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA, Litchfield DW. The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol Cell Biol. 2005; 25(9):3519-3534. 49. Brugerolle G, Bricheux G, Coffe G. Actin cytoskeleton demonstration in Trichomonas vaginalis and in other trichomonads. Biol Cell. 1996; 88(1-2):29-36. 50. Kusdian G, Woehle C, Martin WF, Gould SB. The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol. 2013; 15(10):1707-1721. 51. Lehker MW, Alderete JF. Iron regulates growth of Trichomonas vagi¬nalis and the expression of immunogenic trichomonad proteins. Mol Microbiol. 1992; 6(1): 123-132. 52. Dias-Lopes G, Saboia-Vahia L, Margotti ET, Fernandes NS, Castro CLF, Oliveira FO Junior, Peixoto JF, Britto C, Silva FCE Filho, Cuervo P, Jesus JB. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells. Mem Inst Oswaldo Cruz. 2017; 112(10):664-673. 53. Hsu HM, Lee Y, Hsu PH, Liu HW, Chu CH, Chou YW, Chen YR, Chen SH, Tai JH. Signal transduction triggered by iron to induce the nuclear importation of a Myb3 transcription factor in the parasitic protozoan Trichomonas vaginalis. J Biol Chem. 2014; 289(42):29334-29349. 54. Mercer F, Diala FG, Chen YP, Molgora BM, Ng SH, Johnson PJ. Leukocyte Lysis and Cytokine Induction by the Human Sexually Transmitted Parasite Trichomonas vaginalis. PLoS Negl Trop Dis. 2016; 10(8):e0004913. 55. Su KE. Antibody to Trichomonas vaginalis in human cervicovaginal secretions. Infection and immunity. 1982; 37(3):852-857. 56. Kucknoor A, Mundodi V, Alderete JF. Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cell Microbiol. 2005;7(6):887-897. 57. DuBose DA, Haugland R. Comparisons of endothelial cell G- and F-actin distribution in situ and in vitro. Biotech Histochem. 1993; 68(1):8-16. 58. Ryu JS, Choi HK, Min DY, Ha SE, Ahn MH. Effect of iron on the virulence of Trichomonas vaginalis. J Parasitol. 2001; 87(2):457-460. 59. Skillman KM, Diraviyam K, Khan A, Tang K, Sept D, Sibley LD. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites. PLoS Pathog. 2011; 7(10):e1002280. 60. Huang KY, Huang PJ, Ku FM, Lin R, Alderete JF, Tang P. Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun. 2012; 80(11):3900-3911. 61. De Jesus JB, Cuervo P, Junqueira M, Britto C, Silva-Filho FC, Soares MJ, Cupolillo E, Fernandes O, Domont GB. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics. 2007; 7(12):1961-1972. 62. Crouch MV, Alderete JF. Trichomonas vaginalis has two fibronectin-like iron-regulated genes. Arch Med Res. 2001; 32(2):102-107. 63. Kusdian G, Woehle C, Martin WF, Gould SB. The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol. 2013; 15(10):1707-21. 64. Murphy AC, Young PW. The actinin family of actin cross-linking proteins – a genetic perspective. Cell Biosci. 2015; 5:49. 65. Baron MD, Davison MD, Jones P, Critchley DR. The structure and function of alpha-actinin. Biochem Soc Trans. 1987; 15(5):796-798. 66. Lopes LC, Ribeiro KC, Benchimol M. Immunolocalization of tubulin isoforms and post-translational modifications in the protists Tritrichomonas foetus and Trichomonas vaginalis. Histochem Cell Biol. 2001; 116(1):17-29. 67. Ribeiro KC, Monteiro-Leal LH, Benchimol M. Contributions of the axostyle and flagella to closed mitosis in the protists Tritrichomonas foetus and Trichomonas vaginalis. J Eukaryot Microbiol. 2000; 47(5):481-492. 68. Kamalendu Nath and Arthur L. Koch. Protein Degradation in Escherichia coli. J Biol Chem. 1971; 246(22): 6956-6967. 69. Delon I, Brown NH. The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J Cell Sci. 2009; 122(Pt23):4363-4374. 70. Howe AK. Regulation of actin-based cell migration by cAMP/PKA. Biochim Biophys Acta. 2004; 1692(2-3):159-174. 71. Whittard JD, Akiyama SK. Positive regulation of cell-cell and cell-substrate adhesion by protein kinase A. J Cell Sci. 2001; 114(Pt 18):3265-72. 72. Vicente-Manzanares M, Choi CK, Horwitz AR. Integrins in cell migration—the actin connection. J Cell Sci. 2009; 122(Pt 2):199-206. 73. 林書帆. 陰道滴蟲PI4P5K參與在鐵刺激PIP2產生的功能角色. 台灣大學微生物學研究所寄生蟲組碩士論文. 2018. 74. Ohta Y, Akiyama T, Nishida E, Sakai H. Protein kinase C and cAMP-dependent protein kinase induce opposite effects on actin polymerizability. FEBS Lett. 1987; 222(2):305-310. 75. Narita A, Takeda S, Yamashita A, and Maéda Y. Structural basis of actin filament capping at the barbed-end: a cryo-electron microscopy study. EMBO J. 2006; 25(23):5626-5633. 76. Kim T, Cooper JA, Sept D. The interaction of capping protein with the barbed end of the actin filament. J Mol Biol. 2010; 404(5):794-802. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21318 | - |
dc.description.abstract | 前人在定量蛋白質體學分析中發現陰道滴蟲的加帽蛋白 (F-actin capping protein,TvFACP) 在短時間加鐵刺激後,其表現量有明顯下降,在高等真核生物中FACP已知的主要功能為調控肌動蛋白聚合作用,並維持肌動蛋白絲 (Actin filament,F-actin) 的動態平衡。在本研究中利用免疫螢光染色觀察不同貼附力蟲株發現,Actin訊號在高貼附力陰道滴蟲的表現量較高,但表現量卻不受環境中鐵離子濃度影響。當在各種不同貼附力蟲株中過量表現TvFACP,雖無明顯改變其Actin表現量,但卻抑制其變形作用與基礎貼附能力。當進一步利用差速離心併合細胞分萃技術發現,當TvFACP過量表現於陰道滴蟲細胞時,會降低F-actin之聚合作用。最後以免疫沉澱法及GST沉降技術確認TvFACP與Actin的直接相互作用。綜合本研究結果顯示,在陰道滴蟲系統中TvFACP的功能可能是透過結合Actin而調控其F-actin聚合與細胞骨架重組,進而影響其變形作用與最終基礎貼附能力。 | zh_TW |
dc.description.abstract | Trichomonas vaginalis colonized on the urogenital tract of human is the causative agent of world-spread trichomoniasis. In this parasite, the association of actin-based machinery in morphological transformation upon the process of adhesion and migration on host cells had been reported decades ago, but molecular mechanism remains unclear. In this study, the expression of an F-actin capping protein (TvFACP) and actin were detected to the level higher in those high-adherent clinical isolates and former was negatively regulated by environmental iron. By the transgenic system, TvFACP overexpression substantially impaired the efficiency of F-actin assembly, and also decreased both the morphological transformation population and adherence activity in the high-adherent isolates. On the other hand, TvFACP directly interacted with actin to form the protein complexes when examined by GST pull-down assay and immunoprecipitation. All data together, we speculated that TvFACP may act as an attenuator in dynamics of F-actin assembly in T. vaginalis. Iron presumably mediated expression of TvFACP with the activity binding to actin filaments, sequentially altering F-actin reorganization, morphological transformation and adherence of this parasite. The functional study of F-actin capping protein is a hot issue in the research society of high eukaryotes, and our findings may bring new ideas in the investigation of actin-mediated pathogenesis in T. vaginalis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:30:59Z (GMT). No. of bitstreams: 1 ntu-108-R06445201-1.pdf: 3674816 bytes, checksum: 5a2d30888ed761bb6d1af484667c059e (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 英文摘要 iii 中文摘要 iv 第一章 前言 1 第一節、陰道滴蟲簡介 1 第二節、陰道滴蟲之型態 1 第三節、陰道滴蟲致病機轉 2 第四節、陰道滴蟲與鐵離子 2 第五節、肌動蛋白與細胞骨架重組 3 第六節、加帽蛋白調控肌動蛋白聚合反應 5 第七節、陰道滴蟲變形作用與肌動蛋白的關聯 6 第八節、已知陰道滴蟲鐵誘導之蛋白質體分析 6 第九節、研究目的 7 第二章 材料與方法 8 第一節、陰道滴蟲蟲株 8 1.1蟲株種類 8 1.2蟲株培養 8 1.3質體轉染與蟲株選殖 8 1.4蟲株之保存與活化 8 第二節、免疫螢光染色 (Immunofluorescence assay,IFA) 9 第三節、蛋白質聚丙烯醯胺凝膠電泳 (SDS polyacrylamide gel electrophoresis) 9 第四節、西方墨點法 (Western blot assay) 10 第五節、免疫沉澱法 (Immunoprecipitation,IP) 10 第六節、重組蛋白的生產與純化 11 6.1 His-TvFACP生產與純化 11 6.2 GST-Actin表達 11 6.3 GST蛋白純化 11 6.4 GST pull down 12 第七節、細胞分萃 (Cell fractionation) 12 第三章 結果 14 第一節、陰道滴蟲Actin及TvFACP序列分析 14 第二節、Actin於陰道滴蟲內分布及鐵對Actin的影響 15 第三節、TvFACP重組蛋白與抗體生產 15 第四節、Actin與TvFACP在不同陰道滴蟲分離株間的表現差異 16 第五節、環境中鐵離子對陰道滴蟲Actin與TvFACP的表現量影響 16 第六節、過量表現TvFACP對於Actin表現量之影響 17 第七節、TvFACP對於陰道滴蟲變形與貼附能力之影響 18 第八節、TvFACP於Actin 聚合反應中所扮演的角色 19 第九節、TvFACP與Actin交互作用 20 第四章 討論 22 第一節、鐵離子對於陰道滴蟲Actin表現之影響 22 第二節、TvFACP對於陰道滴蟲Actin聚合作用的影響 23 第三節、α-Actinin與α-Tubulin對於陰道滴蟲變形貼附作用之關聯 24 第四節、陰道滴蟲嚴密調控TvFACP之表現量 24 第五節、鐵離子可能影響TvFACP與Actin之結合力 25 第六節、TvFACP與Actin結合位點探討 26 附錄 61 附錄一、TYI-S33培養液 61 附錄二、綜合抑制劑 62 附錄三、抗體 63 附錄四、利用標記螢光的Phalloidin對陰道滴蟲F-actin染色 64 附錄五、Tubulin於不同表現型的陰道滴蟲之表現量與細胞內分佈 65 參考資料 66 | |
dc.language.iso | zh-TW | |
dc.title | 致病性原蟲陰道滴蟲細胞中F-actin capping protein之功能探討 | zh_TW |
dc.title | The functional study of an F-actin capping protein in the protozoan parasite, Trichomonas vaginalis | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 孫錦虹,許書豪 | |
dc.subject.keyword | 陰道滴蟲,加帽蛋白,肌動蛋白聚合作用,鐵離子,細胞骨架,細胞變形作用,細胞貼附力, | zh_TW |
dc.subject.keyword | Trichomonas vaginalis,F-actin capping protein,Actin assembly,Iron,Cytoskeleton,Morphological Transformation,Cytoadherence, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201903329 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-14 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。