Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21317
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐瑋勵(Wei-Li Hsu)
dc.contributor.authorYi-Shan Chengen
dc.contributor.author鄭亦珊zh_TW
dc.date.accessioned2021-06-08T03:30:58Z-
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation1. Gibson J, Nouri A, Krueger B, et al. Degenerative cervical myelopathy: a clinical review. Yale J Biol Med. 2018;91:43-48.
2. Nouri A, Tetreault L, Singh A, Karadimas SK, Fehlings MG. Degenerative cervical myelopathy: epidemiology, genetics, and pathogenesis. Spine (Phila Pa 1976). 2015;40:E675-693.
3. Kato S, Fehlings M. Degenerative cervical myelopathy. Curr Rev Musculoskelet Med. 2016;9:263-271.
4. Toledano M, Bartleson JD. Cervical spondylotic myelopathy. Neurol Clin. 2013;31:287-305.
5. Tracy JA, Bartleson JD. Cervical spondylotic myelopathy. Neurologist. 2010;16:176-187.
6. Rhee J, Tetreault LA, Chapman JR, et al. Nonoperative versus operative management for the treatment degenerative cervical myelopathy: an updated systematic review. Global Spine J. 2017;7:35S-41S.
7. Sampath P, Bendebba M, Davis JD, Ducker TB. Outcome of patients treated for cervical myelopathy. A prospective, multicenter study with independent clinical review. Spine (Phila Pa 1976). 2000;25:670-676.
8. Wong W-J, Lai D-M, Wang S-F, Wang J-L, Hsu W-L. Changes of balance control in individuals with lumbar degenerative spine disease after lumbar surgery: a longitudinal study. The Spine Journal. 2019;19:1210-1220.
9. Haddas R, Lieberman I, Boah A, Arakal R, Belanger T, Ju KL. Functional balance testing in cervical spondylotic myelopathy patients. Spine (Phila Pa 1976). 2018;44:103-109.
10. Yoshikawa M, Doita M, Okamoto K, Manabe M, Sha N, Kurosaka M. Impaired postural stability in patients with cervical myelopathy: evaluation by computerized static stabilometry. Spine (Phila Pa 1976). 2008;33:E460-464.
11. Nardone A, Galante M, Grasso M, Schieppati M. Stance ataxia and delayed leg muscle responses to postural perturbations in cervical spondylotic myelopathy. J Rehabil Med. 2008;40:539-547.
12. Tanishima S, Nagashima H, Ishii H, et al. Significance of stabilometry for assessing postoperative body sway in patients with cervical myelopathy. Asian Spine J. 2017;11:763-769.
13. Malone A, Meldrum D, Bolger C. Three-dimensional gait analysis outcomes at 1 year following decompressive surgery for cervical spondylotic myelopathy. Eur Spine J. 2015;24:48-56.
14. Haddas R, Lieberman I, Arakal R, Boah A, Belanger T, Ju K. Effect of cervical decompression surgery on gait in adult cervical spondylotic myelopathy patients. Clin Spine Surg. 2018;31:435-440.
15. Fehlings MG, Wilson JR, Kopjar B, et al. Efficacy and safety of surgical decompression in patients with cervical spondylotic myelopathy: results of the AOSpine North America prospective multi-center study. J Bone Joint Surg Am. 2013;95:1651-1658.
16. Zika J, Alexiou GA, Giannopoulos S, Kastanioudakis I, Kyritsis AP, Voulgaris S. Outcome factors in surgically treated patients for cervical spondylotic myelopathy. J Spinal Cord Med. 2018:1-5.
17. Furlan JC, Kalsi-Ryan S, Kailaya-Vasan A, Massicotte EM, Fehlings MG. Functional and clinical outcomes following surgical treatment in patients with cervical spondylotic myelopathy: a prospective study of 81 cases. J Neurosurg Spine. 2011;14:348-355.
18. Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013;110:93-103.
19. Edgerton VR, Leon RD, Harkema SJ, et al. Retraining the injured spinal cord. J Physiol. 2001;533:15-22.
20. Mulder T, Hochstenbach J. Adaptability and flexibility of the human motor system: implications for neurological rehabilitation. Neural Plast. 2001;8:131-140.
21. Kakebeeke TH, Roy SH, Largo RH. Coordination training in individuals with incomplete spinal cord injury: consideration of motor hierarchical structures. Spinal Cord. 2006;44:7-10.
22. Grabiner MD, Crenshaw JR, Hurt CP, Rosenblatt NJ, Troy KL. Exercise-based fall prevention: can you be a bit more specific? Exerc Sport Sci Rev. 2014;42:161-168.
23. Bhatt T, Dusane S, Patel P. Does severity of motor impairment affect reactive adaptation and fall-risk in chronic stroke survivors? J Neuroeng Rehabil. 2019;16:43.
24. Chien JE, Hsu WL. Effects of dynamic perturbation-based training on balance control of community-dwelling older adults. Sci Rep. 2018;8:17231.
25. Gerards MHG, McCrum C, Mansfield A, Meijer K. Perturbation-based balance training for falls reduction among older adults: Current evidence and implications for clinical practice. Geriatr Gerontol Int. 2017;17:2294-2303.
26. Handelzalts S, Kenner-Furman M, Gray G, Soroker N, Shani G, Melzer I. Effects of perturbation-based balance training in subacute persons with stroke: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33:213-224.
27. Lee A, Bhatt T, Liu X, Wang Y, Pai YC. Can higher training practice dosage with treadmill slip-perturbation necessarily reduce risk of falls following overground slip? Gait Posture. 2018;61:387-392.
28. Steib S, Klamroth S, Gassner H, et al. Perturbation during treadmill training improves dynamic balance and gait in parkinson's disease: a single-blind randomized controlled pilot trial. Neurorehabil Neural Repair. 2017;31:758-768.
29. Wang Y, Bhatt T, Liu X, et al. Can treadmill-slip perturbation training reduce immediate risk of over-ground-slip induced fall among community-dwelling older adults? J Biomech. 2019;84:58-66.
30. Wang Y, Wang S, Lee A, Pai YC, Bhatt T. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol. Exp Brain Res. 2019.
31. Wu JC, Ko CC, Yen YS, et al. Epidemiology of cervical spondylotic myelopathy and its risk of causing spinal cord injury: a national cohort study. Neurosurg Focus. 2013;35:E10.
32. Ferrara LA. The biomechanics of cervical spondylosis. Adv Orthop. 2012;2012:493605.
33. Tetreault L, Goldstein CL, Arnold P, et al. Degenerative cervical myelopathy: a spectrum of related disorders affecting the aging spine. Neurosurgery. 2015;77 Suppl 4:S51-67.
34. Northover JR, Wild JB, Braybrooke J, Blanco J. The epidemiology of cervical spondylotic myelopathy. Skeletal Radiol. 2012;41:1543-1546.
35. Kimura A, Seichi A, Takeshita K, et al. Fall-related deterioration of subjective symptoms in patients with cervical myelopathy. Spine (Phila Pa 1976). 2017;42:E398-E403.
36. Rhee JM, Shamji MF, Erwin WM, et al. Nonoperative management of cervical myelopathy: a systematic review. Spine (Phila Pa 1976). 2013;38:S55-67.
37. Passias PG, Marascalchi BJ, Boniello AJ, et al. Cervical spondylotic myelopathy: national trends in the treatment and peri-operative outcomes over 10 years. J Clin Neurosci. 2017;42:75-80.
38. Fehlings MG, Kopjar B, Ibrahim A, et al. Geographic variations in clinical presentation and outcomes of decompressive surgery in patients with symptomatic degenerative cervical myelopathy: analysis of a prospective, international multicenter cohort study of 757 patients. Spine J. 2018;18:593-605.
39. Kopjar B, Bohm PE, Arnold JH, Fehlings MG, Tetreault LA, Arnold PM. Outcomes of surgical decompression in patients with very severe degenerative cervical myelopathy. Spine (Phila Pa 1976). 2018;43:1102-1109.
40. Gerling MC, Radcliff K, Isaacs R, et al. Two-year results of the prospective spine treatment outcomes study: an analysis of complication rates, predictors of their development, and effect on patient derived outcomes at 2 years for surgical management of cervical spondylotic myelopathy. World Neurosurg. 2017;106:247-253.
41. Veeravagu A, Azad TD, Zhang M, et al. Outcomes of cervical laminoplasty-Population-level analysis of a national longitudinal database. J Clin Neurosci. 2018;48:66-70.
42. Zhang RJ, Shen CL, Zhang JX, et al. Clinical features and surgical outcomes of cervical spondylotic myelopathy in patients of different ages: a retrospective study. Spinal Cord. 2018;56:7-13.
43. Machino M, Yukawa Y, Hida T, et al. The prevalence of pre- and postoperative symptoms in patients with cervical spondylotic myelopathy treated by cervical laminoplasty. Spine (Phila Pa 1976). 2012;37:E1383-1388.
44. Lin IS, Lai DM, Ding JJ, et al. Reweighting of the sensory inputs for postural control in patients with cervical spondylotic myelopathy after surgery. J Neuroeng Rehabil. 2019;16:96.
45. Tsai YC, Hsieh LF, Yang S. Age-related changes in posture response under a continuous and unexpected perturbation. J Biomech. 2014;47:482-490.
46. Siasios ID, Spanos SL, Kanellopoulos AK, et al. The role of gait analysis in the evaluation of patients with cervical myelopathy: a literature review study. World Neurosurg. 2017;101:275-282.
47. Krishnan RV. Relearning of locomotion in injured spinal cord: new directions for rehabilitation programs. Int J Neurosci. 2003;113:1333-1351.
48. Edgerton VR, de Leon RD, Tillakaratne N, Recktenwald MR, Hodgson JA, Roy RR. Use-dependent plasticity in spinal stepping and standing. Adv Neurol. 1997;72:233-247.
49. McCrum C, Gerards MHG, Karamanidis K, Zijlstra W, Meijer K. A systematic review of gait perturbation paradigms for improving reactive stepping responses and falls risk among healthy older adults. Eur Rev Aging Phys Act. 2017;14:3.
50. Jacobs JV, Horak FB. Cortical control of postural responses. J Neural Transm (Vienna). 2007;114:1339-1348.
51. Maki BE, McIlroy WE. Cognitive demands and cortical control of human balance-recovery reactions. J Neural Transm (Vienna). 2007;114:1279-1296.
52. Pai YC, Bhatt T, Yang F, Wang E. Perturbation training can reduce community-dwelling older adults' annual fall risk: a randomized controlled trial. J Gerontol A Biol Sci Med Sci. 2014;69:1586-1594.
53. Pai YC, Yang F, Bhatt T, Wang E. Learning from laboratory-induced falling: long-term motor retention among older adults. Age (Dordr). 2014;36:9640.
54. Mansfield A, Schinkel-Ivy A, Danells CJ, et al. Does perturbation training prevent falls after discharge from stroke rehabilitation? A prospective cohort study with historical control. J Stroke Cerebrovasc Dis. 2017;26:2174-2180.
55. Liu X, Bhatt T, Wang S, Yang F, Pai YC. Retention of the 'first-trial effect' in gait-slip among community-living older adults. Geroscience. 2017;39:93-102.
56. Pirouzi S, Motealleh AR, Fallahzadeh F, Fallahzadeh MA. Effectiveness of treadmill training on balance control in elderly people: a randomized controlled clinical trial. Iran J Med Sci. 2014;39:565-570.
57. Klamroth S, Steib S, Gassner H, et al. Immediate effects of perturbation treadmill training on gait and postural control in patients with Parkinson's disease. Gait Posture. 2016;50:102-108.
58. Sheehan RC, Rabago CA, Rylander JH, Dingwell JB, Wilken JM. Use of perturbation-based gait training in a virtual environment to address mediolateral instability in an individual with unilateral transfemoral amputation. Phys Ther. 2016;96:1896-1904.
59. Freyler K, Krause A, Gollhofer A, Ritzmann R. Specific stimuli induce specific adaptations: sensorimotor training vs. reactive balance training. PLoS One. 2016;11:e0167557.
60. Krause A, Freyler K, Gollhofer A, et al. Neuromuscular and kinematic adaptation in response to reactive balance training - a randomized controlled study regarding fall prevention. Front Physiol. 2018;9:1075.
61. Bhatt T, Pai YC. Prevention of slip-related backward balance loss: the effect of session intensity and frequency on long-term retention. Arch Phys Med Rehabil. 2009;90:34-42.
62. Mantovani G, Lamontagne M. How different marker sets affect joint angles in inverse kinematics framework. J Biomech Eng. 2017;139.
63. Shumway-Cook A, Brauer S, Woollacott M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys Ther. 2000;80:896-903.
64. Bennie S, Bruner K, Dizon A, Fritz H, Goodman B, Peterson S. Measurements of balance: comparison of the Timed' Up and Go' test and Functional Reach test with the Berg Balance Scale. Journal of Physical Therapy Science. 2003;15:93-97.
65. Alghadir AH, Anwer S, Iqbal A, Iqbal ZA. Test–retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J Pain Res. 2018;11:851.
66. Jensen MP, Chen C, Brugger AM. Interpretation of visual analog scale ratings and change scores: a reanalysis of two clinical trials of postoperative pain. J Pain. 2003;4:407-414.
67. Vernon H, Mior S. The Neck Disability Index: a study of reliability and validity. J Manipulative Physiol Ther. 1991;14:409-415.
68. Carreon LY, Glassman SD, Campbell MJ, Anderson PA. Neck Disability Index, short form-36 physical component summary, and pain scales for neck and arm pain: the minimum clinically important difference and substantial clinical benefit after cervical spine fusion. Spine J. 2010;10:469-474.
69. Carreon LY, Anderson PA, McDonough CM, Djurasovic M, Glassman SD. Predicting SF-6D utility scores from the neck disability index and numeric rating scales for neck and arm pain. Spine (Phila Pa 1976). 2011;36:490-494.
70. Fukui M, Chiba K, Kawakami M, et al. An outcome measure for patients with cervical myelopathy: Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (JOACMEQ): Part 1. J Orthop Sci. 2007;12:227-240.
71. Chien A, Lai DM, Cheng CH, Wang SF, Hsu WL, Wang JL. Translation, cross-cultural adaptation, and validation of a Chinese version of the Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire. Spine (Phila Pa 1976). 2014;39:963-970.
72. Horak FB. Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age Ageing. 2006;35 Suppl 2:ii7-ii11.
73. Prieto TE, Myklebust JB, Hoffmann RG, Lovett EG, Myklebust BM. Measures of postural steadiness: differences between healthy young and elderly adults. IEEE Trans Biomed Eng. 1996;43:956-966.
74. Hsu WL, Chou LS, Woollacott M. Age-related changes in joint coordination during balance recovery. Age (Dordr). 2013;35:1299-1309.
75. Nataraj R, Audu ML, Kirsch RF, Triolo RJ. Trunk acceleration for neuroprosthetic control of standing: a pilot study. J Appl Biomech. 2012;28:85-92.
76. O'Connor CM, Thorpe SK, O'Malley MJ, Vaughan CL. Automatic detection of gait events using kinematic data. Gait Posture. 2007;25:469-474.
77. Lee HJ, Chou LS. Detection of gait instability using the center of mass and center of pressure inclination angles. Arch Phys Med Rehabil. 2006;87:569-575.
78. Carlson GD, Gorden CD, Oliff HS, Pillai JJ, LaManna JC. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology. J Bone Joint Surg Am. 2003;85:86-94.
79. Morio Y, Teshima R, Nagashima H, Nawata K, Yamasaki D, Nanjo Y. Correlation between operative outcomes of cervical compression myelopathy and mri of the spinal cord. Spine (Phila Pa 1976). 2001;26:1238-1245.
80. Taylor J. Proprioception. 2009.
81. Goncalves S, Stevens TK, Doyle-Pettypiece P, Bartha R, Duggal N. N-acetylaspartate in the motor and sensory cortices following functional recovery after surgery for cervical spondylotic myelopathy. J Neurosurg Spine. 2016;25:436-443.
82. Stolze H, Klebe S, Zechlin C, Baecker C, Friege L, Deuschl G. Falls in frequent neurological diseases--prevalence, risk factors and aetiology. J Neurol. 2004;251:79-84.
83. Tuunainen E, Rasku J, Jantti P, Pyykko I. Risk factors of falls in community dwelling active elderly. Auris Nasus Larynx. 2014;41:10-16.
84. Lee JH, Lee SH, Seo IS. The characteristics of gait disturbance and its relationship with posterior tibial somatosensory evoked potentials in patients with cervical myelopathy. Spine (Phila Pa 1976). 2011;36:E524-530.
85. Frood RT. The use of treadmill training to recover locomotor ability in patients with spinal cord injury. Bioscience Horizons. 2011;4:108-117.
86. Harkema SJ. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking. Neuroscientist. 2001;7:455-468.
87. Sorrento GU, Archambault PS, Fung J. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults. J Neuroeng Rehabil. 2018;15:20.
88. van Dijsseldonk RB, de Jong LAF, Groen BE, Vos-van der Hulst M, Geurts ACH, Keijsers NLW. Gait stability training in a virtual environment improves gait and dynamic balance capacity in incomplete spinal cord injury patients. Front Neurol. 2018;9:963.
89. Ganesan M, Sathyaprabha TN, Gupta A, Pal PK. Effect of partial weight-supported treadmill gait training on balance in patients with Parkinson disease. PM R. 2014;6:22-33.
90. Heeren A, van Ooijen M, Geurts AC, et al. Step by step: a proof of concept study of C-Mill gait adaptability training in the chronic phase after stroke. J Rehabil Med. 2013;45:616-622.
91. Myles PS, Myles DB, Galagher W, et al. Measuring acute postoperative pain using the visual analog scale: the minimal clinically important difference and patient acceptable symptom state. Br J Anaesth. 2017;118:424-429.
92. MacDermid JC, Walton DM, Avery S, et al. Measurement properties of the neck disability index: a systematic review. J Orthop Sports Phys Ther. 2009;39:400-417.
93. Fukui M, Chiba K, Kawakami M, et al. JOA Back Pain Evaluation Questionnaire (JOABPEQ)/JOA Cervical Myelopathy Evaluation Questionnaire (JOACMEQ). The report on the development of revised versions. April 16, 2007. The subcommittee of the clinical outcome committee of the Japanese Orthopaedic Association on low back pain and cervical myelopathy evaluation. J Orthop Sci. 2009;14:348-365.
94. Ruffieux J, Mouthon A, Keller M, Mouthon M, Annoni JM, Taube W. Balance training reduces brain activity during motor simulation of a challenging balance task in older adults: an fMRI study. Front Behav Neurosci. 2018;12:10.
95. Sehm B, Taubert M, Conde V, et al. Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiol Aging. 2014;35:232-239.
96. Taube W, Gruber M, Beck S, Faist M, Gollhofer A, Schubert M. Cortical and spinal adaptations induced by balance training: correlation between stance stability and corticospinal activation. Acta Physiol (Oxf). 2007;189:347-358.
97. Patel PJ, Bhatt T, DelDonno SR, Langenecker SA, Dusane S. Examining neural plasticity for slip-perturbation training: an fMRI study. Front Neurol. 2018;9:1181.
98. Surgent OJ, Dadalko OI, Pickett KA, Travers BG. Balance and the brain: A review of structural brain correlates of postural balance and balance training in humans. Gait Posture. 2019;71:245-252.
99. Papegaaij S, Baudry S, Négyesi J, Taube W, Hortobágyi T. Intracortical inhibition in the soleus muscle is reduced during the control of upright standing in both young and old adults. Eur J Appl Physiol. 2016;116:959-967.
100. Taube W, Schubert M, Gruber M, Beck S, Faist M, Gollhofer A. Direct corticospinal pathways contribute to neuromuscular control of perturbed stance. J Appl Physiol (1985). 2006;101:420-429.
101. Baudry S, Penzer F, Duchateau J. Input-output characteristics of soleus homonymous Ia afferents and corticospinal pathways during upright standing differ between young and elderly adults. Acta Physiol (Oxf). 2014;210:667-677.
102. Chang CJ, Yang TF, Yang SW, Chern JS. Cortical modulation of motor control biofeedback among the elderly with high fall risk during a posture perturbation task with augmented reality. Front Aging Neurosci. 2016;8:80.
103. Papegaaij S, Taube W, Hogenhout M, Baudry S, Hortobagyi T. Age-related decrease in motor cortical inhibition during standing under different sensory conditions. Front Aging Neurosci. 2014;6:126.
104. Cortes M, Thickbroom GW, Elder J, et al. The corticomotor projection to liminally-contractable forearm muscles in chronic spinal cord injury: a transcranial magnetic stimulation study. Spinal Cord. 2017;55:362-366.
105. Edwards DJ, Cortes M, Thickbroom GW, Rykman A, Pascual-Leone A, Volpe BT. Preserved corticospinal conduction without voluntary movement after spinal cord injury. Spinal Cord. 2013;51:765-767.
106. Julkunen P, Kononen M, Maatta S, et al. Longitudinal study on modulated corticospinal excitability throughout recovery in supratentorial stroke. Neurosci Lett. 2016;617:88-93.
107. Lapitskaya N, Moerk SK, Gosseries O, Nielsen JF, de Noordhout AM. Corticospinal excitability in patients with anoxic, traumatic, and non-traumatic diffuse brain injury. Brain Stimul. 2013;6:130-137.
108. Nardone R, Holler Y, Thomschewski A, et al. Assessment of corticospinal excitability after traumatic spinal cord injury using MEP recruitment curves: a preliminary TMS study. Spinal Cord. 2015;53:534-538.
109. Volz LJ, Sarfeld AS, Diekhoff S, et al. Motor cortex excitability and connectivity in chronic stroke: a multimodal model of functional reorganization. Brain Struct Funct. 2015;220:1093-1107.
110. Dennis GC, Dehkordi O, Millis RM, Said B, Baganz MD. Somatosensory evoked potential, neurological examination and magnetic resonance imaging for assessment of cervical spinal cord decompression. Life Sci. 2000;66:389-397.
111. Green A, Cheong PW, Fook-Chong S, et al. Cortical reorganization Is associated with surgical decompression of cervical spondylotic myelopathy. Neural Plast. 2015;2015:389531.
112. Mazur MD, White A, McEvoy S, Bisson EF. Transcranial magnetic stimulation of the motor cortex correlates with objective clinical measures in patients with cervical spondylotic myelopathy. Spine (Phila Pa 1976). 2014;39:1113-1120.
113. Nakanishi K, Tanaka N, Kamei N, et al. Electrophysiological evidence of functional improvement in the corticospinal tract after laminoplasty in patients with cervical compressive myelopathy: clinical article. J Neurosurg Spine. 2014;21:210-216.
114. Nicotra A, King NK, Catley M, Mendoza N, McGregor AH, Strutton PH. Evaluation of corticospinal excitability in cervical myelopathy, before and after surgery, with transcranial magnetic stimulation: a pilot study. Eur Spine J. 2013;22:189-196.
115. Capone F, Tamburelli FC, Pilato F, et al. The role of motor-evoked potentials in the management of cervical spondylotic myelopathy. Spine J. 2013;13:1077-1079.
116. Takahashi J, Hirabayashi H, Hashidate H, et al. Assessment of cervical myelopathy using transcranial magnetic stimulation and prediction of prognosis after laminoplasty. Spine (Phila Pa 1976). 2008;33:E15-20.
117. Reeves NP, Narendra KS, Cholewicki J. Spine stability: the six blind men and the elephant. Clin Biomech (Bristol, Avon). 2007;22:266-274.
118. Lynch SM, Leahy P, Barker SP. Reliability of measurements obtained with a modified functional reach test in subjects with spinal cord injury. Phys Ther. 1998;78:128-133.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21317-
dc.description.abstract背景: 頸椎脊髓神經病變患者於頸椎減壓手術後,有些患者仍存在平衡與功能損傷。干擾式平衡訓練能有益於老年人與神經性疾患患者的平衡與功能性表現。然而,目前未有臨床研究應用干擾式平衡訓練,於頸椎減壓手術後之頸椎脊髓神經病變患者。
目的:探討干擾式平衡訓練對頸椎減壓手術後之頸椎脊髓神經病變患者,於平衡與功能性表現之效果。
實驗設計:兩組設計的前瞻性控制臨床試驗。
實驗方法: 本實驗招募十五名頸椎減壓手術後之頸椎脊髓神經病變患者 (DCM組)與十四名年齡相符的健康成年人 (健康控制組)。DCM組接受為期四週的干擾式平衡訓練。靜態姿勢控制是以平地張眼與閉眼站立之足底壓力中心搖晃速度進行評估。動態姿勢控制是以靜止站立加上平衡干擾的質心變異度與反應時間進行評估。功能性表現以平地行走的行走速度與質心-重心傾斜角度,以及計時坐站起走測試與肌力測試進行評估。功能性問卷則包含視覺類比量表、頸部失能量表,以及日本骨科學會頸椎脊髓神經病變評估問卷之下肢功能。DCM組在前測與後測進行兩次評估,健康控制組則只進行一次評估。
實驗結果: DCM組於訓練後,閉眼時足底壓力中心的搖晃速度、質心變異度、反應時間、行走速度及計時坐站起走測試皆有顯著進步,張眼時足底壓力中心的搖晃速度、質心-重心傾斜角度、肌力與功能性問卷則無顯著變化。DCM組與健康控制組之組間比較,兩組於前測的顯著差異,在後測皆未達統計顯著水準,除了張眼時足底壓力中心的搖晃速度、冠狀面的質心-重心傾斜角度與肌力以外。
結論:四周的干擾式平衡訓練,為頸椎減壓手術後之頸椎脊髓神經病變患者可行的平衡復健介入,以改善其平衡與功能損傷。此外,本實驗可提供未來欲探討其他平衡失調患者之研究,一個可行的參考訓練計畫。然而,針對步寬大的行走策略仍須進一步的調整介入,以達到更有效率行走方式。
zh_TW
dc.description.abstractBackground: Patients with degenerative cervical myelopathy (DCM) may still present with balance and functional impairments after surgery. Perturbation-based balance training had positive effects on balance and functional performance in elderly population and patients with neurological disorders. However, no study so far had conducted perturbation-based balance training in postoperative patients with DCM.
Purpose: To evaluate the effects of perturbation-based balance training on balance and functional performance in postoperative patients with DCM.
Design: A two-arm prospective controlled clinical trial.
Methods: Fifteen postoperative patients with DCM (DCM group) and 14 age-matched healthy adults (healthy control group) were recruited in the study. The DCM group received a 4-week perturbation-based balance training using a perturbation treadmill. The static postural control was assessed by mean velocity of center of pressure (COP) during quiet standing with eyes open and eyes closed. The dynamic postural control was assessed by center of mass (COM) variance and reaction time during standing with perturbation. The functional performance was assessed by gait speed and COM-COP inclination angle during level-ground walking, as well as the Timed Up and Go Test (TUG) performance and the muscle strength. The disability questionnaires included Visual Analog Scale, Neck Disability Index, and Lower Extremity Function of Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire. The assessments were conducted pre-test and post-test for DCM group but only once for the healthy control group.
Results: In the DCM group, significant improvements after training were observed in the mean velocity of COP in eyes closed condition, COM variance, reaction time, gait speed, and TUG performance. The mean velocity of COP in eyes open condition, COM-COP inclination angles, muscle strength, and the disability questionnaires did not change significantly. For between-group comparisons, significant differences that were observed pre-test were not observed post-test, except for the mean velocity of COP in eyes open condition, COM-COP inclination angle in the frontal plane, and muscle strength.
Conclusion: The 4-week perturbation-based balance training is a potential rehabilitation strategy for addressing balance and functional impairments in postoperative patients with DCM. In addition, the training regimens offer a practical reference for future studies on populations with balance disorders. However, further intervention for the wide-based gait is needed to enhance the ambulation efficiency in postoperative patients with DCM
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:58Z (GMT). No. of bitstreams: 1
ntu-108-R06428002-1.pdf: 12926468 bytes, checksum: 830eefcd640ea1add5b43b14abb4aca9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Content vi
Index of Figure x
Index of Table xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Degenerative Cervical Myelopathy (DCM) 4
2.1.1 Pathology 4
2.1.2 Symptoms and Signs 5
2.1.3 Interventions 5
2.2 Balance and Functional Performance in Patients with DCM 6
2.2.1 Static Postural Control 6
2.2.2 Dynamic Postural Control 7
2.2.3 Functional Performance 7
2.3 Concepts of Motor Relearning in Rehabilitation 8
2.3.1 Neuroplasticity in Patients with Spinal Cord Impairment 8
2.3.2 Principles of Rehabilitation to Induce Motor Relearning 9
2.4 Perturbation-based Balance Training 10
2.5 Research Questions 11
2.6 Study Purposes 11
2.7 Hypotheses 12
Chapter 3 Methodology 13
3.1 Study Design 13
3.2 Study Procedure 13
3.3 Participants 13
3.4 Data Collection 14
3.4.1 Motion Analysis 14
3.4.2 Physical Performance Test 16
3.4.3 Disability Questionnaire Assessment 17
3.5 Variables and Data Analysis 18
3.5.1 Independent Variables 18
3.5.2 Dependent Variables 19
3.6 Intervention 21
Perturbation-based Balance Training 21
3.7 Statistical Analysis 23
Chapter 4 Results 25
4.1 Static Postural Control 25
4.2 Dynamic Postural Control 25
4.3 Functional Performance 26
4.4 Disability Questionnaire Assessment 28
Chapter 5 Discussion 29
5.1 Residual balance instability and functional impairment after surgery 29
5.2 Improvement of balance and functional performance after training 31
5.3 Persisted wide-based gait and unchanged questionnaire outcomes 33
5.4 Possible underlying mechanism of perturbation-based balance training 34
5.5 Study Limitations 36
5.6 Clinical Implications 37
Chapter 6 Conclusion 39
Chapter 7 References 40
Appendix 1. Approval Letter from NTUH Research Ethics. 66
Appendix 2. Approval Letter from ClinicalTrials.gov. 69
Appendix 3. Consent Form from NTUH. 70
Appendix 4. Neck Disability Index (NDI) 78
Appendix 5. Japanese Orthopaedic Association Cervical Myelopathy Evaluation Questionnaire (Chinese version). 80
dc.language.isoen
dc.title頸椎脊髓神經病變患者於頸椎減壓手術後接受干擾式平衡訓練之效果zh_TW
dc.titleEffects of Perturbation-based Balance Training in Patients with Degenerative Cervical Myelopathy after Cervical Decompression Surgeryen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴達明(Dar-Ming Lai),張雅如(Ya-Ju Chang),李亞芸(Ya-Yun Lee)
dc.subject.keyword頸椎脊髓神經病變,減壓手術,干擾式平衡訓練,姿勢控制,復健,zh_TW
dc.subject.keyworddegenerative cervical myelopathy,decompression surgery,perturbation-based training,postural control,rehabilitation,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201901742
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
12.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved