Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 統計碩士學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21312
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor歐陽彥正(Yen-Jeng Oyang)
dc.contributor.authorChun-Chieh Yangen
dc.contributor.author楊竣傑zh_TW
dc.date.accessioned2021-06-08T03:30:51Z-
dc.date.available2030-01-01-
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1] A. J. Izenman, 'Recent Developments in Nonparametric Density Estimation,' Journal of the American Statistical Association, vol. 86, no. 413, pp. 205-224, 1991.
[2] R.V. Hogg, J. McKean, A.T. Craig, Introduction to mathematical statistics, 7/e ed., Pearson College Div, 2014.
[3] S. Kullback, R.A. Leibler, 'On Information and Sufficiency,' Annals of Mathematical Statistics, vol. 22, p. 79–86, 1951.
[4] H. Akaike, 'A new look at the statistical model identification,' in IEEE Transactions on Automatic Control, 1974.
[5] Y. Tamura, T. Sato, M. Ooe and M. Ishiguro, 'A procedure for tidal analysis with a Bayesian information criterion,' Geophys. J. Int., vol. 104, pp. 507-516.
[6] A. Justel, D. Peña and R. Zamar, 'A multivariate Kolmogorov-Smirnov test of goodness of fit,' Statistics & Probability Letters, vol. 35, no. 3, pp. 251-259, 1997.
[7] K. HIROSE, 'Mean integrated squared error and deficiency of nonparamatric recursive kernel estimators of smooth distribution functions,' Nihonkai Mathematical Journal, vol. 8, pp. 195-207, 1997.
[8] D. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization, NewYork: Wiley, 1992.
[9] D. SCOTT, 'On optimal and data-based histograms,' Biometrika, vol. 66, no. 3, p. 605–610, 1979.
[10] E. Wegman, 'Nonparametric probability density estimation,' Journal of Statistical Computation and Simulation, vol. 1, pp. 225-245, 1972.
[11] T. Cover and P. Hart, 'Nearest neighbor pattern classification,' in IEEE transaction on Information Theory, 1967.
[12] E. Parzen, 'On estimation of a probability density function and mode,' The annals of mathematical statistics, vol. 33, pp. 1065-1076, 1962.
[13]G. H. John, P. Langley, 'Estimating continuous distributions in Bayesian classifiers,' in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995.
[14] A. Elgammal, R. Duraiswami, D. Harwood and L. Davis, 'Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance,' Proceedings of the IEEE, vol. 90, no. 7, pp. 1151-1163, July 2002.
[15] B. Silverman, Density estimation for statistics and data analysis, Chapman and Hall/CRC, 1986.
[16] G. R. Terrell, D. W. Scott, 'Variable Kernel Density Estimation,' The Annals of Statistics, vol. 20, pp. 1236-1265, 1992.
[17] I. Abramson, 'On Bandwidth Variation in Kernel Estimates-A Square Root Law,' The Annals of Statistics, vol. 10, no. 4, pp. 1217-1223, 1982.
[18]Y.J. Oyang, Y.Y. Ou, S.C. Hwang, C.Y. Chenl and D. T.H. Chang, 'Data Classification with a Relaxed Model of Variable Kernel Density Estimation,' in n Proc. IEEE Int. Joint Conf. Neural Netw., 2005.
[19]G.E.P. Box, G.C. Tiao, Bayesian inference in statistical analysis, Wiley- Interscience, 1992.
[20] G.R. Terrel and D.W. Scott, 'Variable Kernel Density Estimation,' The Annals of Statistics, vol. 20, no. 3, pp. 1236-1265, 1992.
[21] C. Lih, 'Density Estimation in High Dimensions Using Distance to K Nearest Neighbors,' 2018.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21312-
dc.description.abstract本論文比較幾種核心密度估計方法(Kernel Density Estimation)並提出可變帶寬核密 度估計(Adaptive Density Estimation)的挑選模式。核密度估計是一種無母數統計方 法,相對有母數統計較不受特定框架影響,有較高的彈性和配適性,而可變帶寬 核密度估計較固定帶寬核密度估計有更佳的配適性。論文中討論此兩種核密度估 計方法,並提出 RVKDE 的帶寬優化演算法 Elevated RVKDE,以減少需調整的參 數,在多種人工合成資料集上實驗,結果顯示此方法在大部分情況下表現優於其 他方法;最後文中介紹如何應用密度估計於分類器的機率估計,及應用於實際登 革熱資料集,並和其他分類演算法比較分類能力。zh_TW
dc.description.abstractThis study compares kernel density estimation (KDE) algorithms which is a branch of nonparametric statistics and propose a method to optimize bandwidth selection in Relaxed Variable Kernel Density Estimation (RVKDE) called Elevated RVKDE. KDE methods have fixed KDE and adaptive KDE. Nonparametric method is flexible and adaptive KDEs have even better goodness of fit than fixed KDEs. However, RVKDE is an adaptive method that have to tune a smoothing parameter to reach the ideal condition. In this study, we propose the method that there’s no need to tune this smoothing parameter anymore and outperforms other KDE methods mostly on synthesis dataset. This study also introduce how to implement density estimation to a probability estimated classifier and compare the performance of it with several machine learning algorithms on the dengue dataset.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:51Z (GMT). No. of bitstreams: 1
ntu-108-R06h41012-1.pdf: 1632299 bytes, checksum: fffc1286bbd1e30a32f83b0c149369ef (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsABSTRACT I
中文摘要 II
TABLE OF CONTENTS III
LIST OF FIGURES V
LIST OF TABLES VII
CHAPTER 1 INTRODUCTION 1
1.1 DENSITY ESTIMA TION 1
1.2 EVALUATION CRITERIA 2
CHAPTER 2 LITERATURE REVIEW 4
2.1 HISTOGRAM & NAIVE ESTIMATOR 4
2.2 K NEAREST NEIGHBOR ESTIMATOR 5
2.3 KERNEL DENSITY ESTIMATION 7
2.3.1 Silverman’s rule of thumb 8
2.3.2 Abramson 9
2.3.3RVKDE 9
2.4 PROBABILITY ESTIMATION 10
CHAPTER 3 METHOD 12
3.1 BANDWIDTH SELECTION OF KDE 12
3.2 ELEVATED RVKDE 14
CHAPTER 4 EXPERIMENT & APPLICATION 18
4.1 EXPERIMENTS 18
4.2 APPLICATION TO CLASSIFICATION 20
4.3 DATASET 21
4.4 RESULT 22
CHAPTER 5 CONCLUSION 24
5.1 DISCUSSION AND CONCLUSION 24
5.2 FUTURE WORK 25
REFERENCE 26
APPENDIX I 29
APPENDIX II 32
dc.language.isoen
dc.title以核密度為基礎推估分類器之預測機zh_TW
dc.titleKernel Density Based Probability Estimation for Data Classifiersen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王榮德(Jung-Der Wang),金傳春(Chwan-Chuen King),韓謝忱
dc.subject.keyword無母數統計,核密度估計,分類器,機率估計,zh_TW
dc.subject.keywordNonparametric,Kernel Density Estimation,Classifier,Probability Estimation,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201903248
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college共同教育中心zh_TW
dc.contributor.author-dept統計碩士學位學程zh_TW
dc.date.embargo-terms2030-01-01
Appears in Collections:統計碩士學位學程

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Restricted Access
1.59 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved