Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資料科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21311
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王偉仲
dc.contributor.authorHui-Hsuan Yenen
dc.contributor.author顏惠萱zh_TW
dc.date.accessioned2021-06-08T03:30:49Z-
dc.date.copyright2019-08-16
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citation[1] B. Agarwal, A. M. Correa, and L. Ho. Survival in pancreatic carcinoma based on tumor size. Pancreas, 36(1):e15–20, Jan. 2008.
[2] K. Armanious, C. Jiang, M. Fischer, T. K¨ustner, K. Nikolaou, S. Gatidis, and B. Yang. MedGAN: Medical image translation using GANs. June 2018.
[3] M. A. Attiyeh, J. Chakraborty, A. Doussot, L. Langdon-Embry, S. Mainarich, M. G¨onen, V. P. Balachandran, M. I. D’Angelica, R. P. DeMatteo, W. R. Jarnagin, T. P. Kingham, P. J. Allen, A. L. Simpson, and R. K. Do. Survival prediction in pancreatic ductal adenocarcinoma by quantitative computed tomography image analysis. Ann. Surg. Oncol., 25(4):1034–1042, Apr. 2018.
[4] M. A. Attiyeh, J. Chakraborty, C. A.McIntyre, R. Kappagantula, Y. Chou, G. Askan, K. Seier, M. Gonen, O. Basturk, V. P. Balachandran, T. P. Kingham, M. I. D’Angelica, J. A. Drebin, W. R. Jarnagin, P. J. Allen, C. A. Iacobuzio-Donahue, A. L. Simpson, and R. K. Do. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdom Radiol (NY), June 2019.
[5] M. A. Attiyeh, J. Chakraborty, C. A.McIntyre, R. Kappagantula, Y. Chou, G. Askan, K. Seier, M. Gonen, O. Basturk, V. P. Balachandran, T. P. Kingham, M. I. D’Angelica, J. A. Drebin, W. R. Jarnagin, P. J. Allen, C. A. Iacobuzio-Donahue, A. L. Simpson, and R. K. Do. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdom Radiol (NY), June 2019.
[6] L. Bonomo. Pulmonary embolism: Role of spiral CT. In A. Gullo, editor, Anaesthesia, Pain, Intensive Care and Emergency Medicine — A.P.I.C.E.: Proceedings of the 10th Postgraduate Course in Critical Care Medicine Trieste, Italy — November 13–19, 1995, pages 279–282. Springer Milan, Milano, 1996.
[7] J. Broder. Imaging of nontraumatic abdominal conditions. Diagnostic Imaging for the Emergency Physician, pages 445–577, 12 2011.
[8] R. Canellas, K. S. Burk, A. Parakh, and D. V. Sahani. Prediction of pancreatic neuroendocrine tumor grade based on CT features and texture analysis. AJR Am. J. Roentgenol., 210(2):341–346, Feb. 2018.
[9] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.
[10] L. C. Chu, M. G. Goggins, and E. K. Fishman. Diagnosis and detection of pancreatic cancer. Cancer J., 23(6):333–342, 2017.
[11] L. C. Chu, S. Park, S. Kawamoto, D. F. Fouladi, S. Shayesteh, E. S. Zinreich, J. S. Graves, K. M. Horton, R. H. Hruban, A. L. Yuille, K. W. Kinzler, B. Vogelstein, and E. K. Fishman. Utility of CT radiomics features in di erentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. AJR Am. J. Roentgenol., pages 1–9, Apr. 2019.
[12] J. Dewitt, B. M. Devereaux, G. A. Lehman, S. Sherman, and T. F. Imperiale. Comparison of endoscopic ultrasound and computed tomography for the preoperative evaluation of pancreatic cancer: a systematic review. Clin. Gastroenterol. Hepatol., 4(6):717–25; quiz 664, June 2006.
[13] A. Eilaghi, S. Baig, Y. Zhang, J. Zhang, P. Karanicolas, S. Gallinger, F. Khalvati, and M. A. Haider. CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med. Imaging, 17(1):38, June 2017.
[14] R. J. Gillies, P. E. Kinahan, and H. Hricak. Radiomics: Images are more than pictures, they are data. Radiology, 278(2):563–577, Feb. 2016.
[15] A. N. Hanania, L. E. Bantis, Z. Feng, H. Wang, E. P. Tamm, M. H. Katz, A. Maitra, and E. J. Koay. Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget, 7(52):85776–85784, Dec. 2016.
[16] R. T. H. M. Larue, G. Defraene, D. De Ruysscher, P. Lambin, and W. van Elmpt. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br. J. Radiol., 90(1070):20160665, Feb. 2017.
[17] M. A. Lowery, E. J. Jordan, O. Basturk, R. N. Ptashkin, A. Zehir, M. F. Berger, T. Leach, B. Herbst, G. Askan, H. Maynard, D. Glassman, C. Covington, N. Schultz, G. K. Abou-Alfa, J. J. Harding, D. S. Klimstra, J. F. Hechtman, D. M. Hyman, P. J. Allen, W. R. Jarnagin, V. P. Balachandran, A. M. Varghese, M. A. Schattner, K. H. Yu, L. B. Saltz, D. B. Solit, C. A. Iacobuzio-Donahue, S. D. Leach, and E. M. O’Reilly. Real-Time genomic profiling of pancreatic ductal adenocarcinoma: Potential actionability and correlation with clinical phenotype. Clin. Cancer Res., 23(20):6094–6100, Oct. 2017.
[18] V. Parekh and M. A. Jacobs. Radiomics: a new application from established techniques. Expert Rev Precis Med Drug Dev, 1(2):207–226, Mar. 2016.
[19] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. Turkbey, and R. M. Summers. DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation. June 2015.
[20] J. J. M. van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, and H. J. W. L. Aerts. Computational radiomics system to decode the radiographic phenotype. Cancer Res., 77(21):e104–e107, Nov. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21311-
dc.description.abstract胰腺癌(PC)是致命率極高的癌症,也是美國癌症死亡的第四大原因。 影像組學是一種從醫學圖像中提取定量統計和特徵以解碼組織表型的方法。 本研究的目的是開發一種機器學習模型,使用放射學特徵在有打顯影劑的電腦斷層影像(CT)上區分PC與正常胰臟,並且找出重要的影像組學特徵。對於感興趣的區域(ROI),我們會對幾個重疊的小區塊進行採樣。每個小區塊提取總共91個影像組學特徵並且以機器學習模型訓練而進行分類,最後我們選出重要的11個影像組學特徵。我們的模型可以利用這11個影像組學特徵,準確地檢測胰腺癌,為一種潛在的計算輔助診斷工具。zh_TW
dc.description.abstractPancreatic cancer (PC) is the most lethal cancer and the fourth leading cause of cancer deaths in the United States. Radiomics is a methodology that extracts quantitative statistics and features from medical images to decode the phenotype of tissues. The purpose of this study is to develop a machine learning model to differentiate PC from healthy pancreas on contrast-enhanced computed tomography (CT) using radiomic features and then investigate the important features. With a region in interest (ROI), we sample several overlapping patches. A total of 91 radiomic features were extracted of each patch and subject to a machine learning model to perform classification. We select 11 important features at last. Our model can accurately detect PC by using these 11 important features and is a potential computer-aided diagnosis tool.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:30:49Z (GMT). No. of bitstreams: 1
ntu-108-R06946001-1.pdf: 2432744 bytes, checksum: 71fe61d653abe902a3d087d7c12f58a5 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgments ii
Abstract iii
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Problem Description 2
1.2 Related Works 3
1.3 Proposed Method 4
Chapter 2 Medical Background 5
2.1 Computed Tomography (CT) 5
2.2 Hounsfield Units (HU) 7
Chapter 3 Radiomics Workflow 9
3.1 Image Acquisition and Processing 10
3.1.1 Resampling 11
3.2 Region of Interest (ROI) Segmentation 11
3.2.1 Labeling 12
3.2.2 Patch Sampling 12
3.3 Feature Extraction 13
3.3.1 Radiomic Features 13
3.3.2 Feature Normalization 32
3.3.3 Marginal Screening 32
3.4 Model Construction 33
3.4.1 eXtreme Gradient Boosting (XGBoost) 33
Chapter 4 Results 39
4.1 Dataset 40
4.2 Classification 41
4.2.1 Patch-Based Results 41
4.2.2 Patient-Based Results 42
4.2.3 Important Features 45
Chapter 5 Conclusion and Discussion 49
5.1 Conclusion 49
5.2 Discussion 50
5.3 Future Work 50
Bibliography 52
dc.language.isoen
dc.subject電腦斷層影像zh_TW
dc.subject區塊取樣zh_TW
dc.subject胰腺癌zh_TW
dc.subject影像組學zh_TW
dc.subject機器學習zh_TW
dc.subjectmachine learningen
dc.subjectcomputed tomographyen
dc.subjectpatch samplingen
dc.subjectpancreatic canceren
dc.subjectradiomicsen
dc.title利用電腦斷層影像紋理特徵辨識胰臟癌區域zh_TW
dc.titlePancreatic Cancer Detection by Patch-Based Computed Tomography Radiomicsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor陳素雲
dc.contributor.oralexamcommittee陳定立,洪弘,廖偉智
dc.subject.keyword胰腺癌,影像組學,電腦斷層影像,區塊取樣,機器學習,zh_TW
dc.subject.keywordpancreatic cancer,radiomics,computed tomography,patch sampling,machine learning,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201900731
dc.rights.note未授權
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資料科學學位學程zh_TW
顯示於系所單位:資料科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved