請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21304完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周承復(Cheng-Fu Chou) | |
| dc.contributor.author | Yi-Hsuan Lee | en |
| dc.contributor.author | 李怡璇 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:30:40Z | - |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-13 | |
| dc.identifier.citation | [1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is- ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.
[2] B. Brinkmann, M. Klintschar, F. Neuhuber, J. Hühne, and B. Rolf. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. The American Journal of Human Genetics, 62(6):1408–1415, 1998. [3] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for sta- tistical machine translation. arXiv preprint arXiv:1406.1078, 2014. [4] F. Chollet et al. Keras. https://keras.io, 2015. [5] K. B. Gettings, R. A. Aponte, P. M. Vallone, and J. M. Butler. Str allele sequence variation: current knowledge and future issues. Forensic Science International: Ge- netics, 18:118–130, 2015. [6] M. Gymrek, D. Golan, S. Rosset, and Y. Erlich. lobstr: a short tandem repeat profiler for personal genomes. Genome research, 22(6):1154–1162, 2012. [7] R. J. Herrera and R. Garcia-Bertrand. Chapter 1 - the nature of evolution. In R. J. Herrera and R. Garcia-Bertrand, editors, Ancestral DNA, Human Origins, and Mi- grations, pages 1 – 31. Academic Press, 2018. [8] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9(8):1735–1780, 1997. [9] Y. Kim. Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882, 2014. [10] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman. 1d convolutional neural networks and applications: A survey. arXiv preprint arXiv:1905.03554, 2019. [11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing sys- tems, pages 1097–1105, 2012. [12] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature methods, 9(4):357, 2012. [13] H. Li. A statistical framework for snp calling, mutation discovery, association map- ping and population genetical parameter estimation from sequencing data. Bioinfor- matics, 27(21):2987–2993, 2011. [14] H. Li and R. Durbin. Fast and accurate short read alignment with burrows–wheeler transform. bioinformatics, 25(14):1754–1760, 2009. [15] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. The sequence alignment/map format and samtools. Bioinformatics, 25(16):2078–2079, 2009. [16] R. E. Mills, C. T. Luttig, C. E. Larkins, A. Beauchamp, C. Tsui, W. S. Pittard, and S. E. Devine. An initial map of insertion and deletion (indel) variation in the human genome. Genome research, 16(9):1182–1190, 2006. [17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015. [18] C. Olah. Understanding lstm networks, 2015. [19] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, A. Ku, D. New- burger, J. Dijamco, N. Nguyen, P. T. Afshar, et al. A universal snp and small-indel variant caller using deep neural networks. Nature biotechnology, 36(10):983, 2018. [20] Y. Reid, D. Storts, T. Riss, and L. Minor. Authentication of human cell lines by str dna profiling analysis. In Assay Guidance Manual [Internet]. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2013. [21] H. G. Sequencing. C. finishing the euchromatic sequence of the human genome. Nature, 431(7011):931–945, 2004. [22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484, 2016. [23] J.E.Sim,S.J.Park,H.C.Lee,S.-Y.Kim,J.Y.Kim,andS.H.Lee.High-throughput str analysis for dna database using direct pcr. Journal of forensic sciences, 58(4):989– 992, 2013. [24] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In Advances in neural information processing systems, pages 3104–3112, 2014. [25] C.Szegedy,V.Vanhoucke,S.Ioffe,J.Shlens,andZ.Wojna.Rethinkingtheinception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2818–2826, 2016. [26] H. Tang and E. Nzabarushimana. Strscan: targeted profiling of short tandem repeats in whole-genome sequencing data. BMC bioinformatics, 18(11):398, 2017. [27] C. Tzeng, J. Lyou, Y. Chen, H. Hu, J. Lin, S. Wang, and J. Lee. Determination of sibship by pcr-amplified short tandem repeat analysis in taiwan. Transfusion, 40(7):840–845, 2000. [28] C.-H. Tzeng, J.-Y. Lyou, Y.-R. Chen, H.-Y. Hu, J.-S. Lin, C.-H. Yung, K.-B. Choo, S.-Y. Wang, and J. Lee. Polymorphisms of twelve short tandem repeat loci in a taiwanese population and their application in parentage testing. Journal of the For- mosan Medical Association= Taiwan yi zhi, 97(11):738–744, 1998. [29] Y.Wu,M.Schuster,Z.Chen,Q.V.Le,M.Norouzi,W.Macherey,M.Krikun,Y.Cao, Q. Gao, K. Macherey, et al. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21304 | - |
| dc.description.abstract | 本論文提出了以深度學習 (Deep Learning) 來解決辨識短縱列重複序 列 (STR) 的問題。在次世代定序 (NGS) 出現後,有許多辨識短縱列重 複序列的方法提出。但過去的方法有些對於複雜的重複序列較無法做 辨識,有些則使用的彈性較差,最近盛行的深度學習在影像處理與文 字處理都有不錯的表現,而 DNA 序列則是可以用影像或是文字的方 式去詮釋。因此本論文提出以深度學習的方式來辨識短縱列重複序列, 我們採用了卷積神經網路的架構以及從序列到序列的架構去辨識短縱 列重複序列。而由實驗結果顯示出我們的方法是有效的,在另一方面, 我們的方法也可以有彈性去學習新的資料,而不必如之前的方法去重 新大幅度的調整模型。 | zh_TW |
| dc.description.abstract | This paper proposes to use Deep Learning to solve the identification of the short tandem repeat (STR) problem. After the emergence of the next generation sequencing (NGS), there are many ways to identify short tandem repeats. However, some methods in the past are less able to identify com- plex repeat regions, while others are less flexible. The recent deep learning has a good performance in image processing and text processing, and DNA sequences can be interpreted by images or text. Therefore, this paper pro- posed to identify short tandem repeats in the deep learning algorithms, and we designed the convolutional neural network(CNN) architecture and sequence- to-sequence(Seq2Seq) architecture to address the problem. The results of the experiments in this paper show that our method is effective. On the other hand, our method is also flexible to learn new materials, instead of substan- tially readjusting the model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:30:40Z (GMT). No. of bitstreams: 1 ntu-108-R06944014-1.pdf: 2900186 bytes, checksum: e38c6b91605f68fdb572e999f5c62115 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 ii
摘要 iii Abstract iv 1 Introduction 1 2 Related Work 5 2.1 TheSTRprofiling.............................. 5 2.2 Deeplearningingenetics.......................... 7 3 Materials and Methods 8 3.1 Data..................................... 8 3.2 Architecture................................. 12 3.2.1 TheCNNarchitecture:doclassification . . . . . . . . . . . . . . 12 3.2.2 TheSeq2Seqmodel ........................ 13 4 Experiments 17 4.1 ExperimentI:TheCNNarchitecture.................... 17 4.1.1 Data................................. 17 4.1.2 Implementation........................... 19 4.2 ExperimentII:TheSeq2Seqarchitecture. . . . . . . . . . . . . . . . . . 20 4.2.1 Data................................. 20 4.2.2 Implementation........................... 20 5 Results 22 5.1 ExperimentI ................................ 22 5.1.1 Generaldata ............................ 22 5.1.2 VariantData ............................ 23 5.2 ExperimentII................................ 26 6 Conclusion 28 7 Bibliography 29 | |
| dc.language.iso | en | |
| dc.title | 用深度學習來探討短縱列重複序列 | zh_TW |
| dc.title | Short Tandem Repeat Profiling in Deep Learning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖婉君,華筱玲,蔡子傑,吳曉光 | |
| dc.subject.keyword | 短縱列重複序列,深度學習,卷積神經網路,從序列到序列, | zh_TW |
| dc.subject.keyword | Short Tandem Repeat(STR),Deep Learning,Convolutional Neural Network(CNN),Sequence-to-Sequence(Seq2Seq), | en |
| dc.relation.page | 32 | |
| dc.identifier.doi | 10.6342/NTU201903107 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊網路與多媒體研究所 | zh_TW |
| 顯示於系所單位: | 資訊網路與多媒體研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
