請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21291完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 靳宗洛 | |
| dc.contributor.author | Yi-Hui Wang | en |
| dc.contributor.author | 王伊卉 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:30:23Z | - |
| dc.date.copyright | 2019-08-18 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-14 | |
| dc.identifier.citation | Abreu IA, Cabelli DE (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1804: 263-274
Barker A, Pilbeam, D. (2015) Handbook of Plant Nutrition, Ed 2nd Edition, Boca Raton Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287 Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil 201: 137–147 Beyer WF, Fridovich I (1987) Effect of hydrogen peroxide on the iron-containing superoxide dismutase of Escherichia coli. Biochemistry 26: 1251-1257 Bulteau AL, O'Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI (2004) Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 305: 242-245 Busi MV, Maliandi MV, Valdez H, Clemente M, Zabaleta EJ, Araya A, Gomez-Casati DF (2006) Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe–S proteins and induces oxidative stress. The Plant Journal 48: 873-882 Chu CC, Lee WC, Guo WY, Pan SM, Chen LJ, Li Hm, Jinn TL (2005) A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiology 139: 425-436 Culotta VC, Yang M, O'Halloran TV (2006) Activation of superoxide dismutases: Putting the metal to the pedal. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1763: 747-758 Curie C, Alonso JM, Jean MLE, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochemical Journal 347: 749-755 DiDonato Jr RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine–metal complexes. The Plant Journal 39: 403-414 Du Z, Fenn S, Tjhen R, James TL (2008) Structure of a construct of a human poly(C)-binding protein containing the first and second KH domains reveals insights into its regulatory mechanisms. The Journal of Biological Chemistry 283: 28757-28766 Frey AG, Nandal A, Park JH, Smith PM, Yabe T, Ryu MS, Ghosh MC, Lee J, Rouault TA, Park MH, Philpott CC (2014) Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase. Proceedings of the National Academy of Sciences of the United States of America 111: 8031-8036 Gamarnik AV, Andino R (2000) Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. Journal of Virology 74: 2219-2226 Hannemann F, Bichet A, Ewen KM, Bernhardt R (2007) Cytochrome P450 systems—biological variations of electron transport chains. Biochimica et Biophysica Acta (BBA) - General Subjects 1770: 330-344 Hsieh PC (2016) Functional domain study of CHAPERONIN 20 required for iron superoxide dismutases (FeSOD) activation in Arabidopsis. National Taiwan University Kehrer JP (2000) The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149: 43-50 Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295-1298 Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Weiss C, Azem A, Jinn TL (2013) CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist 197: 99-110 Kuo WY, Huang CH, Shih C, Jinn TL (2013) Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio-Protocol 3: e811 Kuthan H, Ullrich V (1982) Oxidase and oxygenase function of the microsomal cytochrome P450 monooxygenase system. European Journal of Biochemistry 126: 583-588 Lu Y (2011) Making yeast competent cells and yeast cell transformation. Bio-Protocol 1: e96 Luk E, Carroll M, Baker M, Culotta VC (2003) Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a member of the mitochondrial carrier family. Proceedings of the National Academy of Sciences of the United States of America 100: 10353-10357 Mangeon A, Junqueira RM, Sachetto-Martins G (2010) Functional diversity of the plant glycine-rich proteins superfamily. Plant Signaling and Behavior 5: 99-104 Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D (2017) Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7. Genome Biology 18: 204 Meyer Y, Buchanan BB, Vignols F, Reichheld JP (2009) Thioredoxins and glutaredoxins: unifying elements in redox biology. Annual Review of Genetics 43: 335-367 Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M (2003) Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physiology 133: 773-782 Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497 Nery FC, Passos DO, Garcia VS, Kobarg J (2004) Ki-1/57 interacts with RACK1 and is a substrate for the phosphorylation by phorbol 12-myristate 13-acetate-activated protein kinase C. The Journal of Biological Chemistry 279: 11444-11455 Nery FC, Rui E, Kuniyoshi TM, Kobarg J (2006) Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins. Biochemical and Biophysical Research Communications 341: 847-855 Ojeda L, Keller G, Muhlenhoff U, Rutherford JC, Lill R, Winge DR (2006) Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. Journal of Biological Chemistry 281: 17661-17669 Pedersen HL, Willassen NP, Leiros I (2009) The first structure of a cold-adapted superoxide dismutase (SOD): biochemical and structural characterization of iron SOD from Aliivibrio salmonicida. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications 65: 84-92 Philpott CC (2012) Coming into view: Eukaryotic iron chaperones and intracellular iron delivery. Journal of Biological Chemistry 287: 13518-13523 Raychaudhuri S, Reddy MM, Rajkumar NR, Rajasekharan R (2003) Cytosolic iron superoxide dismutase is a part of the triacylglycerol biosynthetic complex in oleaginous yeast. Biochemical Journal 372: 587-594 Rodrı́guez-Manzaneque MaT, Tamarit J, Bellı́ G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Molecular Biology of the Cell 13: 1109-1121 Rosenzweig AC (2002) Metallochaperones: Bind and deliver. Chemistry and Biology 9: 673-677 Shi H, Bencze KZ, Stemmler TL, Philpott CC (2008) A cytosolic iron chaperone that delivers iron to ferritin. Science 320: 1207-1210 Staiger D, Zecca L, Kirk DAW, Apel K, Eckstein L (2003) The circadian clock regulated RNA‐binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre‐mRNA. The Plant Journal 33: 361-371 Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D (2008) The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana. The Plant Journal 56: 239-250 Swanson MS, Dreyfuss G (1988) Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Molecular and Cellular Biology 8: 2237-2241 Tokutsu R, Iwai M, Minagawa J (2009) CP29, a monomeric light-harvesting complex II protein, is essential for state transitions in Chlamydomonas reinhardtii. Journal of Biological Chemistry 284: 7777-7782 Van Camp W, Bowler C, Villarroel R, Tsang EW, Van Montagu M, Inzé D (1990) Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 87: 9903-9907 Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell 14: 1223-1233 Xu F, Copeland C, Li X (2015) Protein immunoprecipitation using Nicotiana benthamiana transient expression system. Bio-Protocol 5: e1520 Yanatori I, Richardson DR, Imada K, Kishi F (2016) Iron export through the transporter ferroportin 1 is modulated by the iron chaperone, PCBP2. Journal of Biological Chemistry 291: 17303-17318 Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2: 1565-1572 Ziemienowicz A, Haasen D, Staiger D, Merkle T (2003) Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7. Plant Molecular Biology 53: 201-212 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21291 | - |
| dc.description.abstract | 鐵作為許多重要蛋白質和酶的輔助因子是所有生物體中不可缺少的元素。金屬伴護蛋白質(Metallochaperones)透過直接的蛋白質間相互作用將金屬離子遞送給特定的生理夥伴。目前只有三個已被證實為鐵伴護蛋白質(Fe chaperones),人類粒線體蛋白質Frataxin、細胞質的Poly(C)-binding protein及阿拉伯芥葉綠體伴護蛋白質Chaperonin 20。本研究找到四個阿拉伯芥中核醣核酸結合蛋白質(RNA binding proteins; RBPs)分別為RBP1, RBP2, GRP7, GRP8對於位在細胞質的鐵超氧歧化酶(ΔTP-FeSOD1)具有潛在的鐵伴護蛋白質功用。在先前的研究,藉由阿拉伯芥原生質體暫時性表現,我們發現這些核醣核酸結合蛋白質都具有活化細胞質鐵超氧歧化酶的能力。為了分析鐵超氧歧化酶與核醣核酸結合蛋白質之間的交互作用: 利用(1) 酵母菌雙雜合系統發現GRP7, GRP8會與鐵超氧歧化酶有交互作用;(2) 雙分子螢光互補實驗 (BiFC) 發現核醣核酸結合蛋白質於細胞質中都會與的鐵超氧歧化酶有交互作用。經由體外超氧歧化酶活性測試,當加入GRP7或 GRP8後可提升FSD1的活性。確認對細胞質型的鐵超氧歧化酶來說,核醣核酸結合蛋白質極有可能是其鐵伴護蛋白質,因此,認為核醣核酸結合蛋白質對於細胞質中需要鐵的蛋白質具有給予鐵的能力。 | zh_TW |
| dc.description.abstract | Iron (Fe) is an essential element in plants and animals, while excess Fe accumulation causes cytotoxic through the production of reactive oxygen species. Metallochaperones deliver ion cofactors to the specific physiological partners through direct protein-protein interactions. Only three Fe chaperones are known, i.e. human mitochondrial frataxin, cytoplasmic poly(C)-binding proteins, and Arabidopsis chloroplastic chaperonin 20. We identified four RNA binding proteins (RBPs) RBP1, RBP2, GRP7, and GRP8 which could be functioned as a Fe chaperone for cytoplasmic-destined Fe superoxide dismutase 1 (ΔTP-FSD1) activation in Arabidopsis (Arabidopsis thaliana). In this study, using yeast two-hybrid and bimolecular fluorescence complementation assay confirmed the interaction relationship between RBPs and FSD1. In vitro SOD activity assay showed that GRP7 and GRP8 enhanced the FSD1 activity. In conclusion, our results demonstrated a critical role for RBPs to be Fe chaperones for the cytosolic FeSOD activation in Arabidopsis. Our results also suggested that RBP plays a role in Fe metalation of cytoplasmic Fe-containing proteins. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:30:23Z (GMT). No. of bitstreams: 1 ntu-108-R05b42010-1.pdf: 3755568 bytes, checksum: 706e4247bf7e3bc621418ee0dd0ca339 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | ACKNOWLEDGEMENTS i
摘要 ii ABSTRACT iii TABLE OF CONTENTS iv LIST OF FIGURES viii LIST OF TABLES ix ABBREVIATIONS x INTRODUCTION 1 Metallochaperones 1 Fe chaperone and poly(C)-binding protein (PCBP) 1 RNA-binding proteins (RBPs) 3 Superoxide dismutases (SODs) and known metallochaperones for SODs activation 4 Motivation and objectives 5 MATERIALS AND METHODS 7 Plant materials and growth conditions 7 RNA extraction and reverse transcription PCR (RT-PCR) 8 Construction 8 Yeast two-hybrid assay 9 Subcellular localization and bimolecular fluorescence complementation (BiFC) assay 10 SOD activity assay and immunoblotting 11 Recombinant protein purification and holo-protein preparation 12 Primer and accession number 13 RESULTS 14 Cytoplasmic factor that assist the FeSOD1 (FSD1) activation 14 Candidate proteins as Fe metallochaperones for ΔTP-FSD1 activation 14 Cytoplasmic localization of RBP1, RBP2, GRP7, and GPP8 15 GRP7 and GRP8 facilitates the FSD1 Activity in vitro and in vivo 16 Characterization of GRP7 and GRP8 T-DNA insertion mutants 17 Analysis of the functional domain of GRP7 required for ΔTP-FSD1 activation 18 DISUSSION 19 RNA binding proteins are Fe chaperones for cytoplasmic-destined FSD (ΔTP-FSD) activation 19 Dual functions of GRP7 in the regulation RNA expression in nucleus and functions as an Fe chaperone in the cytosol 19 Interaction strength between GRP7, GRP8, and ΔTP-FSD1 20 Other factors in cytosol might involve in GRPs-FSD1 activation 20 Reporters for Fe chaperone activity 21 CONCLUSIONS AND PROSPECTS 24 TABLES 25 Table 1. Protein candidates identified by LC-MS/MS analysis. 25 Table 2. Primers used in this study. 26 FIGURES 30 Figure 1. The Arabidopsis FeSOD actives in Nicotiana benthamiana. 30 Figure 2. Subcellular localization of RNA binding proteins. 31 Figure 3. BiFC assay of ΔTP-FSD1 and RBPs. 32 Figure 4. ΔTP-FSD1 interacts with GRP7 and GRP8 in yeast two-hybrid assay. 33 Figure 5. Affinity purification of the GST and GST-tagged GRP7 and GRP8. 34 Figure 6. Affinity purification GST-FSD1 and its activity assay. 35 Figure 7. FSD1 activation by GRP7 and GRP8 in vitro. 37 Figure 8. Amino acid sequence alignment and domain truncation of GRP7 and GRP8 and. 38 Figure 9. Characterization of the T-DNA insertion line of GRP7 and GRP8 40 Figure 10. ΔTP-FSD1 activity in grp7-2 protoplasts. 41 Figure 11. Effect of the domain truncated GRP7 on ΔTP-FSD1 activity. 42 SUPPLEMENTAL FIGURES 43 Supplemental Figure S1. The Arabidopsis ΔTP-FeSOD1 (ΔTP-FSD1) is active in yeast Saccharomyces cerevisiae. 43 Supplemental Figure S2. Effect of RBPs on FSD1 activation. 44 Supplemental Figure S3. RBP1 significantly enhanced FSD1 activity in vitro. 45 APPENDIXES 46 REFERENCES 53 | |
| dc.language.iso | en | |
| dc.title | 阿拉伯芥核糖核酸結合蛋白GRP7和GRP8具活化細胞質鐵超氧歧化酶之功能性研究 | zh_TW |
| dc.title | RNA-binding Protein GRP7 and GRP8 are Capable for Cytoplasmic-destined FeSOD Activation in Arabidopsis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 葉靖輝,張英?,張孟基,李昆達 | |
| dc.subject.keyword | 阿拉伯芥,鐵伴護蛋白質,鐵恆定,鐵超氧歧化?,富含甘胺酸蛋白質, | zh_TW |
| dc.subject.keyword | Arabidopsis thaliana,Fe chaperone,Fe homeostasis,Fe Superoxide dismutase (FeSOD),Glycine-rich proteins (GRPs), | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201903321 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
