Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor靳宗洛
dc.contributor.authorChung-Jen Kuen
dc.contributor.author顧中仁zh_TW
dc.date.accessioned2021-06-08T03:29:46Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-15
dc.identifier.citationAkhtar, M., Jaiswal, A., Taj, G., Jaiswal, J., Qureshi, M., and Singh, N. (2012). DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. Journal of Genetics 91, 385-395.
Brzezinka, K., Altmann, S., Czesnick, H., Nicolas, P., Gorka, M., Benke, E., Kabelitz, T., Jähne, F., Graf, A., and Kappel, C. (2016). Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. J Elife 5, e17061.
Busch, W., Wunderlich, M., and Schöffl, F. (2005). Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal 41, 1-14.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Hsu, F.C., and Ko, S.S. (2006). Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiology 140, 1297-1305.
Charng, Y.Y., Liu, H.C., Liu, N.Y., Chi, W.T., Wang, C.N., Chang, S.H., and Wang, T.T. (2007). A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiology 143, 251-262.
Ciftci-Yilmaz, S., and Mittler, R. (2008). The zinc finger network of plants. Cellular and Molecular Life Sciences 65, 1150-1160.
Ciftci Yilmaz, S., Morsy, M.R., Song, L., Coutu, A., Krizek, B.A., Lewis, M.W., Warren, D., Cushman, J., Connolly, E.L., and Mittler, R. (2007). The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. Journal of Biological Chemistry 282, 9260-9268.
Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16, 735-743.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K., and Scheible, W.-R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology 139, 5-17.
Davletova, S., Schlauch, K., Coutu, J., and Mittler, R. (2005). The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiology 139, 847-856.
Devaiah, B.N., Nagarajan, V.K., and Raghothama, K.G. (2007). Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology 145, 147-159.
Earley, K.W., Haag, J.R., Pontes, O., Opper, K., Juehne, T., Song, K., and Pikaard, C.S. (2006). Gateway-compatible vectors for plant functional genomics and proteomics. The Plant Journal 45, 616-629.
Englbrecht, C.C., Schoof, H., and Böhm, S. (2004). Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5, 39.
Finkelstein, R. (2013). Abscisic acid synthesis and response. The Arabidopsis book/American Society of Plant Biologists 11.
Fowler, S., and Thomashow, M.F. (2002). Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell 14, 1675-1690.
Hellens, R.P., Allan, A.C., Friel, E.N., Bolitho, K., Grafton, K., Templeton, M.D., Karunairetnam, S., Gleave, A.P., and Laing, W.A. (2005). Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1, 13.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., Hincha, D.K., Kunze, R., Mueller-Roeber, B., and Rillig, M.C. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews 91, 1118-1133.
Hsu, S.F., Lai, H.C., and Jinn, T.L. (2010). Cytosol-localized heat shock factor-binding protein, AtHSBP, functions as a negative regulator of heat shock response by translocation to the nucleus and is required for seed development in Arabidopsis. Plant Physiology 153, 773-784.
Hu, Y., Han, Y., Wei, W., Li, Y., Zhang, K., Gao, Y., Zhao, F., and Feng, J. (2015). Identification, isolation, and expression analysis of heat shock transcription factors in the diploid woodland strawberry Fragaria vesca. Frontiers in Plant Science 6, 736.
Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., and Guo, Z.F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Molecular Biology Reports 39, 969-987.
Huang, Y.C., Niu, C.Y., Yang, C.R., and Jinn, T.L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology 172, 1182-1199.
Iida, A., Kazuoka, T., Torikai, S., Kikuchi, H., and Oeda, K. (2000). A zinc finger protein RHL41 mediates the light acclimatization response in Arabidopsis. The Plant Journal 24, 191-203.
Ikeda, M., Mitsuda, N., and Ohme Takagi, M. (2011). Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiology 157, 1243-1254.
Jan, A.U., Hadi, F., Midrarullah, A.A., and Rahman, K. (2017). Role of CBF/DREB Gene Expression in Abiotic Stress Tolerance. A Review, Int J Hort Agric 2(1), 1-12.
Kagale, S., and Rozwadowski, K. (2011). EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics 6, 141-146.
Klug, A., and Schwabe, J. (1995). Protein motifs 5. Zinc fingers. The FASEB Journal 9, 597-604.
Kodaira, K.-S., Qin, F., Tran, L.S.P., Maruyama, K., Kidokoro, S., Fujita, Y., Shinozaki, K., and Yamaguchi Shinozaki, K. (2011). Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiology 157, 742-756.
Kotak, S., Port, M., Ganguli, A., Bicker, F., and Von Koskull Döring, P. (2004). Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. The Plant Journal 39, 98-112.
Larkindale, J., and Vierling, E. (2008). Core genome responses involved in acclimation to high temperature. Plant Physiology 146, 748-761.
Larkindale, J., Hall, J.D., Knight, M.R., and Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology 138, 882-897.
Liu, H.C., Lämke, J., Lin, S.Y., Hung, M.J., Liu, K.M., Charng, Y.Y., and Bäurle, I. (2018). Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. The Plant Journal 95, 401-413.
Lämke, J., and Bäurle, I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology 18, 124.
Maruyama, K., Sakuma, Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y., Yoshida, S., Shinozaki, K., and Yamaguchi Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. The Plant Journal 38, 982-993.
Meissner, R., and Michael, A.J. (1997). Isolation and characterisation of a diverse family of Arabidopsis two and three-fingered C 2 H 2 zinc finger protein genes and cDNAs. Plant Molecular Biology 33, 615-624.
Miller, G., and Mittler, R. (2006). Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Annals of Botany 98, 279-288.
Mittler, R., Kim, Y., Song, L., Coutu, J., Coutu, A., Ciftci Yilmaz, S., Lee, H., Stevenson, B., and Zhu, J.K. (2006). Gain-and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letters 580, 6537-6542.
Murashige, T., and Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15, 473-497.
Nakashima, K., and Yamaguchi Shinozaki, K. (2013). ABA signaling in stress-response and seed development. Plant Cell Reports 32, 959-970.
Nover, L., Bharti, K., Döring, P., Mishra, S.K., Ganguli, A., and Scharf, K.D. (2001). Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress & Chaperones 6, 177-189.
Ohama, N., Kusakabe, K., Mizoi, J., Zhao, H., Kidokoro, S., Koizumi, S., Takahashi, F., Ishida, T., Yanagisawa, S., and Shinozaki, K. (2016). The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. The Plant Cell 28, 181-201.
Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H., and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. The Plant Cell 13, 1959-1968.
Pabo, C.O., Peisach, E., and Grant, R.A.J.A.r.o.b. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annual Review of Biochemistry 70, 313-340.
Parsell, D., and Lindquist, S. (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annual Review of Genetics 27, 437-496.
Raghavendra, A.S., Gonugunta, V.K., Christmann, A., and Grill, E. (2010). ABA perception and signalling. Trends in Plant Science 15, 395-401.
Sakamoto, H., Araki, T., Meshi, T., and Iwabuchi, M. (2000). Expression of a subset of the Arabidopsis Cys2/His2-type zinc-finger protein gene family under water stress. Gene 248, 23-32.
Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiology 136, 2734-2746.
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18, 1292-1309.
Schöffl, F., Prändl, R., and Reindl, A. (1998). Regulation of the heat-shock response. Plant Physiology 117, 1135-1141.
Scharf, K.D., Berberich, T., Ebersberger, I., and Nover, L. (2012). The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1819, 104-119.
Shinozaki, K., and Yamaguchi Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3, 217-223.
Swindell, W.R., Huebner, M., and Weber, A.P. (2007). Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8, 125.
Takatsuji, H. (1998). Zinc-finger transcription factors in plants. Cellular and Molecular Life Sciences 54, 582-596.
Takatsuji, H. (1999). Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Molecular Biology 39, 1073-1078.
Vierling, E. (1991). The roles of heat shock proteins in plants. Annual Review of Plant Biology 42, 579-620.
Vogel, J.T., Zarka, D.G., Van Buskirk, H.A., Fowler, S.G., and Thomashow, M.F. (2005). Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal 41, 195-211.
von Koskull Döring, P., Scharf, K.D., and Nover, L. (2007). The diversity of plant heat stress transcription factors. Trends in Plant Science 12, 452-457.
Wahid, A., Gelani, S., Ashraf, M., and Foolad, M.R. (2007). Heat tolerance in plants: an overview. Environmental and Experimental Botany 61, 199-223.
Xu, R., and Qingshun, L.Q. (2008). Protocol: Streamline cloning of genes into binary vectors in Agrobacterium via the Gateway® TOPO vector system. Plant Methods 4, 4.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols 2, 1565-1572.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21262-
dc.description.abstract熱休克反應(HSR)是生物體的一種保守機制,它可透過熱休克因子(HSF)來大量誘導熱休克蛋白(HSP)的表達。這種機制可以使細胞在高溫逆境來臨的時候,可以擁有更高的存活機會,使得細胞可以在足以致命的高溫中存活。在之前的研究中,我們發現阿拉伯芥的熱休克因子HSFA6b可以透過離層酸(ABA)來調節植物在熱逆境中的反應,HSFA6b在ABA調節的耐熱性中扮演非常重要的角色。有趣的是,HSFA6b的表達量並不會受到高溫的誘導,因此我們提出了一個全新的ABA訊號傳遞的機制,這讓我們得以一窺以ABA為主調控的耐熱網絡。然而,這種ABA調控網絡如何與復雜的熱休克反應網絡交互作用仍然不清楚。在HSFA6b的進一步研究中,我們發現阿拉伯芥的Cys2 /His2型鋅手指蛋白3 (AZF3)轉錄因子會受到HSFA6b調控,且在熱逆境的處理下表達量有顯著上升,而且相較於熱處理,其他逆境處理下的表現量則提升有限。在微陣列晶片資料顯示中,AZF3的基因表達水平會受到熱的強烈影響,同時還會受到HSFA6b和HSFA1的調節,這表明AZF3會是連接熱休克反應和ABA訊號網絡的重要因子。所以在這裡,我試著去了解HSFA6b調控的熱休克反應所需要的轉錄因子AZF3。在azf3突變株中ABA和熱反應相關的基因表達在37℃熱處理下會受到影響。雖然在ABA處理的培養基中,萌芽率沒有顯著性的差異,但是在先天耐熱性的處理下可以發現azf3突變株的存活率顯著性的高於WT。為了更進一步去研究這個現象,我建立了大量表現轉殖株AZF3-OE和剔除擁有潛在轉錄抑制功能的EAR motif的轉殖株AZF3-ΔEAR,同時建立了把EAR motif替換成VP16(轉錄活化motif)以及SRDX(轉錄抑制motif)的轉殖株。與azf3突變株相比,AZF3-ΔEAR和AZF3-VP16擁有顯著耐熱的外表型,相對而言AZF3-OE和AZF3-SRDX則擁有顯著對熱敏感的外表型。本篇研究說明了AZF3的表達受到熱和ABA的正向調控,並降低了正常熱休克反應所需的下游正向或負向調節子的表達。zh_TW
dc.description.abstractHeat shock response (HSR) is a conserved mechanism in organisms that induces the expression of heat shock protein (HSP) through heat shock factor (HSF) mediation. This mechanism allows cells to have higher tolerance in heat stress (HS). In previous study, we showed that the Arabidopsis HSFA6b, one of the members of class-A HSF, plays an important role in the abscisic acid (ABA)-mediated thermotolerance. Interestingly, the expression of HSFA6b was HS independent, a novel ABA-mediated thermotolerance pathway thus proposed. However, how this new ABA signaling pathway connects to the complex HSR network still remains unclear. Further study in HSFA6b-overxpresion (OE) and -SRDX lines, we discovered that Arabidopsis Zinc Finger Protein 3 (AZF3) was tightly regulated by HSFA6b and HSFA1. Compared to HS, the expression level of AZF3 in various abiotic stress was limited. Here, we focused on AZF3, a transcription factor, required for this HSFA6b-mediated HSR. The expression of HS-responsive and ABA-related genes were affected in azf3 plants in response to 37°C-HS treatment. azf3 showed significantly higher thermotolerance phenotype than that of the WT by basal thermotolerance test. Nevertheless, there was no significant difference of seeds germination rate between WT and azf3 in response to ABA treatment. We generated transgenic lines of AZF3-OE, and its potential repressor domain EAR deletion lines of AZF3-ΔEAR. As well as, the EAR-motif was swapped with the VP16 (strong activation) or SRDX (strong repression) domain. The AZF3-ΔEAR and AZF3-VP16 lines showed significantly enhanced thermotolerance phenotype compared to the azf3. Accordingly, AZF3-OE and AZF3-SRDX lines showed significantly HS-sensitive phenotype compared to the azf3. This study demonstrates that the expression of AZF3 was positively regulated by heat and ABA and to attenuate the downstream negative/positive regulators expression that required for proper HS response.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:29:46Z (GMT). No. of bitstreams: 1
ntu-108-R05b42023-1.pdf: 5979626 bytes, checksum: 89d0a5748906840fa02253653452ac21 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要……3
Abstract……4
Abbreviations……5
Introduction……6
Heat stress, Thermotolerance, and Heat shock……6
Transcriptional Heat Stress Memory……8
ABA Signaling and Heat shock Factors……9
The Arabidopsis Heat Shock Factors……10
The C2H2 Zinc finger protein family……11
Genetic and biochemical studies of C2H2 zinc proteins C1 family……12
The Arabidopsis Zinc Finger family……14
Motivation and Objective……15
Materials and Methods……16
Plant Material and Growth Condition……16
RNA Extraction and cDNA Synthesis……16
Construction of AZF3-OE, -VP16, -SRDX, -ΔEAR……17
Quantitative Real-Time PCR (qPCR) ……18
Arabidopsis protoplasts preparation and transfection……18
Subcellular localization assay……19
Protoplast Transactivation Assay……20
Thermotolerance Tests……20
Statistical analysis……21
Primers and Accession Number……21
Results……22
AZF3 expression was induced by heat and also mediated by HSFA6b……22
Nuclear localization of AZF3……22
AZF3 expression dependents on the major HS-responsive transcription factors……23
AZF3 expression in response to abiotic treatments……23
Characterization of AZF3 T-DNA insertion mutant……25
AZF3-mutant phenotypes in response to heat and ABA……25
Expression of HS- and ABA-related genes in response to HS in azf3……26
Protoplast transactivation assay of DREB2A, APX2, HSP18.2, and HSFA3 expression by AZF3……27
Generation of AZF3 gain-of-function and loss-of-function lines……27
Discussion……29
AZF3 was responded to heat stress and required ABA signaling……29
AZF3 was a nucleus localized transcription factor under HSFs mediation……30
The character of AZF3 in abiotic stress tolerance……30
AZF3 downstream genes investigation……31
Conclusions and prospects……31
Tables……33
Figures ……35
Supplemental Figures……58
Appendixes……64
References……70
dc.language.isoen
dc.title阿拉伯芥鋅手指蛋白3在非生物逆境下的功能探討zh_TW
dc.titleFunctional Study of Arabidopsis Zinc Finger Protein 3 (AZF3)in Response to Abiotic Stressen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉靖輝,李昆達,張孟基,張英?
dc.subject.keyword阿拉伯芥,鋅手指蛋白,熱休克,耐熱性,負向調控,zh_TW
dc.subject.keywordArabidopsis thaliana,Zinc Finger,Heat Shock,Thermotolerance,Negative regulator,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201903323
dc.rights.note未授權
dc.date.accepted2019-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved