請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21237
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳逸聰 | |
dc.contributor.author | Yu-Lou Peng | en |
dc.contributor.author | 彭譽樓 | zh_TW |
dc.date.accessioned | 2021-06-08T03:29:15Z | - |
dc.date.copyright | 2019-08-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-15 | |
dc.identifier.citation | (1) Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo L. Electronics Based on Two-Dimensional Materials. Nat. Nanatechnol. 2014, 9(10), 768-779.
(2) Zhang, H. Ultrathin Two-Dimensional Nanomaterials. ACS Nano 2015, 9(10), 9451-9469. (3) Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105(13), 2-5. (4) Zhao, L.; Levendorf, M. P.; Goncher, S.; Schiros, T.; Pálová, L.; Zabet-khosousi, A. Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene Supporting Information. Nano Lett 2013, 101, 1-7. (5) Zhao, L.; He, R.; Rim, K. T.; Schiros, T.; Kim, K. S.; Zhou, H.; Gutierrez, C.; Chockalingam, S. P.; Arguello, C. J.; Pa ́ lova ́ , L.; ́ Nordlund, D.; Hybertsen, M. S.; Reichman, D. R.; Heinz, T. F.; Kim, P.; Pinczuk, A.; Flynn, G. W.; Pasupathy, A. N. Science 2011, 333, 999. (6) Butler, S.; Hollen, S.; Cao, L.; Cui, Y.; Gupta, J.; Guyiérrez, H.; Heinz, T.; Hong, S.; Huang, J.; Ismach, A.; et al. Progress, Challenges, and Opportunities in Two-Dimensional Materials beyond Graphene. ACS Nano 2013, 7(4), 2898-2926 (7) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H. The Chemistry of Two-Dimensional Layerd Transistion Metal Dichalcogenide Nanosheets. Nat Chem. 2013, 5(4), 263-275 (8) Arora, A., Noky, J., Drüppel, M., Jariwala, B., Deilmann, T., Schneider, R., Schmidt, R., Del Pozo‐Zamudio, O., Stiehm, T., Bhattacharya, A., Krüger, P., Michaelis de Vasconcellos, S., Rohlfing, M., Branschitsch, R. Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulk like 1T′‑ReSe2. Nano Lett. 2017, 17, 3202. (9) Jariwala, B.; Thamizhavel, A.; Bhattacharya, A. J. ReSe2: a reassessment of crystal structure and thermal analysis. Phys. D: Appl. Phys. 2017, 50, 044001. (10) Hafeez, M., Gan, L., Saleem Bhatti, A., Zhai, T. Y. Rhenium dichalcogenides (ReX2, X = S or Se): an emerging class of TMDs family. Mater. Chem. Front. 2017, 1, 1917. (11) Kuc, A. Low-Dimensional Transistion-Metal Dichalcogenides. Chem. Model. 2014, 1-29. (12) Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C. Y., Galli, G., Wang, F. Emerging Photoluminescence in Monolayer MoS2.Nano Lett. 2010, 10(4). (13) Seo, W., Shin, S., Ham, G., Lee, J., Lee, S., Choi, H., Jeon, H. Thickness-dependent structure and properties of SnS2 thin films prepared by atomic layer deposition. Jpn. J. Appl. Phys. 2017, 56, 031201. (14) Yang, S.; Tongay, S.; Li, Y.; Yue, Q.; Xia, J.; Li, S.; Li, J.; Wei, S. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 2014, 6, 7226−7231. (15) P. R. Pudasaini, A. Oyedele, C. Zhang, M. G. Stanford, N. Cross, A. T. Wong, A. N. Hoffman, K. Xiao, G. Duscher, D. G. Mandrus, T. Z. Ward and P. D. Rack. High-performance multilayer WSe2 field-effect transistors with carrier type control. Nano Res. 2018, 11, 722–730 (16) Bisri, S. Z., Piliego, C., Gao, J. & Loi, M. A. Outlook and emerging semiconducting materials for ambipolar transistors. Adv. Mater. 26, 1176–1199 (2014). (17) Kang, B.; Kim, Y.; Cho, J. H.; Lee, C. Ambipolar transport based on CVD-synthesized ReSe2. 2D Mater. 2017, 4, 025014. (18) Mitioglu, Anatolie. “Probing the electronic properties of bulk and monolayer crystals of tungsten dichalcogenides using magneto-spectroscopy.” (2015). (19) S. Vishwanath, X. Liu, S. Rouvimov, L. Basile, N. Lu, A. Azcatl, K. Magno, R.M. Wallace, M. Kim, J.-C. Idrobo, J. Furdyna, D. Jena, H.G. Xing Controllable growth of layered selenide and telluride heterostructures and superlattices using molecular beam epitaxy. J. Mater. Res., 31 2016, pp. 900-910. (20) Yang, Z.; Hao, J. Progress in Pulsed Laser Deposited Two Dimensional Layered Materials for Device Applications. J. Mater. Chem. C 2016, 4, 8859−8878. (21) Yu, J. Li, J., Zhang, W. & Chang, H. Synthesis of high quality two-dimensional materials via chemical vapor deposition. Chem. Sci. 6, 6705–6716 (2015). (22) Cai, Z.; Liu, B.; Zou, X.; Cheng, H. M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091−6133. (23) Wang, S.; Pacios, M.; Bhaskaran, H.; Warner, J. H. Substrate Control for Large Area Continuous Films of Monolayer MoS2 by Atmospheric Pressure Chemical Vapor Deposition. Nanotechnology 2016, 27, 085604. (24) S. Jiang, M. Hong, W. Wei, L. Zhao, N. Zhang, Z. Zhang, P. Yang, N. Gao, X. Zhou, C. Xie, J. Shi, Y. Huan, L. Tong, J. Zhao, Q. Zhang, Q. Fu and Y. Zhang. Application of chemical vapor–deposited monolayer ReSe2 in the electrocatalytic hydrogen evolution reaction. Nanoresearch 2018, Volume 11, Issue 4, pp 1787–1797. (25) Cui, F. F.; Li, X. B.; Feng, Q. L.; Yin, J. B.; Zhou, L.; Liu, D. Y.; Liu, K. Q.; He, X. X.; Liang, X.; Liu, S. Z. et al. Epitaxial growth of large-area and highly crystalline anisotropic ReSe2 atomic layer. Nano Res. 2017, 10, 2732–2742. (26) Benameur, M. M.; Radisavlijevic, B.; Héron, J. S.; Sahoo, S.; Berger, H.; Kis, A. Visibility of Dichalcogenide Nanolayers. Nanotechnology 2011, 22 (12), 125706. (27) Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28, 3352–3359 (2016). (28) Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164. (29) Lidzey, D. Fundamentals of Photovoltaics - Optical Spectroscopy (CDT-PV core-level training). Retrieve from https://www.slideshare.net/cdtpv/optical-spectroscopy-56823999. (30) Zhao, H.; Wu, J.; Zhong, H.; Guo, Q.; Wang, X.; Xia, F.; Yang,L.; Tan, P.; Wang, H. Interlayer interactions in anisotropic atomically thin rhenium diselenide. Nano Res. 2015, 8, 3651−3661. (31) The Opensource Handbook of Nanoscience and Nanotechnology. July 2015. (32) Contributing Authors. Energy-dispersive X-ray spectroscopy. Wikipedia: Energy-dispersive X-ray Spectroscopy (2018). (33) L. Reimer, Transmission electron microscopy, Springer, 1997. (34) Contributing Authors. scanning transmission electron microscopy. Wikipedia: scanning transmission electron microscopy (2018). (35) Pradhan, N. R., Garcia, C., Isenberg, B., Rhodes, D., Feng, S., Memaran, S., Xin, Y., McCreary, A., Walker, A. R. H., Raeliarijaona, A., Terrones, H., Terrones, M., McGill, S., Balicas, L. Phase Modulators Based on High Mobility Ambipolar ReSe2 Field-Effect Transistors. Sci. Rep. 2018, 8, 12745. (36) Zhang, Z.; Yates, J. T. Band Bending in Semiconductor Chemical and Physical Consequences at Surfaces and Interfaces. Chem. Rev. 2012, 112, 5520-5551. (37) Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S.; Geim, A.; Tartakovskii, A.; Novoselov, A. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301–306 (2015). (38) Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nature Nanotech. 9, 262–267 (2014). (39) Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W.; Cobden, D.; Xu, X. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nature Nanotech. 9, 268–272 (2014). (40) Contributing Authors. p-n junction. Wikipedia: p-n junction (2019). (41) Razeghi, M. Semiconductor p-n and Metal-Semiconductor Junctions. Fundamentals of Solid State Engineering. (2018). 319–363. (42) Engineering Physics and Radio Electronics. (2008). Light emitting diode. Retrieved from https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/semiconductor-diodes/lightemittingdiodeledconstructionworking.html. (43) Tendenes, Nils Ove. LED light source for hyperspectral fluorescence imaging. (2012). (44) C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, M. Muccini. Ambipolar light-emitting organic field-effect transistor. Appl. Phys. Lett. 85, 1613–1615 (2004). (45) C. Santato, R. Capelli, M. A. Loi, M. Murgia, F. Cicoira, V. A. L.Roy, P. Stallinga, R. Zamboni, C. Rost, S. Karg, M. Muccini,Synth. Tetracene-based organic light-emitting transistors: optoelectronic properties and electron injection mechanism. Synth. Metals 146, 329–334 (2004). (46) Reynaert, J.; Cheyns, D.; Janssen, D.; Mu¨ller, R.; Arkhipov, V. I.; Genoe, J.; Borghs, G.; Heremans, P. J. Ambipolar injection in a submicron-channel light-emitting tetracene transistor with distinct source and drain contacts. J. Appl. Phys. 97, 114501 (2005). (47) Feng, M., Holonyak, Jr, N. & Hafez, W. Light-emitting transistor: Light emission from InGaP/GaAs heterojunction bipolar transistors. Appl. Phys. Lett. 84, 151–153 (2004). (48) C. Zhang, P. Chen and W. Hu. Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. Small, 2016, 12, 1252–1294; (49) Liu, C. F.; Liu, X.; Lai, W. Y.; Huang, W., Organic Light-Emitting Field-Effect Transistors: Device Geometries and Fabrication Techniques. Adv Mater 2018, 30 (52), e1802466. (50) J. Dagar, P. Tyagi, R. Ahmad, R. Singh, O. P. Sinha, C. K. Suman and R. Srivastava. Application of 2D-MoO3 nano-flakes in organic light emitting diodes: effect of semiconductor to metal transition with irradiation. RSC Adv. 2015, 5, 8397–8403 (51) D. Dong, Y. Wang, L. Lian, D. Feng, H. Wang and G. He. Novel Solution-Processed ZnO-Based Electron Injection Layer for Organic Light-Emitting Diodes. Phys. Status Solidi A, 2017, 214, 1700583 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21237 | - |
dc.description.abstract | 過渡金屬二硫族化物(TMDs)其獨特的光與電的性質引起研究的熱潮。二硒化錸(ReSe2)屬於過渡金屬二硫族化物的新成員,具有低對稱性的扭曲三斜晶系結構,它是一種層狀的半導體材料,能隙介於1.1~1.3 eV之間,能隙大小不會隨著單層到塊材的變化而有大幅的變動,是近紅外光發光材料的理想選擇。更重要的是,二硒化錸本身具有雙極場效應的性質,適合發展單一材料的發光電晶體(light emitting transistor, LET)。在目前的發光二極體(LED)的發展中,用於發光二極體的材料通常具有寬的放光範圍但結晶度較低,然而,有關於過渡金屬二硫族化物所製成的二極體中,其材料包括二硫化鉬、二硒化鎢和黑磷,具有高結晶性且較低的驅動電壓,並且可利用閘極調控雙極的場效應性質,但其雙極電性可能會受到厚度的影響而改變,成為在光電元件應用中主要的問題。
為了解決這個問題,我們發展出單一材料的發光電晶體,利用二硒化錸材料作為發光層並藉由不對稱電極來製作近紅外光發光電晶體,在本研究中,我們採用化學氣相沉積法合成大面積且具有雙極電性的二硒化錸薄膜,並使用拉曼、光致螢光光譜、X射線光電子能譜、能量色散光譜以及高解析穿透式電子顯微鏡來鑑定我們合成出的二硒化錸的結構及元素組成,對於二硒化錸電晶體的電性量測結果為雙極性傳輸,此一特性代表其電晶體可進一步應用於近紅外光發光的應用。 | zh_TW |
dc.description.abstract | Transition metal dichalcogenides (TMDs) with their unique optical and electrical properties have reinvigorated the optoelectronics research field. Rhenium diselenide (ReSe2) belongs to a new member of the TMD family and has a distorted triclinic crystal structure of low symmetry. ReSe2 is a layered semiconductor with a direct bandgap of 1.1~1.3 eV, which is nearly layer-independent from bulk to monolayer and ideal for a near-infrared emitting material. More importantly, ReSe2 exhibits inherent ambipolar field-effect nature and can be employed for a single-component light-emitting transistor (LET). In the current development of light-emitting diodes (LEDs), the materials used for LED are generally with a wide emission range but of low crystallinity. Nevertheless, in the recent reports of TMD-based LEDs, the constituent materials (such as MoS2, WSe2, and black phosphorus) are of high crystallinity with low potential barrier and have gate tunable ambipolar field-effect behavior, but their layer-dependent ambipolar nature have become a major concern in optoelectronic applications.
To address this issue, we developed a single-component LET by utilizing ReSe2 as the emission layer together with asymmetric electrodes to build up a near-infrared LET. Here, we report the large-domain synthesis of ambipolar ReSe2 crystal with a chemical-vapor-deposition (CVD) technique. The as-synthesized ReSe2 crystals were studied by Raman, photoluminescence, X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and high-resolution transmission electron microscopy (HRTEM) to show their structural and compositional characteristics. The electrical measurements of the as-fabricated ReSe2-LET have showed the ambipolar characteristics of the devices, which will further be used for developing a near-infrared LED. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:29:15Z (GMT). No. of bitstreams: 1 ntu-108-R06223168-1.pdf: 4182980 bytes, checksum: d86a7afb82799e7b7964821b3c42f6ad (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 目錄 vi 圖表目錄 x 第一章、 緒論 1 第二章、 文獻回顧 1 2.1 二硒化錸簡介 1 2.1.1 二維層狀材料 1 2.1.2 過渡金屬二硫族化物 2 2.1.3 二硒化錸之結構與特性 3 2.1.4 二硒化錸的雙極性電性傳輸 5 2.2 二硒化錸製備 7 2.2.1 機械剝離法 7 2.2.2 物理氣相沉積法 8 2.2.3 化學氣相沉積法 8 2.3 化學氣相沉積法製備二硒化錸 9 2.3.1 二硒化錸生長控制 9 2.3.2 二硒化錸薄膜 10 2.4 二硒化錸薄膜檢測方法 12 2.4.1 光學散射 12 2.4.2 拉曼光譜 (Raman Spectroscopy) 13 2.4.3 光致螢光光譜 (photoluminescence, PL) 20 2.4.4 原子力顯微鏡 (atomic force microscope, AFM) 22 2.4.5 X射線電子能譜儀 (X-ray photoelectron spectroscopy) 24 2.4.6 電子顯微鏡 25 2.4.7 掃描穿隧式電子顯微鏡(STEM) 29 2.5 場效電晶體(field effect transistor, FET) 30 2.6 二硒化錸光電效應 32 2.6.1 發光二極體與發光電晶體比較 32 2.6.2 發光二極體(light emitting diode, LED) 32 2.6.3 發光電晶體(light emitting transistor, LET) 36 第三章、 材料合成與實驗方法 39 3.1 以化學氣相沉積法合成二硒化錸 39 3.1.1 基板前處理 39 3.1.2 化學氣相沉積系統架構 39 3.2 二硒化錸材料厚度量測 42 3.3 二硒化錸場效電晶體的製作 43 3.4 二硒化錸發光電晶體製作(ReSe2-LETs) 44 3.4 電性量測系統 46 3.5 聚合物支撐層轉置法 47 第四章、 結果與討論 49 4.1 二硒化錸的合成 49 4.2 二硒化錸的鑑定 50 4.2.1 拉曼光譜(Raman Spectroscopy) 50 4.2.2 光致螢光光譜(PL Spectroscopy) 51 4.2.3 高解析穿透電子顯微鏡鑑定(HR-TEM) 52 4.2.4 掃描穿隧式電子顯微鏡(STEM) 54 4.2.5 二硒化錸厚度 55 4.2.6 元素組成分析 56 4.3 二硒化錸場效電晶體(ReSe2-FETs) 59 4.4 二硒化錸發光電晶體(ReSe2-LETs) 62 第五章、 結論 68 參考文獻 69 | |
dc.language.iso | zh-TW | |
dc.title | 以化學氣相沉積法合成具有雙極電性的二硒化錸晶體並應用於近紅外光發光二極體 | zh_TW |
dc.title | Chemical-Vapor-Deposition Synthesis of Ambipolar Rhenium Diselenide
Crystals for Near-Infrared Light-Emitting Diode | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李志浩,廖尉斯 | |
dc.subject.keyword | 二硒化錸,化學氣相沉積,雙極電性,場效電晶體,發光電晶體,非對稱電極,單晶, | zh_TW |
dc.subject.keyword | rhenium diselenide,chemical vapor deposition,ambipolar characteristic,field effect transistor,light emitting transistor,asymmetric electrode,single crystalline, | en |
dc.relation.page | 75 | |
dc.identifier.doi | 10.6342/NTU201903768 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。