Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21226
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor方煒(Wei Fang)
dc.contributor.authorQuak Wai Taten
dc.contributor.author郭偉達zh_TW
dc.date.accessioned2021-06-08T03:29:02Z-
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation1.方志權。1997。營養液導電度對茼蒿生長及養分吸收的影響。中國蔬菜 3: I7-9。
2.方煒(譯)。2010。太陽光型植物工廠-永續性先進植物工廠。初版。台北:財團法人豐年社。
3.方煒(譯)。2011a。完全控制型植物工廠。初版。台北:財團法人豐年社。
4.方煒。2011b。話說『植物工廠』。初版。台北:農業推廣委員會。
5.沈再發。1987。葉萵苣浮根式水耕之養分吸收。中華農業研究 36(4): 372-380。
6.高德錚。2017。液肥配方在設施蔬菜栽培之調配與應用實務。台中區農業改良場特刊,189-205。
7.康世緯。2015。植物工廠萵苣量產整合模型與決策支援。博士論文。台北:國立台灣大學生物產業機電工程學研究所。
8.潘惠卿。2009。近十年臺北市消費者物價指數變動分析。台北:統計應用分析報告。
9.鄭曉蕾、丸尾連、朱月林。2011。植物工廠條件下光質對散葉萵苣生長和燒邊發生的影響。江蘇農業科學 6: 270-272。
10.鍾興穎、張明毅、鄔家琪、方煒。2012。不同光質對紅橡萵苣生長與品質之影響。2012 年生物機電與農機科技論文發表會論文集。
11.簡君良。2011。植物工廠環境與養液灌溉監控物聯網之建置。碩士論文。台北:國立台灣大學生物產業機電工程學研究所。
12.Abou-Hadid, A. F., E. M. Abd-Elmoniem, M. Z. El-Shinawy, and M. Abou-Elsoud. 1995. Electrical conductivity effect on growth and mineral composition of lettuce plants in hydroponic system. Strategies for Market Oriented Greenhouse Production 434: 59-66.
13.Both, A. J., L. D. Albright, and R. W. Langhans. 1997. Coordinated management of daily PAR integral and carbon dioxide for hydroponic lettuce production. II Modelling Plant Growth, Environmental Control and Farm Management in Protected Cultivation 456: 45-52.
14.Bugbee, B. 2003. Nutrient management in recirculating hydroponic culture. Paper presented at the South Pacific Soilless Culture Conference-SPSCC 648.
15.Causin, H. F., R. N. Jauregui, and A. J. Barneix. 2006. The effect of light spectral quality on leaf senescence and oxidative stress in wheat. Plant Science. 171(1): 24-33.
16.Chen, R., H. Liu, S. Song, G. Sun, and R. Chen. 2015. Effects of light quality on growth and quality of lettuces in hydroponic. Paper presented at the Solid State Lighting (SSLCHINA), 2015 12th China International Forum on.
17.Chen, X. L., Q. C. Yang, W. P. Song, L. C. Wang, W. Z. Guo, and X. Z Xue. 2017. Growth and nutritional properties of lettuce affected by different alternating intervals of red and blue LED irradiation. Scientia horticulturae. 223: 44-52.
18.Fang, W. 2013. Quantification of performance in plant factory. Technol. Adv. Prot. Hortic, 64-71.
19.Folta, K. M. 2004. Green light stimulates early stem elongation, antagonizing lightmediated growth inhibition. Plant Physiol 135: 1407-1416.
20.Goto, E. 2012. Plant production in a closed plant factory with artificial lighting. Paper presented at the VII International Symposium on Light in Horticultural Systems 956.
21.Ikeda, H., and T. Osawa. 1981. Nitrate-and ammonium-N absorption by vegetables from nutrient solution containing ammonium nitrate and the resultant change of solution pH. Journal of the Japanese Society for Horticultural Science. 50(2): 225-230.
22.Kim, H. H., G. D. Goins, R. M. Wheeler, and J. C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 39(7): 1617-1622.
23.Kong, S. W., H. Y. Chung, M. Y. Chang, and W. Fang. 2015. The contribution of different spectral sections to increase fresh weight of boston lettuce. HortScience. 50(7): 1006-1010.
24.Kozai, T., G. Niu, and M. Takagaki. 2015. Plant factory: an indoor vertical farming system for efficient quality food production: Academic Press.
25.Kozai, T., K. Ohyama, and C. Chun. 2005. Commercialized closed systems with artificial lighting for plant production. Paper presented at the V International Symposium on Artificial Lighting in Horticulture 711.
26.Li, Q., and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environmental and Experimental Botany 67(1): 59-64.
27.Lin, K. H., M. Y. Huang, W. D. Huang, M. H. Hsu, Z. W. Yang, and C. M Yang. 2013. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150: 86-91.
28.Massa, G. D., H. H. Kim, R. M. Wheeler, and C. A. Mitchell. 2008. Plant productivity in response to LED lighting. HortScience. 43(7): 1951-1956.
29.Massa, G., T. Graham, T. Haire, C. Flemming, G. Newsham, and R. Wheeler. 2015. Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 50(3): 501-506.
30.McCree, K. J. 1971. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9: 191-216.
31.Merrill, B. F., N. Lu, T. Yamaguchi, M. Takagaki, T. Maruo, T. Kozai, and W. Yamori. 2016. The next revolution of agriculture: a review of innovations in Plant factories. Handbook of Photosynthesis 952.
32.Morrow, R. C. 2008. LED lighting in horticulture. HortScience. 43(7): 1947-1950.
33.Muneer, S., E. Kim, J. Park, and J. Lee. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International journal of molecular sciences 15(3): 4657-4670.
34.Saito, Y., H. Shimizu, H. Nakashima, J. Miyasaka, and K. Ohdoi. 2010. The effect of light quality on growth of lettuce. IFAC Proceedings Volumes 43(26): 294-298.
35.Samarakoon, U. C., P. A. Weerasinghe, and W. A. P. Weerakkody. 2006. Effect of electrical conductivity (EC) of the nutrient solution on nutrient uptake, growth and yield of leaf lettuce (Lactuca sativa L.) in stationary culture.
36.Schumaker, M. A., J. H. Bassman, R. Robberecht, and G. K. Radamaker. 1997. Growth, leaf anatomy, and physiology of Populus clones in response to solar ultraviolet-B radiation. Tree physiology. 17(10): 617-626.
37.Shimizu, H., Y. Saito, H. Nakashima, J. Miyasaka, and K. Ohdoi. 2011. Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes. 44(1): 605-609.
38.Vimolmangkang, S., W. Sitthithaworn, D. Vannavanich, S. Keattikunpairoj, and C. Chittasupho. 2010. Productivity and quality of volatile oil extracted from Mentha spicata and M. arvensis var. piperascens grown by a hydroponic system using the deep flow technique. Journal of natural medicines 64(1): 31.
39.Vista, S. P., and S. K. Basnet. 2015. Economic Rationalization of Phosphorus Crisis and Scope of Sustainable Agriculture in Developing Countries. Soil Science Division, 12.
40.Watanabe, H. 2009. Light-controlled plant cultivation system in Japan-development of a vegetable factory using LEDs as a light source for plants. Paper presented at the VI International Symposium on Light in Horticulture 907.
41.Yanagi, T., K. Okamoto, and S. Takita. 1996. Effects of blue, red, and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants. In International Symposium on Plant Production in Closed Ecosystems 440: 117-122.
42.Yorio, N. C., G. D. Goins, H. R. Kagie, R. M. Wheeler, and J. C. Sager. 2001. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience. 36(2): 380-383.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21226-
dc.description.abstract本研究旨在以單晶片建立一套適用於植物工廠的養液與光質調控系統,並驗證其適用性。養液調控以導電度與酸鹼度感測器為感知元件,透過功率調節電路控制蠕動泵浦轉速進行流量調控以調整營養液濃度與酸鹼度。光質調控則是透過脈衝訊號調節驅動電路的輸出電流,達成LED燈板R、G、B三色各255 階的調變功能。各項感測資訊透過微控制器及藍牙模組與 APP 人機介面進行無線數據傳輸,具備即時監控與參數調整功能。
本研究同時探討四種光質對四種葉菜類作物育苗與育成期生長之影響,四種光質分別為冷白 LED (R25:G49:B26)、紅藍 LED (R87.5:G0:B12.5)、紅白 LED (R73.5:G16:B10.5) 及紅藍白 LED (R81.9:G6.4:B11.7)。結果顯示紅藍白 LED 適合用於小菘菜和京水菜之栽培,紅白LED適合皺葉萵苣之栽培。羽衣甘藍較為特殊,幼苗期使用紅藍白 LED,育成期使用紅白 LED 為最佳。本研究亦探討所開發的養液調控系統針對不同作物的調控方式,首先探討使用所開發的自動調控系統 (即時調控) 與傳統的手動調控方式 (一週一次) 對小菘菜和京水菜生長之影響;其次探討如何使用所開發的系統用於降低小菘菜的硝酸鹽濃度。結果顯示栽培期間養液導電度和酸鹼度有較大幅度的變動不利於作物生長,自動調控系統 (即時調控) 在地上部鮮重的表現上可高出 34 ~54 %。採收前需調整養液濃度的設定,小菘菜的硝酸鹽濃度可有效降低,但仍偏高,顯示此調整模式的不足,後續可增加搭配光質 (提高紅光比例) 或提高光量或光期 (日累積光量) 的調整,硝酸鹽濃度應可進一步再降低。
本研究建置的系統允許在栽培期間不需更換燈具就可依照設定的光配方調整光質,亦可全程提供穩定的營養液條件,提供作物於最佳的地上部光環境與最佳的地下部養液環境內成長。系統建置成本遠低於使用 PC 或 PLC 的系統,應該更有推廣的價值。
zh_TW
dc.description.abstractThis study aims to develop a nutrient solution and light quality control system for crop production in plant factory by microcontroller and verify the suitability of the system. The nutrient solution system uses an electrical conductivity sensor and pH sensor as a sensing element; through power adjustment circuit to regulate the peristaltic pump flow rate to adjust the electrical conductivity and pH of the nutrient solution. Light control regulates the output current of the drive circuit through pulse width signal to control light panel RGB 0-255 stages of brightness. All sensors wireless transmits data via microcontroller and Bluetooth to Android application provides a real-time monitoring system.
In this study, we first investigate the effects of different light quality treatments on four leafy vegetable crops growth. Experiment uses four different light quality: Cool White LED (R25:G49:B26), Red-Blue LED (R87.5:G0:B12.5), Red-White LED (R73.5:G16:B10.5) and Red-Blue-White LED (R81.9:G6.4:B11.7). The results showed that Komatsuna (Brassica rapa var. perviridis) and Mizuna (Brassica rapa var. laciniifolia) planted by RBW LED, Curled Lettuce (Lactuca sativa L. var. crispa) planted by RW LED has the best growth performance. Kale (Brassica oleracea var. sabellica) cultivation is more special, the seedling stage uses RBW LED , final growh stage uses RW LED has the best growth result. In addition, we investigate the regulation of nutrient solution system control methods for different crops. First of all, to explore the impact of the use of the developed automatic adjustment system (real-time adjustment) and traditional manual control (adjust once a week) on the growth of Komatsuna and Mizuna. Second, explore how to use the nutrient solution control system developed to reduce the nitrate concentration of Komatsuna. The results show plants grown slowly under traditional manual control and the big fluctuation of EC and pH values should be the reason. The automatic control nutrient solution treatment fresh weight was 34~54 % higher than manual control treatment. Before harvesting, the setting of the concentration of nutrient solution should be calibrate, and the nitrate concentration of the Komatsuna can be effectively reduced, but still high. The results show that the deficiency of this adjustment mode, by increasing the combination of light quality (increasing the red light ratio) or the adjustment of the light intensity or the photoperiod (Daily Light Integral) can be reduced.
The system developed in this study allows the light quality to be adjusted according to the light recipe without changing the light source during cultivation, and can also provide stable nutrient solution conditions throughout the process, providing the best above-ground light environment and the best underground nutrient solution environment for plant. System construction costs are much lower than those using a PC or PLC system and should be more valuable.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:29:02Z (GMT). No. of bitstreams: 1
ntu-108-R06631010-1.pdf: 4988764 bytes, checksum: 705ff173eb369f4370e492b51dc2c75d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言與研究目的 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 植物工廠 3
2.1.1 植物工廠發展與定義 3
2.1.2 植物工廠分類 4
2.2 人工光源影響 6
2.2.1 光量對植物生長之影響 7
2.2.2 光質對植物生長之影響 8
2.3 營養液對植物的影響 11
2.3.1 營養液導電度對植物生長之影響 12
2.3.2 營養液酸鹼度對植物生長之影響 13
2.4 控制系統 14
2.4.1 可程式控制器與單晶片 14
2.4.2 養液調控系統 15
第三章 材料與方法 17
3.1 試驗場所 17
3.1.1 環控室規格 17
3.1.2 溫度控制 18
3.1.3 二氧化碳控制 18
3.2 水耕資材與養液成分 19
3.2.1 水耕栽培系統與資材 19
3.2.2 營養液成分 20
3.3 量測儀器與檢測方法 21
3.3.1 量測儀器 21
3.3.2 生長性狀檢測 21
3.3.3 硝酸鹽含量檢測 22
3.4 統計分析 22
3.5 電力產能與光子產能 23
3.5.1 電力產能 (Energy Yield, EY) 23
3.5.2 光子產能 (Energy Yield, EY) 24
3.6 研究方法 25
3.6.1 單晶片開發養液及光質調控系統設計與實現 25
3.6.2 不同光質處理對植物育苗與育成期生長試驗 33
3.6.3 不同養液調控模式對植物生長試驗 36
3.6.4 不同營養液導電度處理對小菘菜硝酸鹽表現之影響 38
第四章 結果與討論 40
4.1 單晶片開發養液及光質調控系統設計與實現 40
4.1.1 營養液調控系統 40
4.1.2 植物 LED 照明之光質調控 44
4.1.3 監控系統 48
4.2 不同光質處理對植物育苗與育成期生長試驗 51
4.2.1 不同光質對小菘菜生長之影響 51
4.2.2 不同光質對京水菜生長之影響 54
4.2.3 不同光質對羽衣甘藍生長之影響 57
4.2.4 不同光質對皺葉萵苣生長之影響 60
4.2.5 小結 63
4.3 不同養液調控模式對植物生長之影響 64
4.3.1 不同養液調控模式對小菘菜生長之影響 66
4.3.2 不同養液調控模式對京水菜生長之影響 69
4.3.3 小結 72
4.4 不同營養液導電度處理對小菘菜硝酸鹽表現之影響 73
第五章 結論 80
參考文獻 82
dc.language.isozh-TW
dc.subject植物工廠zh_TW
dc.subject光質調控zh_TW
dc.subjectAPP 人機介面zh_TW
dc.subject單晶片zh_TW
dc.subject營養液調控zh_TW
dc.subjectAndroid Applicationen
dc.subjectMicrocontrolleren
dc.subjectPlant Factoryen
dc.subjectNutrient Solution Controlen
dc.subjectLight Quality Controlen
dc.title以單晶片調控植物工廠內養液及光質zh_TW
dc.titleNutrient and Light Quality Control in Plant Factory by Microcontrolleren
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee羅筱鳳(Hsiao-Feng Luo),黃振康(Chen-Kang Huang)
dc.subject.keyword單晶片,植物工廠,營養液調控,光質調控,APP 人機介面,zh_TW
dc.subject.keywordMicrocontroller,Plant Factory,Nutrient Solution Control,Light Quality Control,Android Application,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201902865
dc.rights.note未授權
dc.date.accepted2019-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
4.87 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved