請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21192
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡曜陽 | |
dc.contributor.author | Yen-Wei Lee | en |
dc.contributor.author | 李彥緯 | zh_TW |
dc.date.accessioned | 2021-06-08T03:28:26Z | - |
dc.date.copyright | 2019-08-21 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-20 | |
dc.identifier.citation | A.W.Behrens, J. Ginzel, and F.L.Bruhns, ”Threshold technology and its application for gap status detection”, Journal of Materaials Processing Technology, 2004
C.Cogun,”Statistical Modeling of Properties of Discharge Pulses in Electric Discharge Machining”,.JSME Internatonal Journal,1990 Y.S.Liao , J.C.Woo,”The effects of machining settings on the behavior of pulse trains in the WEDM process” ,1997 M.T Yan, Y.S Liao ,”Adaptive control of WEDM process using the fuzzy control strategy”,1998 許克宇, 氣中放電放電狀態監測系統之開發. 台灣:國立台灣大學機械所碩士論文,2011 董珮君,線切割放電加工機之即時監測系統開發. 台灣:國立台灣大學機械所碩士論文,2006 M.T.Yan and Hsing-Tsung Chien,”Monitoring and Control of the Micro Wire-EDM Process”,International Journal of Machine Tools and Manufature,2007 K.P.Rajukar, W.M.Wang, J.A.McGeough, “WEDM Identification and Adaptive Control for Variable-Height Components”,1994 A.Gangadhar,M.S.Shunmugam,P.K.Philip,”Pulse train studies in EDM with controlled pulse relaxation”,1992 蔡明原, 線切割放電加工放電延遲時間線上分析系統. 台灣:國立台灣大學機械所碩士論文,2007 廖哲偉 ,線切割放電加工機鼓形量探討與抑制. 台灣:國立台灣大學機械所碩士論文,2010 賴諺柏 ,線切割放電加工對厚工件精修之研究. 台灣:國立台灣大學機械所碩士論文,2005 郁光哲,碳化鎢之線切割放電加工特性研究. 台灣:國立台灣大學機械所碩士論文,2017 賴逸鵬,線切割放電加工精修電源系統之研發及其應用. 台灣:華梵大學機電工程學系碩士論文,2006 董景瑞,雕模放電加工之排渣模式及其波列分析與應用. 台灣:國立台灣大學機械所碩士論文,2006 M.Weck,J.M.Dehmer,”Analysis and Adaptive Control of EDM Sinking Process Using the Ignition Delay Time and Fall Time as Parameter”, 1992 M.Weck and W.Koing,”Automatic Control and Supervision of the EDM-Process”,Proceeding of 7th International Symposium for Electromachining(ISEM-7),1983 呂政達, 電流波形對於放電加工特性之影響. 台灣:國立台灣大學機械所碩士論文,2007 Q.H.Zhang, ”Study on technology of ultrasonic vibration aided electrical discharge machining in gas”, Journal of Materials Processing Technology 149 (640–644),2004 林奏宏,微線切割放電加工之適應性控制. 台灣:華梵大學機電工程學系碩士論文,2008 Adeel Ikram,Nadeem Ahmad Mufti,Muhammad Qaiser Saleem and Ahmed Raza Khan,”Parametric optimization for surface roughness for surface roughness,kerf and MRR in wire electrical discharge machining(WEDM) using Taguchi design of experiment”,2013 Nihat Tosun, Can Cogun ,Gul Tosun,” A study on kerf and material removal rate in wire electrical discharge machining based on Taguchi method”, Journal of Materials Processing Technology152,316-322, 2004 S.S. Mahapatra, Amar Patnail, ” Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method”,Int J Adv Manuf Technol, 2007,34:911-925, 2007 D.V.S.S.S.V.Prasad, A.Gopala Krishana,” Empirical modeling and optimization of kerf and wire wear ratio in wire electrical discharge machining”The International Journal of Advanced Manufacturing Technology, March 2015, Volume 77, Issue 1–4, pp 427–441,2015 Sameh Habiba and Akira Okadab,” Study on the movement of wire electrode during fine wire electrical discharge machining process” , Journal of Material Processing Technology227:147-152,2016 A.Okada(2), aY.Unoa, M.Nakazawaa, T.Yamauchib, “Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation”, CIRP, Annals- Manufacturing Technology 59, 231-234, 2010 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21192 | - |
dc.description.abstract | 線放電表面輪廓是指線放電加工後的形貌,其中包含細微的放電表面,如裂縫及凹坑。本實驗透過顯微鏡觀察加工形貌,並從放電加工的原始波形中擷取出物理物理量,針對單一時刻下放電輪廓點進行預測之研究。
表面輪廓點為放電過程中,在極短時刻下的加工厚度(高度)值,其構形出放電輪廓。表面輪廓點為複雜間隙狀態下加工出之結果,包含線振位移及間隙距離。又同時量測兩者具困難性,本實驗藉由觀察在加工過程中的放電波形,從中分析兩者的關係。 本研究透過從線放電原始波形中擷取多變量物理量,並通過機器學習建立模型。基於過去的研究,本研究擷取放電延遲時間、加工能量等放電物理量,另外,本研究導入了一種新物理量,如:大(中、小)電流發數,並建立放電模型。 為了提高模型的預測能力,針對放電延遲時間及大小電流判別,進行物理量擷取方式改變,並進行模型錯誤率的比較。而模型中的層數也對模型有著重要影響性,模型將透過採用錯誤率較低之物理量擷取方式,與適合的模型層數。 本研究透過本研究之物理量擷取和機器學習,建立原始放電波形與加工表面輪廓點的數學模型,並且實現對表面輪廓點變化的預測。 | zh_TW |
dc.description.abstract | The surface profile of WEDM refers to the morphology machined by WEDM, which includes subtle discharge surfaces, such as chipping and cracks. In this research, surface was measured by a microscope. By extracting physical variables in the original waveform of WEDM, so as to predict the profile points in short period .
The surface profile points are the height of machining during the discharge process whithin short period of time, which form the discharge contour. Profile points are related to wire deflection and gap state, and it is difficult to measure both at the same time, In this experiment, the relationship between the discharge waveform and the surface profile was analyzed by observing both during the processing. This research extract multi-variabled features from the WEDM original waveform, and the model is established by neural network,. In this research , some physical varaables that highly ralated to the behavior of WEDM process will be extracted, such as Ignition delay time、Pulse energy etc. Furthermore, the application of a variable-Big Current count (Middle、Small), is used to build the model. In order to improve prediction ability of model, the extraction method of Ignition delay time and Big current will be compared by learning loss. The number of layers in the model has an important impact on the model as well . The model will be improved by extraction and model layers with low error loss The mathematical model between original WEDM waveform and gap is established, by feature extraction developed by this research and the technique of Machine learning. And the prediction on the gap trend is achieved. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:28:26Z (GMT). No. of bitstreams: 1 ntu-108-R06522727-1.pdf: 11011762 bytes, checksum: 491a9ac95f21a85eedafa702269d5fff (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 中文摘要 II
Abstract III 目錄 IV 表目錄 VI 圖目錄 VIII 1 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.3 研究動機與目的 7 1.4 論文大綱 8 2 第二章 相關理論介紹 10 2.1放電加工 10 2.1.1 放電加工發展 10 2.1.2 放電加工原理介紹 11 2.1.3 放電現象轉換過程及火花結構 15 2.1.4 放電迴路種類 17 2.1.5 放電加工參數 18 2.1.6 放電波形種類 21 2.1.7 加工結果特性 22 2.2類神經網路技術介紹及原理 24 2.2.1 類神經網路原理 26 2.2.2 反向傳播演算法 29 2.2.3 類神經網路模型訓練 32 3 第三章 實驗設備與實驗流程 36 3.1 實驗設備 36 3.1.1 線切割放電加工機 36 3.1.2 PXI資料擷取系統 37 3.1.3 TEKTRONIX高壓差動式探棒 38 3.1.4 TEKTRONIX AM503S 電流量測系統(Current Probe System) 39 3.1.5 雷射共軛焦顯微鏡 40 3.1.6 加工材料及電極材料 40 3.2 實驗流程 41 3.2.1 實驗規劃 41 3.2.2 訊號及加工位置對應 42 4 第四章 線放電波形分析與機器學習運算結果 49 4.1 線放電波形物理量擷取 49 4.1.1 電壓波形物理量擷取 51 4.1.2 電流波形物理量擷取 52 4.1.3 電壓及電流波形物理量擷取 55 4.2 機器學習運算結果討論 57 4.2.1 類神經網路實驗 58 4.2.2 放電延遲時間與長短Td判別對模型之影響 62 4.2.3 大小電流判別對於對模型之影響 69 4.2.4 比例閥值對模型之影響 73 4.2.5 改變層數對放電模型之影響 76 4.3 放電物理量與表面輪廓點變化討論 78 4.4 預測結果 85 4.5 模型誤差量改善 90 4.6 比例閥值擷取之預測結果 95 5 第五章 結論及未來發展方向 99 5.1 結論 99 5.2 未來展望 99 6 參考文獻 101 | |
dc.language.iso | zh-TW | |
dc.title | 應用機器學習於線切割表面輪廓點之預測 | zh_TW |
dc.title | The Prediction of WEDM Surface Profile Change with Machine Learning | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 崔海平,顏炳華,蔡孟勳 | |
dc.subject.keyword | 線放電加工,表面輪廓點,多變數物理量,機器學習,系統識別, | zh_TW |
dc.subject.keyword | WEDM,Surface Profile point,multi-variabled features,machine learning,System Identification, | en |
dc.relation.page | 119 | |
dc.identifier.doi | 10.6342/NTU201904065 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2019-08-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 10.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。