Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21185
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorChia-Chun Chenen
dc.contributor.author陳佳君zh_TW
dc.date.accessioned2021-06-08T03:28:19Z-
dc.date.copyright2019-09-14
dc.date.issued2019
dc.date.submitted2019-08-30
dc.identifier.citation1. 安寶貞。2001。洋蘭保護-疫病。行政院農委會動植物防疫檢疫局。p. 12-21。
2. 卓濬哲。2016。疫病菌OPEL同源性基因在植物反應所扮演的角色。國立臺灣大學植物病理學研究所碩士論文。
3. 蔡雲鵬。1991。植物病害名彙 (三版)。植保學會及植病學會刊印。p. 604。
4. 顏豪志。2001。疫病菌分泌性蛋白質OPEL選殖與特性研究。國立臺灣大學植物病理學研究所碩士論文。
5. Adams, D. J. 2004. Fungal cell wall chitinases and glucanases. Microbiology 150: 2029-2035.
6. Blackman, L. M., Cullerne, D.P., Hardham, A.R. 2014. Bioinformatic characterization of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome. BMC Genomics 15: 785. Doi: 10.1186/1471-2164-15-785.
7. Blackman, L. M., Cullerne, D. P., Torrena, P., Taylor, J., and Hardham, A. R. 2015. RNA-Seq Analysis of the Expression of Genes Encoding Cell Wall Degrading Enzymes during Infection of Lupin (Lupinus angustifolius) by Phytophthora parasitica. PLoS One 10: e0136899. Doi: 10.1371/journal.pone.0136899.
8. Boller, T., and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology 60: 379-406.
9. Boudsocq, M., Willmann, M. R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S. H., and Sheen, J. 2010. Differential innate immune signaling via Ca2+ sensor protein kinases. Nature 464: 418-422.
10. Boutrot, F., Segonzac, C., Chang, K. N., Qiao, H., Ecker, J. R., Zipfel, C., and Rathjen, J. P. 2010. Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proceedings of the National Academy of Sciences of the United States of America 107: 14502-14507.
11. Brouwer, H., Coutinho, P. M., Henrissat, B., and de Vries, R. P. 2014. Carbohydrate-related enzymes of important Phytophthora plant pathogens. Fungal Genetics and Biology 72: 192-200.
12. Cantarel, B. L., Coutinho, P. M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Research 37: D233-238.
13. Chang, Y. H., Yan, H. Z., and Liou, R. F. 2015. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Molecular Plant Pathology 16: 123-136.
14. Choudhary, D. K., Prakash, A., and Johri, B. N. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47: 289–297.
15. Couto, D., and Zipfel, C. 2016. Regulation of pattern recognition receptor signaling in plants. Nature Reviews Immunology 16: 537-552.
16. Dafoe, N. J., Gowen, B.E., and Constabel, C. P. 2010. Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar. BMC Plant Biology 10: 191. Doi: 10.1186/1471-2229-10-191.
17. Dangl, J. L., and Jones, J. D. 2001. Plant pathogens and integrated defense responses to infection. Nature 411: 826-833.
18. DeFalco, T. A., Bender, K. W., and Snedden, W. A. 2009. Breaking the code: Ca2+ sensors in plant signaling. Biochemical Journal 425: 27-40.
19. Dubiella, U., Seybold, H., Durian, G., Komander, E., Lassig, R., Witte,C. P., Schulze, W. X., and Romeis, T. 2013. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. Proceedings of the National Academy of Sciences of the United States of America 110: 8744-8749.
20. Enkerli, K., Hahn, M. G., Mims, C. W. 1997. Immunogold localization of callose and other plant cell wall components in soybean roots infected with the oomycete Phytophthora sojae. Canadian Journal of Botany 75: 1509-1517.
21. Ferrari, S., Savatin, D. V., Sicilia, F., Gramegna, G., Cervone, F., and Lorenzo, G. D. 2013. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development. Frontiers in Plant Science 4: 49. Doi: 10.3389/fpls.2013.00049.
22. Fierens, E., Rombouts, S., Gebruers, K., Goesaert, H., Brijs, K., Beaugrand, J., Volckaert, G., Van Campenhout, S., Proost, P., Courtin, C. M., and Delcour, J. A. 2007. TLXI, a novel type of xylanase inhibitor from wheat (Triticum aestivum) belonging to the thaumatin family. Biochemical Journal 403: 583-591.
23. Fu, Z. Q., and Dong, X. 2013. Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64: 839-863.
24. Gust, A. A., Pruitt, R., and Nurnberger, T. 2017. Sensing danger: key to activating plant immunity. Trends in Plant Science 22: 779-791.
25. Halim, V. A., Altmann, S., Ellinger, D., Eschen-Lippold, L., Miersch, O., Scheel, D., and Rosahl, S. 2009. PAMP-induced defense responses in potato require both salicylic acid and jasmonic acid. Plant Journal 57: 230-242.
26. Jones, J. D., and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.
27. Judelson, H. S., and Ah-Fong, A. M. V. 2019. Exchanges at the plant-oomycete interface that influence disease. Plant Physiology 179: 1198-1211.
28. Ko, W. H. 1980. Hormonal regulation of sexual reproduction in Phytophthora. J. Gen. Microbiol 116: 459-461.
29. Koeck, M., Hardham, A. R., and Dodds, P. N. 2011. The role of effectors of biotrophic and hemibiotrophic fungi in infection. Cellular Microbiology 13: 1849-1857.
30. Kombrink, E., and Schmelzer, E. 2001. The hypersensitive response and its role in local and systemic disease resistance. European Journal of Plant Pathology 107: 69-78.
31. Lai, M. W., and Liou, R. F. 2018. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica. Current Genetics 64: 931-943.
32. Liu, J. J., Sturrock, R., and Ekramoddoullah, A. K. 2010. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function. Plant Cell Reports 29: 419-436.
33. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L. and He, P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of Sciences of the United States of America 107: 496-501.
34. Ma, Z., Song, T., Zhu, L., Ye, W., Wang, Y., Shao, Y., Dong, S., Zhang, Z., Dou, D., Zheng, X., Tyler, B. M., and Wang, Y. 2015. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP. Plant Cell 27: 2057-2072.
35. Mackey, D., Holt, B. F., Wiig, A., and Dangl, J. L. 2002. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108: 743–754.
36. Mackey, D., Belkhadir, Y., Alonso, J. M., Ecker, J. R., Dangl, J. L. 2003. Arabidopsis RIN4 is a target of the Type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112: 379-389.
37. Malinovsky, F. G., Fangel, J. U., and Willats, W. G. 2014. The role of the cell wall in plant immunity. Frontiers in Plant Science 5: 178. Doi: 10.3389/fpls.2014.00178.
38. Martin, K., McDougall, B. M., McIlroy, S., Chen, J., and Seviour R. J., 2007. Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiology Reviews 31: 168-192.
39. Mèlida, H., Sandoval-Sierra, J. V., Dieguez-Uribeondo, J., and Bulone, V. 2013. Analyses of extracellular carbohydrates in oomycetes unveil the existence of three different cell wall types. Eukaryotic Cell 12: 194-203.
40. Mouyna, I., Hartl, L., and Latge, J. P. 2013. Beta-1,3-glucan modifying enzymes in Aspergillus fumigatus. Frontiers in Microbiology 4: 81. Doi: 10.3389/fmicb.2013.00081.
41. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumoto, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K. 2008. Synergistic activation of the Arabidopsis NADPH oxidase AtrbohD by Ca2+ and phosphorylation. Journal of Biological Chemistry 283: 8885-8892.
42. Osmond, R. I. W., Hrmova, M., Fontaine, F., Imberty. A., Fincher, G. B. 2001. Binding interactions between barley thaumatin-like proteins and (1,3)-ß-D-glucans. European Journal of Biochemistry 15:4190–4199.
43. Owji, H., Nezafat, N., Negahdaripour, M., Hajiebrahimi, A., and Ghasemi, Y. 2018. A comprehensive review of signal peptides: structure, roles, and applications. European Journal of Cell Biology 97: 422-441.
44. Pajerowska-Mukhtar, K. M., Wang, W., Tada, Y., Oka, N., Tucker, C. L., Fonseca, J. P., and Dong, X. 2012. The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Current Biology 22: 103-112.
45. Pierleoni, A., Martelli, P. L., and Casadio, R. 2008. PredGPI: a GPI-anchor predictor. BMC Bioinformatics 9: 392. Doi: 10.1186/1471-2105-9-392.
46. Ranf, S., Eschen-Lippold, L., Frohlich, K., Westphal, L., Scheel, D., and Lee, J. 2014. Microbe-associated molecular pattern-induced calcium signaling requires the receptor-like cytoplasmic kinases, PBL1 and BIK1. BMC Plant Biology 14: 374. Doi: 10.1186/s12870-014-0374-4.
47. Roemer, T., Delaney, S., Bussey, H. 1993. SKN1 and KRE6 define a pair of functional homologs encoding putative membrane proteins involved in β-glucan synthesis. Molecular and Cellular Biology 13: 4039–4048.
48. Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. Journal of Biological Chemistry 285: 9444-9451.
49. Steczkiewicz, K., Knizewski, L., Rychlewski, L., and Ginalski, K. 2010. TOS1 is circularly permuted 1,3-beta-glucanase. Cell Cycle 9: 201-204.
50. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H. S., Han, B., Zhu, T., Zou, G., and Katagiri, F. 2003. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15: 317-330.
51. Tsuda, K., and Katagiri, F. 2010. Comparing signaling mechanisms engaged in pattern-triggered and effector-triggered immunity. Current Opinion in Plant Biology 13: 459-465.
52. Yan, H. Z., and Liou, R. F. 2006. Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genetics and Biology 43: 430-438.
53. Yi, S. Y., Shirasu, K., Moon, J. S., Lee, S. G., and Kwon, S. Y. 2014. The activated SA and JA signaling pathways have an influence on flg22-triggered oxidative burst and callose deposition. PLoS One 9: e88951. Doi: 10.1371/journal.pone.0088951.
54. Yu, D., Chen, C., and Chen, Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13.
55. Zerillo, M. M., Adhikari, B. N., Hamilton, J. P., Buell, C. R., Levesque, C. A., and Tisserat, N. 2013. Carbohydrate-active enzymes in Pythium and their role in plant cell wall and storage polysaccharide degradation. PLoS One 8: e72572. Doi: 10.1371/journal.pone.0072572.
56. Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., Mengiste, T., Zhang, Y., and Zhou, J. M. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7: 290-301.
57. Zuluaga, A. P., Vega-Arreguin, J. C., Fei, Z., Ponnala, L., Lee, S. J., Matas, A. J., Patev, S., Fry, W. E., and Rose, J. K. 2016. Transcriptional dynamics of Phytophthora infestans during sequential stages of hemibiotrophic infection of tomato. Molecular Plant Pathology 17: 29-41.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21185-
dc.description.abstract病原菌與植物的交互作用涉及許多機制,當面對病原菌的侵染,植物的第一線基礎防禦反應稱為pattern-triggered immunity (PTI),藉由細胞表面的pattern recognition receptor (PRR) 辨識pathogen-associated molecular patterns (PAMPs) 或damage-associated molecular patterns (DAMPs),引發一連串基礎防禦反應。疫病菌 (Phytophthora parasitica) 會危害多種重要經濟作物,為重要病原卵菌。OPEL是自疫病菌培養液發現的外泌蛋白,其保守性結構包含thaumatin-like domain, glycine-rich domain及glycoside hydrolase 16 (GH16) domain;先前的研究顯示將OPEL重組蛋白注射於菸草 (Nicotiana tabacum cv. Samsun-NN) 葉片後會造成細胞死亡、癒傷葡聚醣與活性氧分子累積,以及誘導水楊酸相關防禦反應基因表現等典型PTI反應,而且GH16 domain在OPEL所引發的PTI反應扮演關鍵性角色。搜尋NCBI 基因資料庫發現疫病菌共含25筆GH16-containing基因,保守性功能區分析顯示當中之PPTG_16550、PPTG_17496、PPTG_17497及PPTG_17498與OPEL有明顯保守性,很可能為OPEL同源性基因,因此本研究欲探討這些基因在植物基礎防禦反應的角色。即時定量反轉錄聚合酶連鎖反應分析結果顯示這些基因的表現情形並不相同,其中PPTG_17497 及PPTG_17498在疫病菌感染植物後第12小時的表現量顯著提升。上述四個OPEL同源性基因中,惟獨PPTG_16550缺乏thaumatin-like domain,為進一步瞭解該基因的特性,本研究以大腸桿菌表現PPTG_16550重組蛋白,並注射至菸草 (N. tabacum cv. Samsun-NN) 葉片,發現其會引發細胞死亡、活性氧分子產生及癒傷葡聚醣累積,但不會增加系統葉對Tobacco mosaic virus (TMV) 之抗性。這些研究結果顯示疫病菌PPTG_16550具有引發植物基礎防禦反應的活性,其在疫病菌感染植物時的角色仍待進一步探討。zh_TW
dc.description.abstractTo combat invasion by pathogens, plants have developed different defense mechanisms, including pattern-triggered immunity (PTI), which is elicited upon the perception of pathogen-associated molecular patterns (PAMPs) or danger/ damage-associated molecular patterns (DAMPs) by plant pattern recognition receptors (PRRs). Previously, a novel elicitor protein named OPEL was identified in the cultural fluid of Phytophthora parasitica, a notorious pathogen of a wide variety of economically important crop species. It is characterized by the presence of thaumatin-like domain, glycine-rich domain and glycoside hydrolase 16 (GH16) domain. Infiltration of OPEL recombinant protein into the leaves of tobacco (Nicotiana tabacum cv. Samsun-NN) resulted in PTI responses such as cell death, callose deposition, reactive oxygen species (ROS) production, and induced expression of salicylic acid-responsive defense genes, and the GH16 domain is indispensable for OPEL to induce PTI. Search of NCBI databases identified in total 25 GH16-containing genes in the genome of P. parasitica. Conserved sequence analysis showed that PPTG_16550, PPTG_17496, PPTG_17497, and PPTG_17498 are highly conserved with OPEL, thus they are very likely close homologs of OPEL. The purpose of this study is to investigate the role of OPEL homologs in plant basal defense response. Analysis by quantitative reverse transcriptase-PCR showed that all four genes showed different expression patterns. Especially, the expression of PPTG-17497 and PPTG_17498 was significantly induced at 12 hours post pathogen inoculation. Of the four putative OPEL homologs, PPTG_16550 is unique in that it lacks the thaumatin-like domain. To know its role in plant defense, PPTG_16550 recombinant protein was expressed in Escherichia coli, which caused cell death, reactive oxygen species (ROS) production, and callose deposition upon infiltration on the leaves of tobacco. Nevertheless, this protein shows no activity to induce systemic acquired resistance against Tobacco mosaic virus (TMV). These results indicate that PPTG-16550 is an elicitor, which elicits PTI response in tobacco. Its role in the process of plant infection by P. parasitica awaits further investigation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:28:19Z (GMT). No. of bitstreams: 1
ntu-108-R04633016-1.pdf: 6119506 bytes, checksum: a2089b3f89c572a3b788c92120c5114f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 ..... i
中文摘要 ..... ii
英文摘要 ..... iii
目錄 ..... I
壹、 前言 ..... 1
一、 植物的先天性免疫 (plant innate immunity) ..... 1
1. PAMP-triggered imunity (PTI) ..... 2
2. Effector-triggered imunity (ETI) ..... 3
二、 疫病菌Phytophthora parasitica ..... 4
三、 醣苷水解酶在疫病菌的研究 ..... 5
1. XEG1 ..... 6
2. ppxyn1與ppxyn2 ..... .6
研究動機 ..... 8
貳、 材料與方法 ..... 9
一、 供試植株與菌種來源 ..... 9
1. 植物材料與生長條件 ..... 9
2. 菌種來源及培養條件 ..... 9
二、 疫病菌GH16蛋白親緣演化樹及胺基酸序列功能性區域分析 ..... 9
三、 即時定量聚合酶連鎖反應 (Quantitative real time polymerase chain reaction, qPCR) 分析OPEL同源性基因於疫病菌不同生長階段表現情形 ..... 10
1. 疫病菌不同生長階段樣本收集 ..... 10
(1) 菌絲 (mycelia) 樣本收集 ..... 10
(2) 孢囊 (sporangia) 樣本收集 ..... 10
(3) 游走子 (zoospores) 樣本收集 ..... 11
(4) 靜止子 (cysts) 樣本收集 ..... 11
(5) 發芽靜止子 (germinating cysts) 樣本收集 ..... 11
(6) 罹病圓葉菸草葉片樣本收集 ..... 12
2. 總量RNA抽取 ..... 12
3. 製備cDNA ..... 13
4. 即時定量聚合酶連鎖反應 (Quantitative real time polymerase chain reaction, qPCR) ..... 13
四、 農桿菌注入法 (Agroinfiltration) ..... 14
五、 以大腸桿菌表現重組蛋白 ..... 14
1. PPTG_16550 重組蛋白可溶性測試 ..... 15
2. PPTG_16550及OPEL-GH domain重組蛋白表現及純化 ..... 15
3. 膠體過濾法 (Gel filtration) ..... 16
4. 蛋白質定量 ..... 16
六、 植物抗病反應分析 ..... 16
1. 細胞死亡染色 ..... 7
2. 活性氧分子 (Reactive Oxygen Species, ROS) 染色 ..... 17
3. 癒傷葡聚醣堆積分析 (Callose deposition assay) ..... 18
4. Tobacco mosaic virus (TMV) 接種 ..... 18
參、 結果… ..... 20
一、 OPEL同源性基因胺基酸序列功能性區域分析 ..... 20
二、 疫病菌GH16蛋白親緣演化樹及胺基酸序列功能性區域分析 ..... 21
三、 OPEL同源性基因於疫病菌不同生長階段表現情形 ..... 21
四、 以農桿菌注入法於菸草 (N. tabacum cv. Samsun-NN) 葉片短暫表現OPEL同源性基因會引起葉片黃化 ..... 22
五、 重組蛋白的表現及純化 ..... 23
六、 PPTG_16550會導致菸草 (N. tabacum cv. Samsun-NN) 細胞死亡 ..... 24
七、 PPTG_16550會引發菸草 (N. tabacum cv. Samsun-NN) 活性氧分子累積 ..... 24
八、 PPTG_16550會引發菸草 (N. tabacum cv. Samsun-NN) 累積癒傷葡聚醣 ..... 25
九、 PPTG_16550不會引發菸草 (N. tabacum cv. Samsun-NN) 對Tobacco mosaic virus (TMV)的抗性 ..... 25
肆、 討論 ..... 27
一、 疫病菌GH16保守性功能區分析 ..... 27
二、 OPEL同源性基因在疫病菌各個階段表現情形 ..... 28
三、 PPTG_16550會引發菸草PTI,但不會引發系統性抗性 ..... 29
四、 PPTG_16550在疫病菌與菸草交互作用所扮演的角色 ..... 31
五、 結語 ..... 32
伍、 參考文獻 ..... 34
陸、 附表 ..... 41
柒、 附圖 ..... 42
dc.language.isozh-TW
dc.title探討疫病菌OPEL同源性基因在植物基礎防禦反應的角色zh_TW
dc.titleTo investigate the roles of OPEL homologs from Phytophthora parasitica in plant basal defense responseen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張雅君,陳穎練
dc.subject.keyword疫病菌,植物基礎防禦反應,OPEL同源性基因,糖?水解?,zh_TW
dc.subject.keywordglycoside hydrolase (GH),Phytophthora parasitica,pattern-triggered immunity (PTI),OPEL homologs,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201904107
dc.rights.note未授權
dc.date.accepted2019-08-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
5.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved