Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21125
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳怡然
dc.contributor.authorYu-Chen Linen
dc.contributor.author林育辰zh_TW
dc.date.accessioned2021-06-08T03:27:23Z-
dc.date.copyright2020-01-15
dc.date.issued2019
dc.date.submitted2019-12-26
dc.identifier.citation[1] Y. Li, J. Lopez, R. Wu and D. Y. C. Lie, “Design of high efficiency monolithic power amplifier with envelope-tracking and transistor resizing for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2007–2017, Sep. 2012.
[2] D. Kim, D. Kang, J. Choi, J. Kim, Y. Cho, and B. Kim, “Optimization for envelope shaped operation of envelope tracking power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1787–1795, Jul. 2011.
[3] M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “A combined series-parallel hybrid envelope amplifier for envelope tracking mobile terminal RF power amplifier applications,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1185–1198, May 2012.
[4] D. Baba, “Benefits of a multiphase buck converter,” Analog Applications J., Texas Instruments Incorporated, U.S., pp. 8–13,1Q 2012.
[5] J. S. Walling, S. S. Taylor and D. J. Allstot, “A class-G supply modulator and class-E PA in 130 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2339–2347, Sep. 2009.
[6] J. N. Kitchen, C. Chu, S. Kiaei and B. Bakkaloglu,“Combined linear and Δ-modulated switch-mode PA supply modulator for polar transmitters,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 404–413, Feb. 2009.
[7] J. Sankman, M. K. Song, and D. Ma, “Switching-converter-only multiphase envelope modulator with slew rate enhancer for LTE power amplifier applications,” IEEE Trans. on Power Electron., vol. 31, no. 01, pp. 817–826, Jan. 2016.
[8] H. D. Gwon et al., “2-Phase 3-Level ETSM with mismatch-free duty cycles achieving 88.6% peak efficiency for a 20-MHz LTE RF power amplifier,” IEEE Trans. on Power Electron., vol. 33, no. 04, pp. 2815–2819, Apr. 2018.
[9] P. Grade, “High-Efficiency Low Distortion Parallel Amplifier,” U.S. Patent 4516080, May 7, 1985.

[10] F. Wang, A. Ojo, D. Kimball, P. Asbeck and L. Larson, “Envelope tracking power amplifier with pre-distortion linearization for WLAN 802.11g,” in IEEE MTT-S int. Digest, vol.3 PP. 1543–1546, 2004.
[11] H. Martínez and A. Conesa, “Modeling of linear–Aasisted DC–DC converters,” in 18th European Conf. on Circuit Theory and Design, PP. 611–614, 2007.
[12] H. Martínez and A. Conesa, “Linear-assisted DC-DC converter based on CMOS technology,” in IEEE Power Electron. Specialists conf., PP. 3735–3740, 2008.
[13] F. Wang et al., “An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 12, pp. 4086–4099, Dec. 2006.
[14] W. Y. Chu, B. Bakkaloglu and S. Kiaei, “A 10 MHz bandwidth, 2 mV ripple PA regulator for CDMA transmitters,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2809–2819, Dec. 2008.
[15] J. Choi, D. Kang, D. Kim and B. Kim, “Optimized envelope tracking operation of Doherty power amplifier for high efficiency over an extended dynamic range,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 6, pp. 1508–1515, Jun. 2009.
[16] J. Choi, D. Kim, D. Kang, and B. Kim, “A new power management IC architecture for envelope tracking power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1796–1802, Jul. 2011.
[17] Y. Li, J. Lopez, P. H. Wu, W. Hu, R. Wu and D. Y. C. Lie, “A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2525–2535, Oct. 2011.
[18] M. Hassan, L.E. Larson, V.W. Leung, and P.M. Asbeck, “A wideband CMOS/GaAs HBT envelope tracking power amplifier for 4G LTE Mobile terminal applications,” IEEE Trans. Microw. Theory and Techn., vol. 60, no. 5, pp.1321-1330, May 2012.

[19] Y. Li, J. Lopez, R. Wu and D. Y. C. Lie, “A fully monolithic BiCMOS envelope-tracking power amplifier with on-chip transformer for broadband wireless applications,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 288-290, Jun. 2012.
[20] Y. Li, J. Lopez, R. Wu and D. Y. C. Lie, “Design of high efficiency monolithic power amplifier with envelope-tracking and transistor resizing for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2007–2018, Sep. 2012.
[21] Y. Cho, D. Kang, J. Kim, D. Kim, B. Park and B. Kim, “A dual power-mode multi-band power amplifier with envelope tracking for handset applications,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 4, pp.1608-1619, Apr. 2013.
[22] R. Wu et al., “High-efficiency silicon-based envelope-tracking power amplifier design with envelope shaping for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030–2039, Sep. 2013.
[23] D. Kang, B. Park, D. Kim, J. Kim, Y. Cho and B. Kim, “Envelope-tracking CMOS power amplifier module for LTE applications,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 10, pp. 3763-3773, Oct. 2013.
[24] J. L.Woo, S. Park, U. Kim and Y. Kwon, “Dynamic stack-controlled CMOS RF power amplifier for wideband envelope tracking,” IEEE Trans. Microw. Theory and Techn., vol. 62, no. 12, pp. 3452-3462, Dec. 2014.
[25] S. Park, J. L. Woo, U. Kim and Y. Kwon, “Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking,” IEEE Trans. Microw. Theory and Techn., vol. 63, no. 4, pp. 1174-1185, Apr. 2015.
[26] J. Kim et al., “Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier,” IEEE Trans. Circuits Systems I, Reg. Papers, vol. 62, no. 6, pp. 1648–1657, Jun. 2015.
[27] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park and B. Kim, “Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 543–552, Jan. 2013.
[28] D. Kang, D. Kim, J. Choi, J. Kim, Y. Cho and B. Kim, “A multimode/multiband power amplifier with a boosted supply modulator,' IEEE Trans. Microw. Theory Techn., vol. 58, no. 10, pp. 2598–2608, Oct 2010.
[29] J.-S. Paek, Y. Choo, Y.-S. Youn, J. Lee, and T. B. Cho, “Wide battery range supply modulator with reverse current protection in envelope tracking operation,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2017, pp. 1–3.
[30] B. Park et al., “High-performance CMOS power amplifier with improved envelope tracking supply modulator,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 3, pp. 798–809, Mar. 2016.
[31] Y. Jing and B. Bakkaloglu, “A high slew-rate adaptive biasing hybrid envelope tracking supply modulator for LTE applications,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3245–3256, Sep. 2017.
[32] C. Hsia et al., “Digitally assisted dual-switch high-efficiency envelope amplifier for envelope-tracking base-station power amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 11, pp. 2943–2952, Nov. 2011.
[33] D. Kim, D. Kang, J. Kim, Y. Cho, and B. Kim, “Highly efficient dual-switch hybrid switching supply modulator for envelope tracking power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 6, pp. 285-287, 2012.
[34] M. Hassan, P. M. Asbeck, and L. E. Larson, “A CMOS dual-switching power-supply modulator with 8% efficiency improvement for 20MHz LTE envelope tracking RF power amplifiers, ” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 366-367, Feb. 2013.
[35] T. W. Kwak, M.-C. Lee, and G. H. Cho, “A 2W CMOS hybrid switching amplitude modulator for EDGE polar transmitters,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2666–2676, Dec. 2007.
[36] M. Tan and W.-H. Ki, “An efficiency-enhanced hybrid supply modulator with single-capacitor current-integration control,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 533–542, Feb. 2016.
[37] M. Tan and W.-H. Ki, “A 100 MHz hybrid supply modulator with ripple current-based PWM control,” IEEE J. Solid-State Circuits, vol. 52, no. 2, pp. 569–578, Feb. 2017.
[38] P. Riehl, P. Fowers, H.-P. Hong, and M. Ashburn, “An AC- coupled envelope modulator for HSUPA transmitters with 80% modulator efficiency,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2013, pp. 364–365.
[39] Ji-Seon Paek et al., “An 88%-Efficiency supply modulator achieving 1.08μs/V fast transition and 100MHz envelope-tracking bandwidth for 5G new radio RF power amplifier,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2019, pp. 238–240.
[40] P. Y. Wu and P. K. T. Mok, “A two-phase switching hybrid supply modulator for RF power amplifier with 9% efficiency improvement,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2543–2556, Dec. 2010.
[41] S. H. Yang et al., “A single-inductor dual-output converter with linear amplifier-driven cross regulation for prioritized energy-distribution control of envelope-tracking supply modulator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2017 pp. 36–38.
[42] J. Abu-Qahouq, H. Mao, and I. Batarseh, “Multiphase voltage-mode hysteretic controlled DC–DC converter with novel current sharing,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1397–1407, Nov. 2004.
[43] P. Li, P. Hazucha, T. Karnik, and R. Bashirullah, “A delay locked loop synchronization scheme for high frequency multiphase hysteretic DC-DC converter,” IEEE J. Solid-State Circuits, vol. 11, pp. 3131–3145, Nov. 2009.
[44] R. Hogervorst, J.P. Tero, R.G.H. Eschauzier, J.H. Huijsing, “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp.1505-1512, June 1994.
[45] P. E. Allen and D. R. Holberg, “CMOS Analog circuit design 2nd ed.,” NY, Oxford Univ. Press, 2002.
[46] C. F. Lee, and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 3–14, Jan. 2004.
[47] J. Y. Syu, “CMOS supply modulator for envelope tracking power amplifier,” M.S. Thesis, National University, R.O.C (Taiwan), Nov. 2015.
[48] W. Chen, “Comparison of DCR current sense topologies,” Application Note, Richtek Technology Corperation, Hsinchu, R.O.C (Taiwan), PP. 1–14, Oct. 2015. [Online]. Available:_https://www.richtek.com/Design%20Support/Technical%20Document/AN037?sc_lang=zh-EN
[49] P. Lethellier, “Method and apparatus for sensing output inductor current in a DC-to-DC power converter”, US patent 6,441,597, Aug. 2002.
[50] Chang, C., “Combined lossless current sensing for current mode control,” IEEE 2004 Applied Power Electron. Conf. and Exposition, pp. 404–410, Sep. 2004
[51] B. Razavi, “Design of analog CMOS integrated circuits,” Boston, McGraw-Hill Inc., 2001.
[52] C. Yoo, “A CMOS buffer without short-circuit power consumption,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 935–937, Sep. 2000.
[53] “SKY66184-11: 2110 to 2170 MHz linear power amplifier,” Data Sheet, Skyworks Solutions, Inc, PP 1-14, U.S., Sep. 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21125-
dc.description.abstract近年來,可攜式電子產品,諸如:智慧型手機,平板電腦等已相當普及,隨著無線多媒體影音與通訊軟體的蓬勃發展,使用者對這些可攜式裝置的使用需求日益增加,電力需求也隨之提高,而這些裝置都賴以電池做為供電來源,因此,電池續航力便成為可攜式產品供應市場與消費者們都相當在意的一項規格。
無線通訊系統中,例如:寬頻分碼多工(WCDMA)、長期演進技術(LTE)以及未來的新無線電(NR),射頻功率放大器為主要的功率消耗來源之一,且相較於過去行動通訊世代,第四代(4G)、第五代(5G)行動通訊技術的射頻功率放大器功率消耗又更加嚴重,因此,如何有效提升射頻功率放大器的效率是現今通訊技術中極為重要的一個議題。
封包追蹤(Envelope Tracking, ET)技術是近年來最廣為人知提升射頻功率放大器效率的方法之一,不同於傳統給予固定的供應電源,封包追蹤技術依據射頻訊號的封包變化情形,動態且適當地提供電壓予射頻功率放大器作為電源使用,此技術將有效提升射頻功率放大器的效率,進而提升可攜式裝置整體的效率,而能夠提供該動態電壓的電路稱為電源供應調變器(Supply Modulator, SM),本論文目的旨在提出可靠且高效能的電源供應調變器。
本論文設計的電源供應調變器架構是依據過去文獻中最廣為使用的線性與切換混合式電源供應調變器作為基底,並提出三大機制加入其中。其一是功率分配技術,本論文藉由適當功率分配,由切換頻率較高的切換式轉換器(效率相對低者)負責較少的功率,切換頻率較低的切換式轉換器(效率較高者)負責較多的功率,再由效率最差但響應能力最好的線性放大器負責功率佔比最低的高頻訊號成分,此分配可使整體效率提升;其二是遲滯雙相位控制技術,該技術具有比傳統架構更佳的迴轉率(Slew Rate)、較快的響應能力、低開關損失以及較小的電流漣波等優點,並且克服過去文獻中電壓轉換率有所限制的窘境;而第三個技術是迴轉率提升電路,可於切換級之迴轉率不足時迅速補充電流以降低線性級之電流漣波。
本論文使用0.25微米互補式金屬氧化物半導體(CMOS)製程實現,晶片面積為1.95×1.49 mm2。追蹤的訊號20/40 MHz LTE及40MHz 5G NR之封包,可操作的輸出電壓範圍為0.5 ~4 V,於輸入20 MHz LTE訊號時,電源供應調變器效率可達到的80.65 %,連接功率放大器量測後,封包追蹤功率放大器之整體系統(Eff.)最多可提升2.95 %,於輸入40 MHz LTE訊號時,效率可達78.92 %,連接功率放大器量測後,封包追蹤功率放大器之整體系統效率最多可提升3.01 %,而輸入40 MHz 5G NR訊號時,效率可達79.13 %,連接功率放大器量測後,封包追蹤功率放大器之整體系統效率最多可提升3.12 %。
zh_TW
dc.description.abstractNowadays, handheld devices such as smartphone and tablet have been very popular. As the development of multimedia and communication Apps, people use their handheld devices more frequently. Hence consumers are more concerned about the battery life.
The power loss of RF PA accounts for a great proportion of total power consumption of communication system. Moreover, compared to previous communication generations, power consumption of RF PA for fourth generation and fifth generation on handheld devices increases dramatically. Therefore, it is urgent to improve the efficiency of RF PA.
Envelope tracking is one of the most widely known techniques to improve the efficiency of RF PAs. Instead of using a fixed supply voltage, the envelope tracking technique uses the supply modulator to provide the supply voltage dynamically according to the envelope of RF signals. The supply modulator is a circuit whose output node is designed to track a wideband signal envelope with high efficiency. This thesis presents a robust and high performance supply modulator.
The prototype of the supply modulator proposed by this thesis is the hybrid supply modulator which combines the high efficiency advantage of a switching converter with the fast response advantage of a linear regulator. Three mechanisms are proposed to further optimize the conventional hybrid supply modulator. First is the power distribution technique, developed to increase the efficiency by properly arrange the power provided from every component of the supply modulator. Second is the hysteretic two-phase controlled technique, utilized to cancel current ripple, improve slew rate, and enhance the ability of high frequency response. Third is the slew rate (SR) enhancement circuit, which is adopted to decrease current ripple of linear stage when slew rate of switching stage is insufficient.
The chip is fabricated in a 0.25 μm CMOS process, and its size is 1.94×1.49 mm2. The test signals are 20/40 MHz LTE envelope. The output voltage range is 0.5 ~4 V. When LTE 20 MHz 64 QAM signal is applied, the efficiency of the proposed supply modulator achieves 80.65 %, the overall efficiency of ETPA system can improve 2.95 %, when the LTE 40 MHz 64 QAM signal is applied, the peak efficiency of the proposed supply modulator is 78.92 % and the overall efficiency of ETPA system can increase by 3.01 %. In 5G NR measurement, when 5G NR 40 MHz 256 QAM signal is applied, the efficiency of the proposed supply modulator achieves 79.13 % and the overall efficiency of ETPA system can improve 3.12 %.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:27:23Z (GMT). No. of bitstreams: 1
ntu-108-R05943118-1.pdf: 12367571 bytes, checksum: 8f1191e0812299737b08d55dddbcda30 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝………………………………………………………………………………………..…I
中文摘要…………………………………………………………………………..........II
ABSTRACT…………………………………………………………………………………IV
目錄…………………………………………………………………………………..…….VI
圖目錄……………………………………………………………………………….…….IX
表格目錄……………………………………………………………………….…...XVIII
Chapter 1 緒論……………………………………………………………………….1
1.1 研究背景與動機…………………………………………………………………1
1.2 論文架構…………………………………………………………………………….5
Chapter 2 電源供應調變器相關技術與文獻回顧…………………..7
2.1 傳統直流電壓轉換器架構簡介………………………………………….7
2.1.1 線性調節器(Linear Regulator)………………………………………….7
2.1.2 切換式轉換器(Switching Converter)………………………………..9
2.1.3 架構比較………………………………………………………………………..10
2.2 線性與切換混合式轉換器基本架構介紹…………………………11
2.2.1 概論………………………………………………………………………………..11
2.2.2 線性與切換混合式轉換器……………………………………………..12
2.3 雙相位切換式轉換器………………………………………………………..16
2.4 文獻回顧……………………………………………………………………………19
2.4.1 線性調節器…………………………………………………………………….20
2.4.2 切換式轉換器…………………………………………………………………21
2.4.3 混合式轉換器…………………………………………………………………23
2.4.4 遲滯雙相位控制切換式轉換器……………………………………..40
2.5 各文獻所提電源供應調變器之比較表…………………………….44
Chapter 3 電路規格與所提電源供應調變器之架構……………..48
3.1 性能與規格……………………………………………………………………….48
3.2 效率分析與整理……………………………………………………………….50
3.3 功率分配機制、遲滯雙相位控制與迴轉率提升之介紹….53
3.3.1 功率分配機制(Power Distribution Mechanism, PDM)…… 54
3.3.2 遲滯雙相位控制法………………………………………………………..57
3.3.3 迴轉率提升(Slew Rate Enhancement)…………………………...61
3.4 電流迴路之頻率響應分析………………………………………………..62
Chapter 4 電源供應調變器之電路軟體設計與模擬……………..67
4.1 系統架構簡介…………………………………………………………………..67
4.2 線性級(Linear Stage)…………………………………………………………68
4.2.1 線性放大器(Linear Amplifier)………………………………………..68
4.2.2 電流偵測電路 (Current Sensor)……………………………………74
4.3 快速切換級(Fast Switching Stage)……………………………………76
4.3.1 遲滯比較器(Hysteresis Comparator)…………………………….76
4.3.2 切換級之電流偵測電路……………………………………………….79
4.3.3 遲滯雙相位控制器……………………………………………………….83
4.4 慢速切換級(Slow Switching stage)…………………………………..88
4.4.1 補償電路(Compensator)……………………………………………….88
4.4.2 運算放大器(Operational Amplifier)……………………………….89
4.4.3 三角波產生器(Triangle Wave Generator)………………………92
4.4.4 脈波寬度調變電路(Pulse Width Modulation, PWM)…….94
4.5 迴轉率提升(Slew Rate Enhancement)電路………………………96
4.6 其它子電路…………………………………………………………………….100
4.6.1 能隙參考電路(Bandgap Reference)……………………………..100
4.6.2 電流位階控制電路(Current Level Control)…………………..105
4.6.3 驅動級電路(Driving Stage)…………………………………………..106
4.7 整體電路模擬結果…………………………………………………………110
Chapter 5 佈局及量測結果………………………………………………..128
5.1 晶片佈局………………………………………………………………………..128
5.2 印刷電路板設計…………………………………………………………….130
5.3 量測環境設定………………………………………………………………..133
5.4 量測結果與討論…………………………………………………………….137
5.4.1 量測結果………………………………………………………….………….137
5.4.2 量測結果討論及綜合比較…………………………………….…….151
Chapter 6 結論…………………………………………………………….……...154
參考文獻……………………………………………………………………….……...156
附錄A……………………………………………………………………………..….…162
附錄B…………………………………………………………………………….…..…163
附錄C…………………………………………………………………………….……..164
dc.language.isozh-TW
dc.subject切換式轉換器zh_TW
dc.subject封包追蹤zh_TW
dc.subject電源供應調變器zh_TW
dc.subject功率放大器zh_TW
dc.subject線性調節器zh_TW
dc.subject混合式轉換器zh_TW
dc.subject遲滯控制zh_TW
dc.subject雙相位控制zh_TW
dc.subjectSwitching converteren
dc.subjectEnvelope trackingen
dc.subjectSupply modulatoren
dc.subjectPower amplifieren
dc.subjectTwo-phase controlen
dc.subjectHysteretic controlen
dc.subjectHybrid converteren
dc.subjectLinear regulatoren
dc.title應用於5G NR 40 MHz封包追蹤技術之CMOS電源供應調變器zh_TW
dc.titleA CMOS Supply Modulator for 5G NR 40 MHz Envelope Tracking Techniqueen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育賢,劉邦榮
dc.subject.keyword封包追蹤,電源供應調變器,功率放大器,切換式轉換器,線性調節器,混合式轉換器,遲滯控制,雙相位控制,zh_TW
dc.subject.keywordEnvelope tracking,Supply modulator,Power amplifier,Switching converter,Linear regulator,Hybrid converter,Hysteretic control,Two-phase control,en
dc.relation.page164
dc.identifier.doi10.6342/NTU201904439
dc.rights.note未授權
dc.date.accepted2019-12-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
12.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved