Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorTien-Lin Shenen
dc.contributor.author沈天琳zh_TW
dc.date.accessioned2021-06-08T03:27:19Z-
dc.date.copyright2020-02-04
dc.date.issued2020
dc.date.submitted2019-12-31
dc.identifier.citation1. G. Bill, O. John, Road Ahead. (HighBridge Company, 1995), pp. 288.
2. http://www.icinsights.com/services/osd-report/report-contents/, in O-S-D Report.
(IC Insights, 2019).
3. J. Fukang, T. Yu-Chong, K. Walsh, T. Tsao, L. Gwo-Bin, H. Chih-Ming, in
Proceedings IEEE The Tenth Annual International Workshop on Micro Electro
Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators,
Machines and Robots. (1997), pp. 465-470.
4. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R.
Sarpeshkar, H. E. Katz, W. Li, Large-scale complementary integrated circuits
based on organic transistors. Nature 403, 521-523 (2000).
5. V. J. Lumelsky, M. S. Shur, S. Wagner, Sensitive Skin. IEEE Sens. J. 1, 41-51
(2001).
6. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y.
Huang, Z. J. Liu, C. Lu, J. A. Rogers, Stretchable and foldable silicon integrated
circuits. Science 320, 507-511 (2008).
7. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M.
Takamiya, T. Sakurai, T. Someya, Organic Nonvolatile Memory Transistors for
Flexible Sensor Arrays. Science 326, 1516-1519 (2009).
8. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya,
Stretchable active-matrix organic light-emitting diode display using printable
elastic conductors. Nat. Mater. 8, 494-499 (2009).
9. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S.
Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high
flexibility. Nat. Commun. 3, 770 (2012).
10. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, 25th
Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History,
Design Considerations, and Recent Progress. Adv. Mater. 25, 5997-6037 (2013).
11. K. C. Xu, Y. Y. Lu, K. Takei, Multifunctional Skin-Inspired Flexible Sensor
Systems for Wearable Electronics. Adv. Mater. Technol. 4, 1800628 (2019).
12. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. N. Bao, S. Park, Electronic Skin:
Recent Progress and Future Prospects for Skin-Attachable Devices for Health
Monitoring, Robotics, and Prosthetics. Adv. Mater., 1904765 (2019).
13. D. D. Chen, D. R. Wang, Y. Yang, Q. Y. Huang, S. J. Zhu, Z. J. Zheng, Self-
Healing Materials for Next-Generation Energy Harvesting and Storage Devices.
Adv. Energy Mater. 7, 1700890 (2017).
14. B. J. Blaiszik, S. L. B. Kramer, M. E. Grady, D. A. McIlroy, J. S. Moore, N. R.
Sottos, S. R. White, Autonomic Restoration of Electrical Conductivity. Adv. Mater.
24, 398-401 (2012).
15. S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H.
Leonard, S. R. White, N. R. Sottos, J. S. Moore, Restoration of Conductivity with
TTF-TCNQ Charge-Transfer Salts. Adv. Funct. Mater. 20, 1721-1727 (2010).
16. S. Kang, A. R. Jones, J. S. Moore, S. R. White, N. R. Sottos, Microencapsulated
Carbon Black Suspensions for Restoration of Electrical Conductivity. Adv. Funct.
Mater. 24, 2947-2956 (2014).
17. J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. J. N. Wang, B.
C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. X. Zhu, X. D. Gu,
W. G. Bae, Y. Kim, L. H. Jin, J. W. Chung, J. B. H. Tok, Z. N. Bao, Intrinsically
stretchable and healable semiconducting polymer for organic transistors. Nature
539, 411-415 (2016).
18. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and
thermoreversible rubber from supramolecular assembly. Nature 451, 977-980
(2008).
19. B. C. K. Tee, C. Wang, R. Allen, Z. N. Bao, An electrically and mechanically selfhealing
composite with pressure- and flexion-sensitive properties for electronic
skin applications. Nat. Nanotechnol. 7, 825-832 (2012).
20. Q. H. Zhang, S. M. Niu, L. Wang, J. Lopez, S. C. Chen, Y. F. Cai, R. C. Du, Y. X.
Liu, J. C. Lai, L. Liu, C. H. Li, X. Z. Yan, C. G. Liu, J. B. H. Tok, X. D. Jia, Z. A.
Bao, An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic
Dual Crosslinked Chemical System. Adv. Mater. 30, 1801435 (2018).
21. S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F.
Harris, W. Hayes, M. E. Mackay, S. J. Rowan, A self-repairing, supramolecular
polymer system: healability as a consequence of donor-acceptor pi-pi stacking
interactions. Chem. Comm., 6717-6719 (2009).
22. S. Burattini, B. W. Greenland, W. Hayes, M. E. Mackay, S. J. Rowan, H. M.
Colquhoun, A Supramolecular Polymer Based on Tweezer-Type pi-pi Stacking
Interactions: Molecular Design for Healability and Enhanced Toughness. Chem.
Mater. 23, 6-8 (2011).
23. Y. L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y. C. Chiu, V. Feig, J. Xu, T.
Kurosawa, X. D. Gu, C. Wang, M. Q. He, J. W. Chung, Z. N. Bao, Stretchable
Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand
Coordination. J. Am. Chem. Soc. 138, 6020-6027 (2016).
24. C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F.
Lissel, C. Linder, X. Z. You, Z. A. Bao, A highly stretchable autonomous selfhealing
elastomer. Nat. Chem. 8, 619-625 (2016).
25. S. M. Kim, H. Jeon, S. H. Shin, S. A. Park, J. Jegal, S. Y. Hwang, D. X. Oh, J.
Park, Superior Toughness and Fast Self-Healing at Room Temperature Engineered
by Transparent Elastomers. Adv. Mater. 30, 1705145 (2018).
26. F. R. Fan, Z. Q. Tian, Z. L. Wang, Flexible triboelectric generator! Nano Energy
1, 328-334 (2012).
27. H. Y. Zhou, P. Liu, High Seebeck Coefficient Electrochemical Thermocells for
Efficient Waste Heat Recovery. ACS Appl. Energ. Mater. 1, 1424-1428 (2018).
28. P. H. Yang, K. Liu, Q. Chen, X. B. Mo, Y. S. Zhou, S. Li, G. Feng, J. Zhou,
Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat.
Angewandte Chemie-International Edition 55, 12050-12053 (2016).
29. M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Thermo-electrochemical cells for
waste heat harvesting - progress and perspectives. Chem. Comm. 53, 6288-6302
(2017).
30. D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, Z. N. Bao, Stretchable Organic
Solar Cells. Adv. Mater. 23, 1771-1175 (2011).
31. S. A. Han, J. Lee, J. J. Lin, S. W. Kim, J. H. Kim, Piezo/triboelectric
nanogenerators based on 2-dimensional layered structure materials. Nano Energy
57, 680-691 (2019).
32. H. S. Chen, H. P. A. van den Boom, E. Tangdiongga, T. Koonen, 30-Gb/s
Bidirectional Transparent Optical Transmission With an MMF Access and an
Indoor Optical Wireless Link. IEEE Photonic. Tech. L. 24, 572-574 (2012).
33. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Y. Xu, J. L. Cheng, Emerging Optical
Wireless Communications-Advances and Challenges. IEEE J. Sel. Areas Commun.
33, 1738-1749 (2015).
34. F. E. Goodwin, A review of operational laser communication systems. Proc. IEEE
58, 1746-1752 (1970).
35. A. K. Majumdar, Free-space laser communication performance in the atmospheric
channel. J. Opt. Fiber. Comm. Rep. 2, 345-396 (2006).
36. M. A. Khalighi, M. Uysal, Survey on Free Space Optical Communication: A
Communication Theory Perspective. IEEE Commun. Surv. Tutor. 16, 2231-2258
(2014).
37. T. Edvinsson, Optical quantum confinement and photocatalytic properties in two-,
one- and zero-dimensional nanostructures. Royal Soc. Open Sci. 5, 180387 (2018).
38. L. Brus, Electronic Wave-Functions in Semiconductor Clusters - Experiment and
Theory. J. Phys. Chem. 90, 2555-2560 (1986).
39. F. T. Rabouw, C. D. Donega, Excited-State Dynamics in Colloidal Semiconductor
Nanocrystals. Topics Curr. Chem. 374, 1-30 (2016).
40. W. Z. Wu, Z. L. Wang, Piezotronics and piezo-phototronics for adaptive
electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016).
41. Z. L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezophototronics.
Nano Today 5, 540-552 (2010).
42. S. I. Hayashi, A. Imamura, A Study of the Polarization Reversal in
Poly(Vinylidene Fluoride) Using Molecular-Orbital Calculations. J. Polym. Sci.
Pol. Phys. 30, 769-773 (1992).
43. R. S. Dahiya, M. Valle, L. Lorenzelli, SPICE Model for Lossy Piezoelectric
Polymers (vol 56, pg 387, 2009). IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 56, 1288-1288 (2009).
44. G. D. Zhu, Z. G. Zeng, L. Zhang, X. J. Yan, Piezoelectricity in beta-phase PVDF
crystals: A molecular simulation study. Comput. Mater. Sci. 44, 224-229 (2008).
45. T. Forster, *Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys.
2, 55-75 (1948).
46. E. A. Jares-Erijman, T. M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387-1395
(2003).
47. D. Wiersma, Laser physics - The smallest random laser. Nature 406, 132 (2000).
48. F. Luan, B. B. Gu, A. S. L. Gomes, K. T. Yong, S. C. Wen, P. N. Prasad, Lasing in
nanocomposite random media. Nano Today 10, 168-192 (2015).
49. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, Random
laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278-2281 (1999).
50. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, R. P. H. Chang, Random
lasing in closely packed resonant scatterers. J. Opt. Soc. Am. B 21, 159-167 (2004).
51. R. Sapienza, Determining random lasing action. Nat. Rev. Phys. 1, 690-695 (2019).
52. C. Bahr, B. Schulz, in Liquid Crystals with Nano and Microparticles. pp. 295-320.
53. A. McClelland, M. Mankin, in Optical Measurements for Scientists and Engineers:
A Practical Guide. (Cambridge University Press, Cambridge, 2018), pp. 110-188.
54. S. Gong, W. Schwalb, Y. W. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. L.
Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold
nanowires. Nat. Commun. 5, 3132 (2014).
55. X. D. Wang, H. L. Zhang, R. M. Yu, L. Dong, D. F. Peng, A. H. Zhang, Y. Zhang,
H. Liu, C. F. Pan, Z. L. Wang, Dynamic Pressure Mapping of Personalized
Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence
Process. Adv. Mater. 27, 2324-2331 (2015).
56. C. M. Boutry, A. Nguyen, Q. O. Lawal, A. Chortos, S. Rondeau-Gagne, Z. N. Bao,
A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular
Monitoring. Adv. Mater. 27, 6954 (2015).
57. X. Z. Jiang, Y. J. Sun, Z. Y. Fan, T. Y. Zhang, Integrated Flexible, Waterproof,
Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano 10, 7696-7704
(2016).
58. Z. N. Bao, X. D. Chen, Flexible and Stretchable Devices. Adv. Mater. 28, 4177-
4179 (2016).
59. Y. Q. Zhan, Y. F. Mei, L. R. Zheng, Materials capability and device performance
in flexible electronics for the Internet of Things. J. Mater. Chem. C 2, 1220-1232
(2014).
60. C. F. Lin, T. Y. Tsai, K. Y. Chen, P. C. Shen, Efficient warm-white lighting using
rare-earth-element-free fluorescent materials for saving energy, environment
protection and human health. RSC Adv. 6, 111959-111965 (2016).
61. Z. Li, Z. L. Wang, Air/Liquid-pressure and heartbeat-driven flexible fiber
nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater.
23, 84-89 (2011).
62. L. J. Pan, A. Chortos, G. H. Yu, Y. Q. Wang, S. Isaacson, R. Allen, Y. Shi, R.
Dauskardt, Z. N. Bao, An ultra-sensitive resistive pressure sensor based on
hollow-sphere microstructure induced elasticity in conducting polymer film. Nat.
Commun. 5, 3002 (2014).
63. C. Dagdeviren, Y. W. Su, P. Joe, R. Yona, Y. H. Liu, Y. S. Kim, Y. A. Huang, A. R.
Damadoran, J. Xia, L. W. Martin, Y. G. Huang, J. A. Rogers, Conformable
amplified lead zirconate titanate sensors with enhanced piezoelectric response for
cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014).
64. J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Fingertip skin-inspired microstructured
ferroelectric skins discriminate static/dynamic pressure and temperature stimuli.
Sci. Adv. 1, e1500661 (2015).
65. J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, H. Ko, Giant
Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome
Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano 8, 4689-
4697 (2014).
66. C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H.
Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, U. I. Chung, Highly
Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric
Composite on a Micropyramid Array. Adv. Mater. 26, 3451-3458 (2014).
67. G. Schwartz, B. C. K. Tee, J. G. Mei, A. L. Appleton, D. H. Kim, H. L. Wang, Z.
N. Bao, Flexible polymer transistors with high pressure sensitivity for application
in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013).
68. S. S. a. G. Muthu, Miguel Angel, Green fashion. (Springer, 2016).
69. C. Pang, G. Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, K. Y. Suh, A
flexible and highly sensitive strain-gauge sensor using reversible interlocking of
nanofibres. Nat. Mater. 11, 795-801 (2012).
70. T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Flexible organic transistors
and circuits with extreme bending stability. Nat. Mater. 9, 1015-1022 (2010).
71. T. Sekitani, T. Someya, Stretchable, Large-area Organic Electronics. Adv. Mater.
22, 2228-2246 (2010).
72. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M.
Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, An ultralightweight
design for imperceptible plastic electronics. Nature 499, 458 (2013).
73. C. F. Huang, C. Y. Chen, C. F. Lu, C. C. Yang, Reduced injection current induced
blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained
growth. Appl. Phys. Lett. 91, 051121 (2007).
74. C. H. Du, C. Y. Jiang, P. Zuo, X. Huang, X. Pu, Z. F. Zhao, Y. L. Zhou, L. X. Li,
H. Chen, W. G. Hu, Z. L. Wang, Piezo-Phototronic Effect Controlled Dual-
Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum
Well Nanopillars. Small 11, 6071-6077 (2015).
75. C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Sensing as a service
model for smart cities supported by Internet of Things. T. Emerg. Telecommun. T.
25, 81-93 (2014).
76. C. T. Chen, W. Y. Lee, T. L. Shen, H. C. Wu, C. C. Shih, B. W. Ye, T. Y. Lin, W.
C. Chen, Y. F. Chen, Highly Reliable and Sensitive Tactile Transistor Memory.
Adv. Electron. Mater. 3, 1600548 (2017).
77. Y. C. Lai, B. W. Ye, C. F. Lu, C. T. Chen, M. H. Jao, W. F. Su, W. Y. Hung, T. Y.
Lin, Y. F. Chen, Extraordinarily Sensitive and Low-Voltage Operational Cloth-
Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses:
A Tactile-Induced Insulating-to-Conducting Transition. Adv. Funct. Mater. 26,
1286-1295 (2016).
78. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze,
Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN
quantum wells produces a large increase in the light emission efficiency. Phys.
Rev. Lett. 95, 127402 (2005).
79. M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Tailored
emission color synthesis using microfacet quantum wells consisting of nitride
semiconductors without phosphors. Appl. Phys. Lett. 88, 261920 (2006).
80. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, A. Hangleiter, Reduction of
oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells.
Phys. Rev. B 57, R9435-R9438 (1998).
81. A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, F. Scholz, The role of
piezoelectric fields in GaN-based quantum wells. MRS Internet J. Nitride
Semicond. Res. 3, e15 (1998).
82. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi,
Y. Yang, T. L. Ren, A Graphene-Based Resistive Pressure Sensor with Record-
High Sensitivity in a Wide Pressure Range. Sci. Rep. 5, 8603 (2015).
83. K. H. Kim, S. K. Hong, N. S. Jang, S. H. Ha, H. W. Lee, J. M. Kim, Wearable
Resistive Pressure Sensor Based on Highly Flexible Carbon Composite
Conductors with Irregular Surface Morphology. ACS Appl. Mater. Interfaces 9,
17500-17508 (2017).
84. S. Chen, Y. J. Song, F. Xu, Flexible and Highly Sensitive Resistive Pressure
Sensor Based on Carbonized Crepe Paper with Corrugated Structure. ACS Appl.
Mater. Interfaces 10, 34646-34654 (2018).
85. W. J. Liu, N. S. Liu, Y. Yue, J. Y. Rao, F. Cheng, J. Su, Z. T. Liu, Y. H. Gao,
Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl
Alcohol Nanowires/Wrinkled Graphene Film. Small 14, 1704149 (2018).
86. H. Chang, S. Kim, S. Jin, S. W. Lee, G. T. Yang, K. Y. Lee, H. Yi, Ultrasensitive
and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated
Interfacial Layers for Wearable Health-Monitoring and Human-Machine
Interfaces. ACS Appl. Mater. Interfaces 10, 1067-1076 (2018).
87. L. Z. Sheng, Y. Liang, L. L. Jiang, Q. Wang, T. Wei, L. T. Qu, Z. J. Fan, Bubble-
Decorated Honeycomb-Like Graphene Film as Ultrahigh Sensitivity Pressure
Sensors. Adv. Funct. Mater. 25, 6545-6551 (2015).
88. H. Kim, S. W. Lee, H. Joh, M. Seong, W. S. Lee, M. S. Kang, J. B. Pyo, S. J. Oh,
Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver
Nanocrystals for Highly Sensitive Wearable Pressure Sensors. ACS Appl. Mater.
Interfaces 10, 1389-1398 (2018).
89. S. Cai, X. J. Xu, W. Yang, J. X. Chen, X. S. Fang, Materials and Designs for
Wearable Photodetectors. Adv. Mater. 31, 1808138 (2019).
90. H. J. Fang, C. Zheng, L. L. Wu, Y. Li, J. Cai, M. X. Hu, X. S. Fang, R. Ma, Q.
Wang, H. Wang, Solution-Processed Self-Powered Transparent Ultraviolet
Photodetectors with Ultrafast Response Speed for High-Performance
Communication System. Adv. Funct. Mater. 29, 1809013 (2019).
91. S. H. Wang, L. Lin, Z. L. Wang, Triboelectric nanogenerators as self-powered
active sensors. Nano Energy 11, 436-462 (2015).
92. L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey. Comput. Netw.
54, 2787-2805 (2010).
93. X. J. Xu, J. X. Chen, S. Cai, Z. H. Long, Y. Zhang, L. X. Su, S. S. He, C. Q. Tang,
P. Liu, H. S. Peng, X. S. Fang, A Real-Time Wearable UV-Radiation Monitor
based on a High-Performance p-CuZnS/n-TiO2 Photodetector. Adv. Mater. 30,
1803165 (2018).
94. B. J. Shi, Z. Li, Y. B. Fan, Implantable Energy-Harvesting Devices. Adv. Mater.
30, 1801511 (2018).
95. Z. X. Liu, H. F. Li, M. S. Zhu, Y. Huang, Z. J. Tang, Z. X. Pei, Z. F. Wang, Z. C.
Shi, J. Liu, Y. Huang, C. Y. Zhi, Towards wearable electronic devices: A quasisolid-
state aqueous lithium-ion battery with outstanding stability, flexibility,
safety and breathability. Nano Energy 44, 164-173 (2018).
96. T. Lv, M. X. Liu, D. Z. Zhu, L. H. Gan, T. Chen, Nanocarbon-Based Materials for
Flexible All-Solid-State Supercapacitors. Adv. Mater. 30, 1705489 (2018).
97. L. Yao, Q. Wu, P. X. Zhang, J. M. Zhang, D. R. Wang, Y. L. Li, X. Z. Ren, H. W.
Mi, L. B. Deng, Z. J. Zheng, Scalable 2D Hierarchical Porous Carbon Nanosheets
for Flexible Supercapacitors with Ultrahigh Energy Density. Adv. Mater. 30,
1706054 (2018).
98. L. X. Su, W. Yang, J. Cai, H. Y. Chen, X. S. Fang, Self-Powered Ultraviolet
Photodetectors Driven by Built-In Electric Field. Small 13, 1701687 (2017).
99. Z. L. Wang, Self-Powered Nanosensors and Nanosystems. Adv. Mater. 24, 280-
285 (2012).
100. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. Mckenna, H. P. Baden, A. J.
Halperin, J. Ponten, A Role for Sunlight in Skin-Cancer - Uv-Induced P53
Mutations in Squamous-Cell Carcinoma. Proc. Natl. Acad. Sci. U.S.A. 88, 10124-
10128 (1991).
101. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C.
Xie, F. X. Liang, L. B. Luo, Monolayer Graphene/Germanium Schottky Junction
As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater.
Inter. 5, 9362-9366 (2013).
102. L. H. Zeng, Q. M. Chen, Z. X. Zhang, D. Wu, H. Y. Yuan, Y. Y. Li, W. Qarony, S.
P. Lau, L. B. Luo, Y. H. Tsang, Multilayered PdSe2/Perovskite Schottky Junction
for Fast, Self-Powered, Polarization-Sensitive, Broadband Photodetectors, and
Image Sensor Application. Adv. Sci. 6, 1901134 (2019).
103. Y. Ning, Z. M. Zhang, F. Teng, X. S. Fang, Novel Transparent and Self-Powered
UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small
14, 1703754 (2018).
104. Y. J. Lu, C. X. Shan, M. M. Jiang, G. C. Hu, N. Zhang, S. P. Wang, B. H. Lia, D.
Z. Shen, Random lasing realized in n-ZnO/p-MgZnO core-shell nanowire
heterostructures. CrystEngComm 17, 3917-3922 (2015).
105. W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo,
Graphene-beta-Ga2O3 Heterojunction for Highly Sensitive Deep UV
Photodetector Application. Adv. Mater. 28, 10725-10731 (2016).
106. B. Zhao, F. Wang, H. Y. Chen, L. X. Zheng, L. X. Su, D. X. Zhao, X. S. Fang, An
Ultrahigh Responsivity (9.7 mA W-1) Self-Powered Solar-Blind Photodetector
Based on Individual ZnO-Ga2O3 Heterostructures. Adv. Funct. Mater. 27,
1700264 (2017).
107. C. C. Wu, B. W. Du, W. Luo, Y. Liu, T. Y. Li, D. Wang, X. Guo, H. Ting, Z. Fang,
S. F. Wang, Z. J. Chen, Y. X. Chen, L. X. Xiao, Highly Efficient and Stable Self-
Powered Ultraviolet and Deep-Blue Photodetector Based on Cs2AgBiBr6/SnO2
Heterojunction. Adv. Opt. Mater. 6, 1800811 (2018).
108. T. Cossuet, J. Resende, L. Rapenne, O. Chaix-Pluchery, C. Jimenez, G. Renou, A.
J. Pearson, R. L. Z. Hoye, D. Blanc-Pelissier, N. D. Nguyen, E. Appert, D. Munoz-
Rojas, V. Consonni, J. L. Deschanvres, ZnO/CuCrO2 Core-Shell Nanowire
Heterostructures for Self-Powered UV Photodetectors with Fast Response. Adv.
Funct. Mater. 28, 1803142 (2018).
109. J. Cai, X. J. Xu, L. X. Su, W. Yang, H. Y. Chen, Y. Zhang, X. S. Fang, Self-
Powered n-SnO2/p-CuZnS Core-Shell Microwire UV Photodetector with
Optimized Performance. Adv. Opt. Mater. 6, 1800213 (2018).
110. H. Z. Zhang, X. Dai, N. Guan, A. Messanvi, V. Neplokh, V. Piazza, M. Vallo, C.
Bougerol, F. H. Julien, A. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M.
Foldyna, E. Gautier, C. Durand, J. Eymery, M. Tchernycheva, Flexible
Photodiodes Based on Nitride Core/Shell p-n Junction Nanowires. ACS Appl.
Mater. Inter. 8, 26198-26206 (2016).
111. Y. W. Shen, X. Q. Yan, H. N. Si, P. Lin, Y. C. Liu, Y. H. Sun, Y. Zhang, Improved
Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD
Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect. ACS Appl.
Mater. Inter. 8, 6137-6143 (2016).
112. W. B. Peng, X. F. Wang, R. M. Yu, Y. J. Dai, H. Y. Zou, A. C. Wang, Y. N. He, Z.
L. Wang, Enhanced Performance of a Self-Powered Organic/Inorganic
Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects. Adv. Mater. 29,
1606698 (2017).
113. M. Z. Peng, Y. D. Liu, A. F. Yu, Y. Zhang, C. H. Liu, J. Y. Liu, W. Wu, K. Zhang,
X. Q. Shi, J. Z. Kou, J. Y. Zhai, Z. L. Wang, Flexible Self-Powered GaN
Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio.
ACS Nano 10, 1572-1579 (2016).
114. Y. B. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y.
Yang, J. S. Huang, Efficiency enhancement in organic solar cells with ferroelectric
polymers. Nat. Mater. 10, 296-302 (2011).
115. X. Chen, X. Han, Q. D. Shen, PVDF-Based Ferroelectric Polymers in Modern
Flexible Electronics. Adv. Electron. Mater. 3, 1600460 (2017).
116. M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies,
T. D. Nguyen, Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater.
31, 1802084 (2019).
117. X. Han, M. X. Chen, C. F. Pan, Z. L. Wang, Progress in piezo-phototronic effect
enhanced photodetectors. J. Mater. Chem. C 4, 11341-11354 (2016).
118. M. X. Chen, B. Zhao, G. F. Hu, X. S. Fang, H. Wang, L. Wang, J. Luo, X. Han,
X. D. Wang, C. F. Pan, Z. L. Wang, Piezo-Phototronic Effect Modulated Deep UV
Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire. Adv. Funct. Mater.
28, 1706379 (2018).
119. Q. S. Lai, L. P. Zhu, Y. K. Pang, L. Xu, J. Chen, Z. W. Ren, J. J. Luo, L. F. Wang,
L. B. Chen, K. Han, P. Lin, D. Li, S. Q. Lin, B. D. Chen, C. F. Pan, Z. L. Wang,
Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single
Crystals. ACS Nano 12, 10501-10508 (2018).
120. Y. J. Dai, X. F. Wang, W. B. Peng, C. S. Wu, Y. Ding, K. Dong, Z. L. Wang,
Enhanced performances of Si/CdS heterojunction near-infrared photodetector by
the piezo-phototronic effect. Nano Energy 44, 311-318 (2018).
121. X. D. Wang, P. Wang, J. L. Wang, W. D. Hu, X. H. Zhou, N. Guo, H. Huang, S.
Sun, H. Shen, T. Lin, M. H. Tang, L. Liao, A. Q. Jiang, J. L. Sun, X. J. Meng, X.
S. Chen, W. Lu, J. H. Chu, Ultrasensitive and Broadband MoS2 Photodetector
Driven by Ferroelectrics. Adv. Mater. 27, 6575-6581 (2015).
122. F. R. Cao, W. Tian, L. X. Meng, M. Wang, L. Li, Ultrahigh-Performance Flexible
and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite
Bulk Heterojunction. Adv. Funct. Mater. 29, 1808415 (2019).
123. Y. Chen, X. D. Wang, P. Wang, H. Huang, G. J. Wu, B. Tian, Z. C. Hong, Y. T.
Wang, S. Sun, H. Shen, J. L. Wang, W. D. Hu, J. L. Sun, X. J. Meng, J. H. Chu,
Optoelectronic Properties of Few-Layer MoS2 FET Gated by Ferroelectric
Relaxor Polymer. ACS Appl. Mater. Inter. 8, 32083-32088 (2016).
124. L. X. Ruan, X. N. Yao, Y. F. Chang, L. Q. Zhou, G. W. Qin, X. M. Zhang,
Properties and Applications of the beta Phase Poly(vinylidene fluoride). Polymers
10, 228 (2018).
125. L. Persano, C. Dagdeviren, Y. W. Su, Y. H. Zhang, S. Girardo, D. Pisignano, Y. G.
Huang, J. A. Rogers, High performance piezoelectric devices based on aligned
arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat.
Commun. 4, 1633 (2013).
126. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang, A
nanocomposite ultraviolet photodetector based on interfacial trap-controlled
charge injection. Nat. Nanotechnol. 7, 798-802 (2012).
127. D. L. Shao, M. P. Yu, H. T. Sun, G. Q. Xin, J. Lian, S. Sawyer, High-Performance
Ultraviolet Photodetector Based on Organic-Inorganic Hybrid Structure. ACS
Appl. Mater. Inter. 6, 14690-14694 (2014).
128. Y. J. Xu, J. Yuan, L. F. Fei, X. L. Wang, Q. L. Bao, Y. Wang, K. Zhang, Y. G.
Zhang, Selenium-Doped Black Phosphorus for High-Responsivity 2D
Photodetectors. Small 12, 5000-5007 (2016).
129. X. H. Liu, D. J. Yu, F. Cao, X. M. Li, J. P. Ji, J. Chen, X. F. Song, H. B. Zeng,
Low-Voltage Photodetectors with High Responsivity Based on Solution-
Processed Micrometer-Scale All-Inorganic Perovskite Nanoplatelets. Small 13,
1700364 (2017).
130. R. Gregorio, M. Cestari, Effect of Crystallization Temperature on the Crystalline
Phase Content and Morphology of Poly(Vinylidene Fluoride). J. Polym. Sci. B 32,
859-870 (1994).
131. W. X. Ouyang, F. Teng, X. S. Fang, High Performance BiOCl Nanosheets/TiO2
Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self-
Induced Inner Electric Fields in the BiOCl Nanosheets. Adv. Funct. Mater. 28,
1707178 (2018).
132. P. Cheng, X. W. Zhan, Stability of organic solar cells: challenges and strategies.
Chem. Soc. Rev. 45, 2544-2582 (2016).
133. M. J. Dai, H. Y. Chen, F. K. Wang, Y. X. Hu, S. Wei, J. Zhang, Z. G. Wang, T. Y.
Zhai, P. A. Hu, Robust Piezo-Phototronic Effect in Multilayer gamma-InSe for
High-Performance Self-Powered Flexible Photodetectors. ACS Nano 13, 7291-
7299 (2019).
134. T. Shen, D. Binks, J. F. Yuan, G. Z. Cao, J. J. Tian, Enhanced-performance of selfpowered
flexible quantum dot photodetectors by a double hole transport layer
structure. Nanoscale 11, 9626-9632 (2019).
135. Q. Xu, L. Cheng, L. X. Meng, Z. Wang, S. Bai, X. Q. Tian, X. F. Jia, Y. Qin,
Flexible Self-Powered ZnO Film UV Sensor with a High Response. ACS Appl.
Mater. Interfaces 11, 26127-26133 (2019).
136. H. X. Sun, W. Tian, F. R. Cao, J. Xiong, L. Li, Ultrahigh-Performance Self-
Powered Flexible Double-Twisted Fibrous Broadband Perovskite Photodetector.
Adv. Mater. 30, 1706986 (2018).
137. S. Lim, M. Ha, Y. Lee, H. Ko, Large-Area, Solution-Processed, Hierarchical
MAPbI(3) Nanoribbon Arrays for Self-Powered Flexible Photodetectors. Adv. Opt.
Mater. 6, 1800615 (2018).
138. Y. Zhang, W. X. Xu, X. J. Xu, J. Cai, W. Yang, X. S. Fang, Self-Powered Dual-
Color UV-Green Photodetectors Based on SnO2 Millimeter Wire and
Microwires/CsPbBr3 Particle Heterojunctions. J. Phys. Chem. Lett. 10, 836-841
(2019).
139. F. R. Cao, W. Tian, K. M. Deng, M. Wang, L. Li, Self-Powered UV-Vis-NIR
Photodetector Based on Conjugated-Polymer/CsPbBr3 Nanowire Array. Adv.
Funct. Mater., 1906756 (2019).
140. Z. Lou, L. Li, L. L. Wang, G. Z. Shen, Recent Progress of Self-Powered Sensing
Systems for Wearable Electronics. Small 13, 1701791 (2017).
141. Y. Liu, M. Pharr, G. A. Salvatore, Lab-on-Skin: A Review of Flexible and
Stretchable Electronics for Wearable Health Monitoring. ACS Nano 11, 9614-
9635 (2017).
142. T. Q. Trung, N. E. Lee, Recent Progress on Stretchable Electronic Devices with
Intrinsically Stretchable Components. Adv. Mater. 29, 1603167 (2017).
143. X. W. Wang, Z. Liu, T. Zhang, Flexible Sensing Electronics for
Wearable/Attachable Health Monitoring. Small 13, 1602790 (2017).
144. J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, D. H. Kim, Flexible and Stretchable
Smart Display: Materials, Fabrication, Device Design, and System Integration.
Adv. Funct. Mater. 28, 1801834 (2018).
145. M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, Z. Bao, 25th anniversary article:
The evolution of electronic skin (e-skin): a brief history, design considerations,
and recent progress. Adv. Mater. 25, 5997-6038 (2013).
146. S. Bauer, FLEXIBLE ELECTRONICS Sophisticated skin. Nat. Mater. 12, 871-
872 (2013).
147. S. Y. Huang, Y. Liu, Y. Zhao, Z. F. Ren, C. F. Guo, Flexible Electronics:
Stretchable Electrodes and Their Future. Adv. Funct. Mater. 29, 1805924 (2019).
148. M. Y. Xie, K. Hisano, M. Z. Zhu, T. Toyoshi, M. Pan, S. Okada, O. Tsutsumi, S.
Kawamura, C. Bowen, Flexible Multifunctional Sensors for Wearable and
Robotic Applications. Adv. Mater. Technol. 4, 1800626 (2019).
149. N. Alexandre, J. Ribeiro, A. Gartner, T. Pereira, I. Amorim, J. Fragoso, A. Lopes,
J. Fernandes, E. Costa, A. Santos-Silva, M. Rodrigues, J. D. Santos, A. C.
Mauricio, A. L. Luis, Biocompatibility and hemocompatibility of polyvinyl
alcohol hydrogel used for vascular grafting-In vitro and in vivo studies. J. Biomed.
Mater. Res. 102, 4262-4275 (2014).
150. Y. Zhu, W. P. Lu, Y. C. Guo, Y. Chen, Y. X. Wu, H. J. Lu, Biocompatible,
stretchable and mineral PVA-gelatin-nHAP hydrogel for highly sensitive pressure
sensors. RSC Adv. 8, 36999-37007 (2018).
151. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H.
Fox, Z. N. Bao, Skin-like pressure and strain sensors based on transparent elastic
films of carbon nanotubes. Nat. Nanotechnol. 6, 788-792 (2011).
152. D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won,
H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H.
J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G.
Huang, T. Coleman, J. A. Rogers, Epidermal Electronics. Science 333, 838-843
(2011).
153. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. V. Chen, A. Peck, H. M.
Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, A.
Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration
analysis. Nature 529, 509 (2016).
154. F. R. de Gruijl, Skin cancer and solar UV radiation. Eur. J. Cancer 35, 2003-2009
(1999).
155. J. Reichrath, B. Nurnberg, Solar UV-radiation, vitamin D and skin cancer
surveillance in organ transplant recipients (OTRs). Adv. Exp. Med. Biol. 624, 203-
214 (2008).
156. J. L. Linsky, Stellar Model Chromospheres and Spectroscopic Diagnostics. An
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21120-
dc.description.abstract本論文的研究旨在研發與電子皮膚兼容的高性能、多功能光電元件。其元件具備了物聯網應用所需的特性。本研究取得了一些突破,這些發現的重點如下。
1. 藉由顏色感知壓力:結合高靈敏度壓力感測器與多波長發光二極體的整合式元件
我們展示了一種高靈敏度、低成本且不損害環境的壓力感測器。本研究使用的壓力感測器使用嵌入了奈米銀線的羊毛纖維,壓力感測器具有高靈敏度、寬廣的壓力感應範圍、易於製造且重量輕。使其可用於便攜式和可穿戴設備。藉由與具有多波長發射的發光二極體整合,我們展示了具備多功能且發光二極體整合壓力感測器,該感測器能夠將不同的施加壓力轉換為具有不同波長的發光。由於壓力傳感器的高靈敏度,我們甚至使用節拍器和擴音器來演示聲音信號檢測與光傳輸。該多功能壓力感測器的技術可以被應用在智慧照明,醫療健康,可見光通訊和其他物聯網等應用。
2. 由光閘效應、壓電效應和鐵電效應驅動的超高性能自供電可撓光偵檢器
由於物聯網在實際應用時需要動態性、即時性、即地性進行數據收集,因此在超靈敏感測網絡中採用可自供電、可撓、輕巧的元件已成為未來感測器系統的一個重要議題。在這篇研究中,使用聚(偏二氟乙烯-三氟乙烯共聚物)的鐵電薄膜,通過光閘效應、壓電效應和鐵電效應的結合,實現了一種新型的高性能自供電光偵檢器。在合理的元件設計下,藉由光照射,外部應變或電壓極化偶極而產生的內部電場,可以調變界面處的載流子傳輸行為。這使光電流和元件的性能得以顯著提升。這項研究中提出的前所未有的光偵檢器具有許多優點,包括機械可撓性和輕巧性,使其能夠式用在任意表面形貌;此外,其自供電能力和高可靠性為下一代光電元件開發迫切需要的性質。此人性化界面元件可被應用在惡劣環境中的可穿戴式無線通信。
3. 可自供電,自我修復和可改變型態的紫外光偵檢器
近年來,自我修復元件的出現引起了學術界和業界的極大關注。自修復的元件可以在發生意外破壞時自動恢復破裂面,從而可以有效地延長元件的使用壽命,進而提高元件耐用性並降低更換成本。因此,結合可穿戴與自我修復性質的電子元件的已經成為智慧穿戴元件中不可或缺的特性。在這篇研究中,我們提出了第一個利用瓊脂糖/聚乙烯雙網狀結構水凝膠為基板的自供電、自修復和可穿戴的紫外光偵檢器;該偵檢器具有良好的優勢機械強度、自我修復能力和多重損害的耐受性。藉由雙網狀結構水凝膠,光偵檢器在五個修復週期後能夠恢復90%的初始效率,且其修復時間都僅有10秒鐘。該元件展現多種優勢,包括所有元件製程皆是使用噴塗法、自供電、生物相容性、良好的靈敏度、機械可撓性和出色的可修復性,這些都是構建智慧電子元件系統的重要條件。此自我修復光偵檢器擴展了電子皮膚的未來設計方向,也為開發下一代可穿戴式電子產品提供了新平台。
4. 同調福斯特共振能量轉移:電激發無共振腔量子點雷射
由於無共振腔雷射的獨特優勢,包括高發光強度、廣角雷射性質和簡單的製程方式,吸引了許多團隊共同研究發展。其研究方向集中在嘗試突破光激發無共振腔雷射進展到電激發無共振腔雷射。然而,目前的進展仍受限於散射過程中光子的高損耗和低增益,使得雷射不易形成。在這篇研究中,我們提出了一種新的機制名為同調福斯特共振能量轉移實現電機發無共振腔量子點雷射。在同調福斯特共振能量轉移機制中,當光在混合量子點中多次散射而形成同調封閉光路徑時,施體量子點不僅當作散射中心;還能利用調福斯特共振能量轉移機制轉移能量給受體量子點。因此,雷射可以容易地形成且雷射的臨界值可有效被降低。本研究提出產生電激發無共振腔雷射的方式可被延伸至其他量子點系統。這是邁向全光譜無共振腔雷射的重要一步,應用層面從生醫診斷到光通訊都可適用。
zh_TW
dc.description.abstractResearch of this dissertation aims to high performance, multi-functional optoelectronic devices that are compatible with electronic skin. These devices feature the essential characteristics required for IoT applications. Several breakthroughs have been achieved and highlights of these discoveries are accordingly illustrated as follows.
1. Seeing Pressure in Color: An integration of highly-sensitive pressure sensor and light emitting diode with multi-wavelength emission
We demonstrate a highly sensitive, low-cost, environmental friendly derived from wool-based pressure sensor with wide pressure sensing range using wool bricks embedded with a Ag nano-wires. The easy-fabrication and light weight allow portable and wearable device applications. By integration with a light emitting diode possessing multi-wavelength emission, we illustrate a hybrid multi-functional LED-integrated pressure sensor that is able to convert different applied pressures to light emission with different wavelengths. Due to the high sensitivity of the pressure sensor, the demonstration of acoustic signal detection has also been presented using sound of a metronome and a speaker playing a song. This multi-functional pressure sensor can be implemented to technologies such as smart lighting, health care, visible light communication (VLC), and other internet of things (IoT) applications.
2. Ultrahigh- Performance Self-Powered Flexible Photodetector Driven from Photogating, Piezo-phototronic, and Ferroelectric Effects
Owing to the need for dynamic, real-time, and on-site data collection in internet of things (IoT) applications, the realization of ultra-sensitive sensing networks with self-powered, flexible, and lightweight devices has become an important issue for the development of sensor systems. In this work, a novel, high-performance, self-powered photodetector is achieved through the combination of photogating, piezo-phototronic and ferroelectric effect by incorporating a ferroelectric thin film of poly (vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) in a rationally designed device structure with suitable band alignment, which can modulate carrier transport behavior at the interface due to the internal electric field produced by light illumination, external strain or voltage-poled dipole. This enables photocurrent and overall device performance to improve significantly. The unprecedented photodetector presented in this study has several merits, including mechanical flexibility and light weight, that allow it to adapt to arbitrary surface topology; additionally, its self-powering capability and high reliability are urgently needed for the demanding functionality of devices for the development of next-generation optoelectronic devices, spanning from wearable communication to unattended harsh environments with a human-friendly interface.
3. Self-powered, Self-healed and Shape-adaptive Ultraviolet Photodetectors
Emerging of self-healed devices in these years has drawn great attention in both academics and industries. Self-healed devices can autonomically restore the rupture as unexpected destruction occurs, which can efficiently prolong the lifespan of the devices, hence an enhanced durability and decreased replacement cost. As a result, integration of wearable devices with self-healed electronics has become an indispensable issue in smart wearable devices. In this work, we present the first self-powered, self-healed and wearable ultraviolet (UV) photodetector based on the integration of agarose/poly(vinyl alcohol) (PVA) double network (DN) hydrogels, which owns the advantages of good mechanical strength, self-healing ability, and tolerability of multiple damages. With the integration of DN hydrogel substrate, the photodetector enables 90% of initial efficiency to be restored after five healing cycles, and each rapid healing time is suppressed to only 10s. The proposed device has several merits, including all spray coating, self-sustainable, biocompatible, good sensitivity, mechanical flexibility, and outstanding healibility, which altogether are essential to build smart electronic systems. The unprecedented self-healed photodetector expands the future scope of electronic skin design, and also offers a new platform for development of next-generation wearable electronics.
4. Coherent Förster Resonance Energy Transfer: A New Paradigm for Electrically-Driven Cavity-Free Quantum Dots Laser
Owning to the distinct advantages of cavity-free lasers including high spectral intensity, broad angle emission, and simple fabrication process through a great collaborative effort around the world, the present development for cavity-free lasers has been focused on a breakthrough from optical pumping to electrical pumping. However, progress is rather limited due to high optical loss and low gain. In this work, we demonstrate the first electrically-pumped cavity-free quantum dots (QDs) laser with visible emission based on a new paradigm named coherent Förster resonance energy transfer (CFRET). In the CFRET process, when a coherent closed loop is formed due to multiple scattering of the emitted light traveling in mixed donor and acceptor QDs, the donor QDs not only serve as scattering centers, but are also enabled to transfer energy to acceptor QDs coherently. The laser action can be easily achieved and the lasing threshold is greatly reduced. Our approach of electrically-pumped QD-based cavity-free lasers is quite general, and it can be extended to many other QDs systems. This represents a remarkable step toward to a full-spectrum cavity-free laser for practical applications, spanning from biomedical diagnosis to light communication.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:27:19Z (GMT). No. of bitstreams: 1
ntu-109-D04245003-1.pdf: 71416141 bytes, checksum: bca285b1e79c8813ce8b8361c84880fc (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
ABSTRACT vi
LIST OF PUBLICATIONS x
TABLE OF CONTENTS xii
LIST OF FIGURES xvi
LIST OF TABLES xxviii
Chapter 1 Introduction 1
1.1 Trends of internet of things (IoT) 1
1.2 Evolution of electronics skin (E-Skin) 3
1.3 Outlook of E-Skin 5
1.3.1 Self-healing material based devices 6
1.3.2 Self-powered devices 8
1.3.3 Optical wireless communication 11
1.4 Overview of the dissertation 12
Chapter 2 Theoretical Background 16
2.1 Quantum confinement effect 16
2.1.1 Quantum dot 17
2.2 Piezo-phototronic effect 19
2.2.1 Piezoelectricity 20
2.3 Förster resonance energy transfer (FRET) 23
2.4 Random laser 24
2.4.1 Transport mean free path 26
Chapter 3 Experiment Details 29
3.1 Photoluminescence system 29
3.2 Time-resolved photoluminescence 31
3.3 Scanning electron microscope (SEM) 32
3.4 Cathodoluminescence (CL) 34
3.5 Energy dispersive X-ray spectroscopy (EDS) 35
3.6 Atomic Force Microscope (AFM) 36
3.7 Fourier-transform infrared spectroscopy (FTIR) 39
Chapter 4 Seeing Pressure in Color: An integration of highly-sensitive pressure sensor and light emitting diode with multi-wavelength emission 41
4.1 Introduction 41
4.2 Experimental Section 44
4.2.1 Device fabrication 44
4.2.2 Patterned Sapphire Preparation 44
4.2.3 Fabrication of the eye-readable color changing LEDs 45
4.2.4 Characterization and Measurement 45
4.3 Results and Discussion 46
4.4 Summary 58
Chapter 5 Ultrahigh- Performance Self-Powered Flexible Photodetector Driven from Photogating, Piezo-phototronic, and Ferroelectric Effects 76
5.1 Introduction 76
5.2 Experimental Section 80
5.2.1 Device fabrication 80
5.2.2 Characterization and Measurement 81
5.3 Results and Discussion 81
5.4 Summary 88
Chapter 6 Self-powered, Self-healed and Shape-adaptive Ultraviolet Photodetectors 96
6.1 Introduction 96
6.2 Experimental Section 99
6.2.1 Synthesis of agarose/PVA self-healed substrate 99
6.2.2 Device fabrication 100
6.2.3 Characterization and Measurement 101
6.3 Results and Discussion 101
6.4 Summary 112
Chapter 7 Coherent Förster Resonance Energy Transfer: A New Paradigm for Electrically-Driven Cavity-Free Quantum Dots Lasers 122
7.1 Introduction 122
7.2 Experimental Section 125
7.2.1 Device fabrication 125
7.2.2 Characterization and Measurement 126
7.3 Results and Discussion 126
7.4 Summary 133
Chapter 8 Conclusion and future prospects 141
REFERENCES 145
dc.language.isoen
dc.subject無共振腔雷射zh_TW
dc.subject電子皮膚zh_TW
dc.subject壓力感測器zh_TW
dc.subject壓電光電子效應zh_TW
dc.subject自修復zh_TW
dc.subjectpressure sensoren
dc.subjecte-skinen
dc.subjectcavity-free laseren
dc.subjectself-healingen
dc.subjectpiezo-phototronicen
dc.title半導體奈米複合物之多功能光電元件zh_TW
dc.titleMultifunctional Optoelectronic Devices Based on Semiconductor Nanocompositesen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree博士
dc.contributor.oralexamcommittee沈志霖(Ji-Lin Shen),林泰源(Tai-Yuan Lin),許芳琪(Fang-Chi Hsu),謝雅萍(Ya-Ping Hsieh)
dc.subject.keyword電子皮膚,壓力感測器,壓電光電子效應,自修復,無共振腔雷射,zh_TW
dc.subject.keyworde-skin,pressure sensor,piezo-phototronic,self-healing,cavity-free laser,en
dc.relation.page164
dc.identifier.doi10.6342/NTU201904454
dc.rights.note未授權
dc.date.accepted2020-01-02
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
69.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved