請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21120完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永芳(Yang-Fang Chen) | |
| dc.contributor.author | Tien-Lin Shen | en |
| dc.contributor.author | 沈天琳 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:27:19Z | - |
| dc.date.copyright | 2020-02-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2019-12-31 | |
| dc.identifier.citation | 1. G. Bill, O. John, Road Ahead. (HighBridge Company, 1995), pp. 288. 2. http://www.icinsights.com/services/osd-report/report-contents/, in O-S-D Report. (IC Insights, 2019). 3. J. Fukang, T. Yu-Chong, K. Walsh, T. Tsao, L. Gwo-Bin, H. Chih-Ming, in Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. (1997), pp. 465-470. 4. B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521-523 (2000). 5. V. J. Lumelsky, M. S. Shur, S. Wagner, Sensitive Skin. IEEE Sens. J. 1, 41-51 (2001). 6. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Z. Song, Y. G. Y. Huang, Z. J. Liu, C. Lu, J. A. Rogers, Stretchable and foldable silicon integrated circuits. Science 320, 507-511 (2008). 7. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science 326, 1516-1519 (2009). 8. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T. Someya, Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494-499 (2009). 9. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012). 10. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok, Z. A. Bao, 25th Anniversary Article: The Evolution of Electronic Skin (E-Skin): A Brief History, Design Considerations, and Recent Progress. Adv. Mater. 25, 5997-6037 (2013). 11. K. C. Xu, Y. Y. Lu, K. Takei, Multifunctional Skin-Inspired Flexible Sensor Systems for Wearable Electronics. Adv. Mater. Technol. 4, 1800628 (2019). 12. J. C. Yang, J. Mun, S. Y. Kwon, S. Park, Z. N. Bao, S. Park, Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater., 1904765 (2019). 13. D. D. Chen, D. R. Wang, Y. Yang, Q. Y. Huang, S. J. Zhu, Z. J. Zheng, Self- Healing Materials for Next-Generation Energy Harvesting and Storage Devices. Adv. Energy Mater. 7, 1700890 (2017). 14. B. J. Blaiszik, S. L. B. Kramer, M. E. Grady, D. A. McIlroy, J. S. Moore, N. R. Sottos, S. R. White, Autonomic Restoration of Electrical Conductivity. Adv. Mater. 24, 398-401 (2012). 15. S. A. Odom, M. M. Caruso, A. D. Finke, A. M. Prokup, J. A. Ritchey, J. H. Leonard, S. R. White, N. R. Sottos, J. S. Moore, Restoration of Conductivity with TTF-TCNQ Charge-Transfer Salts. Adv. Funct. Mater. 20, 1721-1727 (2010). 16. S. Kang, A. R. Jones, J. S. Moore, S. R. White, N. R. Sottos, Microencapsulated Carbon Black Suspensions for Restoration of Electrical Conductivity. Adv. Funct. Mater. 24, 2947-2956 (2014). 17. J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. X. Zhu, X. D. Gu, W. G. Bae, Y. Kim, L. H. Jin, J. W. Chung, J. B. H. Tok, Z. N. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411-415 (2016). 18. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977-980 (2008). 19. B. C. K. Tee, C. Wang, R. Allen, Z. N. Bao, An electrically and mechanically selfhealing composite with pressure- and flexion-sensitive properties for electronic skin applications. Nat. Nanotechnol. 7, 825-832 (2012). 20. Q. H. Zhang, S. M. Niu, L. Wang, J. Lopez, S. C. Chen, Y. F. Cai, R. C. Du, Y. X. Liu, J. C. Lai, L. Liu, C. H. Li, X. Z. Yan, C. G. Liu, J. B. H. Tok, X. D. Jia, Z. A. Bao, An Elastic Autonomous Self-Healing Capacitive Sensor Based on a Dynamic Dual Crosslinked Chemical System. Adv. Mater. 30, 1801435 (2018). 21. S. Burattini, H. M. Colquhoun, J. D. Fox, D. Friedmann, B. W. Greenland, P. J. F. Harris, W. Hayes, M. E. Mackay, S. J. Rowan, A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor pi-pi stacking interactions. Chem. Comm., 6717-6719 (2009). 22. S. Burattini, B. W. Greenland, W. Hayes, M. E. Mackay, S. J. Rowan, H. M. Colquhoun, A Supramolecular Polymer Based on Tweezer-Type pi-pi Stacking Interactions: Molecular Design for Healability and Enhanced Toughness. Chem. Mater. 23, 6-8 (2011). 23. Y. L. Rao, A. Chortos, R. Pfattner, F. Lissel, Y. C. Chiu, V. Feig, J. Xu, T. Kurosawa, X. D. Gu, C. Wang, M. Q. He, J. W. Chung, Z. N. Bao, Stretchable Self-Healing Polymeric Dielectrics Cross-Linked Through Metal-Ligand Coordination. J. Am. Chem. Soc. 138, 6020-6027 (2016). 24. C. H. Li, C. Wang, C. Keplinger, J. L. Zuo, L. Jin, Y. Sun, P. Zheng, Y. Cao, F. Lissel, C. Linder, X. Z. You, Z. A. Bao, A highly stretchable autonomous selfhealing elastomer. Nat. Chem. 8, 619-625 (2016). 25. S. M. Kim, H. Jeon, S. H. Shin, S. A. Park, J. Jegal, S. Y. Hwang, D. X. Oh, J. Park, Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 30, 1705145 (2018). 26. F. R. Fan, Z. Q. Tian, Z. L. Wang, Flexible triboelectric generator! Nano Energy 1, 328-334 (2012). 27. H. Y. Zhou, P. Liu, High Seebeck Coefficient Electrochemical Thermocells for Efficient Waste Heat Recovery. ACS Appl. Energ. Mater. 1, 1424-1428 (2018). 28. P. H. Yang, K. Liu, Q. Chen, X. B. Mo, Y. S. Zhou, S. Li, G. Feng, J. Zhou, Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie-International Edition 55, 12050-12053 (2016). 29. M. F. Dupont, D. R. MacFarlane, J. M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chem. Comm. 53, 6288-6302 (2017). 30. D. J. Lipomi, B. C. K. Tee, M. Vosgueritchian, Z. N. Bao, Stretchable Organic Solar Cells. Adv. Mater. 23, 1771-1175 (2011). 31. S. A. Han, J. Lee, J. J. Lin, S. W. Kim, J. H. Kim, Piezo/triboelectric nanogenerators based on 2-dimensional layered structure materials. Nano Energy 57, 680-691 (2019). 32. H. S. Chen, H. P. A. van den Boom, E. Tangdiongga, T. Koonen, 30-Gb/s Bidirectional Transparent Optical Transmission With an MMF Access and an Indoor Optical Wireless Link. IEEE Photonic. Tech. L. 24, 572-574 (2012). 33. Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Y. Xu, J. L. Cheng, Emerging Optical Wireless Communications-Advances and Challenges. IEEE J. Sel. Areas Commun. 33, 1738-1749 (2015). 34. F. E. Goodwin, A review of operational laser communication systems. Proc. IEEE 58, 1746-1752 (1970). 35. A. K. Majumdar, Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber. Comm. Rep. 2, 345-396 (2006). 36. M. A. Khalighi, M. Uysal, Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 16, 2231-2258 (2014). 37. T. Edvinsson, Optical quantum confinement and photocatalytic properties in two-, one- and zero-dimensional nanostructures. Royal Soc. Open Sci. 5, 180387 (2018). 38. L. Brus, Electronic Wave-Functions in Semiconductor Clusters - Experiment and Theory. J. Phys. Chem. 90, 2555-2560 (1986). 39. F. T. Rabouw, C. D. Donega, Excited-State Dynamics in Colloidal Semiconductor Nanocrystals. Topics Curr. Chem. 374, 1-30 (2016). 40. W. Z. Wu, Z. L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). 41. Z. L. Wang, Piezopotential gated nanowire devices: Piezotronics and piezophototronics. Nano Today 5, 540-552 (2010). 42. S. I. Hayashi, A. Imamura, A Study of the Polarization Reversal in Poly(Vinylidene Fluoride) Using Molecular-Orbital Calculations. J. Polym. Sci. Pol. Phys. 30, 769-773 (1992). 43. R. S. Dahiya, M. Valle, L. Lorenzelli, SPICE Model for Lossy Piezoelectric Polymers (vol 56, pg 387, 2009). IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1288-1288 (2009). 44. G. D. Zhu, Z. G. Zeng, L. Zhang, X. J. Yan, Piezoelectricity in beta-phase PVDF crystals: A molecular simulation study. Comput. Mater. Sci. 44, 224-229 (2008). 45. T. Forster, *Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys. 2, 55-75 (1948). 46. E. A. Jares-Erijman, T. M. Jovin, FRET imaging. Nat. Biotechnol. 21, 1387-1395 (2003). 47. D. Wiersma, Laser physics - The smallest random laser. Nature 406, 132 (2000). 48. F. Luan, B. B. Gu, A. S. L. Gomes, K. T. Yong, S. C. Wen, P. N. Prasad, Lasing in nanocomposite random media. Nano Today 10, 168-192 (2015). 49. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, R. P. H. Chang, Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278-2281 (1999). 50. X. H. Wu, A. Yamilov, H. Noh, H. Cao, E. W. Seelig, R. P. H. Chang, Random lasing in closely packed resonant scatterers. J. Opt. Soc. Am. B 21, 159-167 (2004). 51. R. Sapienza, Determining random lasing action. Nat. Rev. Phys. 1, 690-695 (2019). 52. C. Bahr, B. Schulz, in Liquid Crystals with Nano and Microparticles. pp. 295-320. 53. A. McClelland, M. Mankin, in Optical Measurements for Scientists and Engineers: A Practical Guide. (Cambridge University Press, Cambridge, 2018), pp. 110-188. 54. S. Gong, W. Schwalb, Y. W. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, W. L. Cheng, A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 5, 3132 (2014). 55. X. D. Wang, H. L. Zhang, R. M. Yu, L. Dong, D. F. Peng, A. H. Zhang, Y. Zhang, H. Liu, C. F. Pan, Z. L. Wang, Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process. Adv. Mater. 27, 2324-2331 (2015). 56. C. M. Boutry, A. Nguyen, Q. O. Lawal, A. Chortos, S. Rondeau-Gagne, Z. N. Bao, A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Adv. Mater. 27, 6954 (2015). 57. X. Z. Jiang, Y. J. Sun, Z. Y. Fan, T. Y. Zhang, Integrated Flexible, Waterproof, Transparent, and Self-Powered Tactile Sensing Panel. ACS Nano 10, 7696-7704 (2016). 58. Z. N. Bao, X. D. Chen, Flexible and Stretchable Devices. Adv. Mater. 28, 4177- 4179 (2016). 59. Y. Q. Zhan, Y. F. Mei, L. R. Zheng, Materials capability and device performance in flexible electronics for the Internet of Things. J. Mater. Chem. C 2, 1220-1232 (2014). 60. C. F. Lin, T. Y. Tsai, K. Y. Chen, P. C. Shen, Efficient warm-white lighting using rare-earth-element-free fluorescent materials for saving energy, environment protection and human health. RSC Adv. 6, 111959-111965 (2016). 61. Z. Li, Z. L. Wang, Air/Liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv. Mater. 23, 84-89 (2011). 62. L. J. Pan, A. Chortos, G. H. Yu, Y. Q. Wang, S. Isaacson, R. Allen, Y. Shi, R. Dauskardt, Z. N. Bao, An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 5, 3002 (2014). 63. C. Dagdeviren, Y. W. Su, P. Joe, R. Yona, Y. H. Liu, Y. S. Kim, Y. A. Huang, A. R. Damadoran, J. Xia, L. W. Martin, Y. G. Huang, J. A. Rogers, Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat. Commun. 5, 4496 (2014). 64. J. Park, M. Kim, Y. Lee, H. S. Lee, H. Ko, Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015). 65. J. Park, Y. Lee, J. Hong, M. Ha, Y. D. Jung, H. Lim, S. Y. Kim, H. Ko, Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins. ACS Nano 8, 4689- 4697 (2014). 66. C. L. Choong, M. B. Shim, B. S. Lee, S. Jeon, D. S. Ko, T. H. Kang, J. Bae, S. H. Lee, K. E. Byun, J. Im, Y. J. Jeong, C. E. Park, J. J. Park, U. I. Chung, Highly Stretchable Resistive Pressure Sensors Using a Conductive Elastomeric Composite on a Micropyramid Array. Adv. Mater. 26, 3451-3458 (2014). 67. G. Schwartz, B. C. K. Tee, J. G. Mei, A. L. Appleton, D. H. Kim, H. L. Wang, Z. N. Bao, Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat. Commun. 4, 1859 (2013). 68. S. S. a. G. Muthu, Miguel Angel, Green fashion. (Springer, 2016). 69. C. Pang, G. Y. Lee, T. I. Kim, S. M. Kim, H. N. Kim, S. H. Ahn, K. Y. Suh, A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795-801 (2012). 70. T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Flexible organic transistors and circuits with extreme bending stability. Nat. Mater. 9, 1015-1022 (2010). 71. T. Sekitani, T. Someya, Stretchable, Large-area Organic Electronics. Adv. Mater. 22, 2228-2246 (2010). 72. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, T. Someya, An ultralightweight design for imperceptible plastic electronics. Nature 499, 458 (2013). 73. C. F. Huang, C. Y. Chen, C. F. Lu, C. C. Yang, Reduced injection current induced blueshift in an InGaN/GaN quantum-well light-emitting diode of prestrained growth. Appl. Phys. Lett. 91, 051121 (2007). 74. C. H. Du, C. Y. Jiang, P. Zuo, X. Huang, X. Pu, Z. F. Zhao, Y. L. Zhou, L. X. Li, H. Chen, W. G. Hu, Z. L. Wang, Piezo-Phototronic Effect Controlled Dual- Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars. Small 11, 6071-6077 (2015). 75. C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Sensing as a service model for smart cities supported by Internet of Things. T. Emerg. Telecommun. T. 25, 81-93 (2014). 76. C. T. Chen, W. Y. Lee, T. L. Shen, H. C. Wu, C. C. Shih, B. W. Ye, T. Y. Lin, W. C. Chen, Y. F. Chen, Highly Reliable and Sensitive Tactile Transistor Memory. Adv. Electron. Mater. 3, 1600548 (2017). 77. Y. C. Lai, B. W. Ye, C. F. Lu, C. T. Chen, M. H. Jao, W. F. Su, W. Y. Hung, T. Y. Lin, Y. F. Chen, Extraordinarily Sensitive and Low-Voltage Operational Cloth- Based Electronic Skin for Wearable Sensing and Multifunctional Integration Uses: A Tactile-Induced Insulating-to-Conducting Transition. Adv. Funct. Mater. 26, 1286-1295 (2016). 78. A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrmann, U. Rossow, G. Ade, P. Hinze, Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency. Phys. Rev. Lett. 95, 127402 (2005). 79. M. Funato, T. Kotani, T. Kondou, Y. Kawakami, Y. Narukawa, T. Mukai, Tailored emission color synthesis using microfacet quantum wells consisting of nitride semiconductors without phosphors. Appl. Phys. Lett. 88, 261920 (2006). 80. J. S. Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, A. Hangleiter, Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1-xN quantum wells. Phys. Rev. B 57, R9435-R9438 (1998). 81. A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, F. Scholz, The role of piezoelectric fields in GaN-based quantum wells. MRS Internet J. Nitride Semicond. Res. 3, e15 (1998). 82. H. Tian, Y. Shu, X. F. Wang, M. A. Mohammad, Z. Bie, Q. Y. Xie, C. Li, W. T. Mi, Y. Yang, T. L. Ren, A Graphene-Based Resistive Pressure Sensor with Record- High Sensitivity in a Wide Pressure Range. Sci. Rep. 5, 8603 (2015). 83. K. H. Kim, S. K. Hong, N. S. Jang, S. H. Ha, H. W. Lee, J. M. Kim, Wearable Resistive Pressure Sensor Based on Highly Flexible Carbon Composite Conductors with Irregular Surface Morphology. ACS Appl. Mater. Interfaces 9, 17500-17508 (2017). 84. S. Chen, Y. J. Song, F. Xu, Flexible and Highly Sensitive Resistive Pressure Sensor Based on Carbonized Crepe Paper with Corrugated Structure. ACS Appl. Mater. Interfaces 10, 34646-34654 (2018). 85. W. J. Liu, N. S. Liu, Y. Yue, J. Y. Rao, F. Cheng, J. Su, Z. T. Liu, Y. H. Gao, Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film. Small 14, 1704149 (2018). 86. H. Chang, S. Kim, S. Jin, S. W. Lee, G. T. Yang, K. Y. Lee, H. Yi, Ultrasensitive and Highly Stable Resistive Pressure Sensors with Biomaterial-Incorporated Interfacial Layers for Wearable Health-Monitoring and Human-Machine Interfaces. ACS Appl. Mater. Interfaces 10, 1067-1076 (2018). 87. L. Z. Sheng, Y. Liang, L. L. Jiang, Q. Wang, T. Wei, L. T. Qu, Z. J. Fan, Bubble- Decorated Honeycomb-Like Graphene Film as Ultrahigh Sensitivity Pressure Sensors. Adv. Funct. Mater. 25, 6545-6551 (2015). 88. H. Kim, S. W. Lee, H. Joh, M. Seong, W. S. Lee, M. S. Kang, J. B. Pyo, S. J. Oh, Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors. ACS Appl. Mater. Interfaces 10, 1389-1398 (2018). 89. S. Cai, X. J. Xu, W. Yang, J. X. Chen, X. S. Fang, Materials and Designs for Wearable Photodetectors. Adv. Mater. 31, 1808138 (2019). 90. H. J. Fang, C. Zheng, L. L. Wu, Y. Li, J. Cai, M. X. Hu, X. S. Fang, R. Ma, Q. Wang, H. Wang, Solution-Processed Self-Powered Transparent Ultraviolet Photodetectors with Ultrafast Response Speed for High-Performance Communication System. Adv. Funct. Mater. 29, 1809013 (2019). 91. S. H. Wang, L. Lin, Z. L. Wang, Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11, 436-462 (2015). 92. L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey. Comput. Netw. 54, 2787-2805 (2010). 93. X. J. Xu, J. X. Chen, S. Cai, Z. H. Long, Y. Zhang, L. X. Su, S. S. He, C. Q. Tang, P. Liu, H. S. Peng, X. S. Fang, A Real-Time Wearable UV-Radiation Monitor based on a High-Performance p-CuZnS/n-TiO2 Photodetector. Adv. Mater. 30, 1803165 (2018). 94. B. J. Shi, Z. Li, Y. B. Fan, Implantable Energy-Harvesting Devices. Adv. Mater. 30, 1801511 (2018). 95. Z. X. Liu, H. F. Li, M. S. Zhu, Y. Huang, Z. J. Tang, Z. X. Pei, Z. F. Wang, Z. C. Shi, J. Liu, Y. Huang, C. Y. Zhi, Towards wearable electronic devices: A quasisolid- state aqueous lithium-ion battery with outstanding stability, flexibility, safety and breathability. Nano Energy 44, 164-173 (2018). 96. T. Lv, M. X. Liu, D. Z. Zhu, L. H. Gan, T. Chen, Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors. Adv. Mater. 30, 1705489 (2018). 97. L. Yao, Q. Wu, P. X. Zhang, J. M. Zhang, D. R. Wang, Y. L. Li, X. Z. Ren, H. W. Mi, L. B. Deng, Z. J. Zheng, Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Adv. Mater. 30, 1706054 (2018). 98. L. X. Su, W. Yang, J. Cai, H. Y. Chen, X. S. Fang, Self-Powered Ultraviolet Photodetectors Driven by Built-In Electric Field. Small 13, 1701687 (2017). 99. Z. L. Wang, Self-Powered Nanosensors and Nanosystems. Adv. Mater. 24, 280- 285 (2012). 100. D. E. Brash, J. A. Rudolph, J. A. Simon, A. Lin, G. J. Mckenna, H. P. Baden, A. J. Halperin, J. Ponten, A Role for Sunlight in Skin-Cancer - Uv-Induced P53 Mutations in Squamous-Cell Carcinoma. Proc. Natl. Acad. Sci. U.S.A. 88, 10124- 10128 (1991). 101. L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang, L. B. Luo, Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector. ACS Appl. Mater. Inter. 5, 9362-9366 (2013). 102. L. H. Zeng, Q. M. Chen, Z. X. Zhang, D. Wu, H. Y. Yuan, Y. Y. Li, W. Qarony, S. P. Lau, L. B. Luo, Y. H. Tsang, Multilayered PdSe2/Perovskite Schottky Junction for Fast, Self-Powered, Polarization-Sensitive, Broadband Photodetectors, and Image Sensor Application. Adv. Sci. 6, 1901134 (2019). 103. Y. Ning, Z. M. Zhang, F. Teng, X. S. Fang, Novel Transparent and Self-Powered UV Photodetector Based on Crossed ZnO Nanofiber Array Homojunction. Small 14, 1703754 (2018). 104. Y. J. Lu, C. X. Shan, M. M. Jiang, G. C. Hu, N. Zhang, S. P. Wang, B. H. Lia, D. Z. Shen, Random lasing realized in n-ZnO/p-MgZnO core-shell nanowire heterostructures. CrystEngComm 17, 3917-3922 (2015). 105. W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, L. B. Luo, Graphene-beta-Ga2O3 Heterojunction for Highly Sensitive Deep UV Photodetector Application. Adv. Mater. 28, 10725-10731 (2016). 106. B. Zhao, F. Wang, H. Y. Chen, L. X. Zheng, L. X. Su, D. X. Zhao, X. S. Fang, An Ultrahigh Responsivity (9.7 mA W-1) Self-Powered Solar-Blind Photodetector Based on Individual ZnO-Ga2O3 Heterostructures. Adv. Funct. Mater. 27, 1700264 (2017). 107. C. C. Wu, B. W. Du, W. Luo, Y. Liu, T. Y. Li, D. Wang, X. Guo, H. Ting, Z. Fang, S. F. Wang, Z. J. Chen, Y. X. Chen, L. X. Xiao, Highly Efficient and Stable Self- Powered Ultraviolet and Deep-Blue Photodetector Based on Cs2AgBiBr6/SnO2 Heterojunction. Adv. Opt. Mater. 6, 1800811 (2018). 108. T. Cossuet, J. Resende, L. Rapenne, O. Chaix-Pluchery, C. Jimenez, G. Renou, A. J. Pearson, R. L. Z. Hoye, D. Blanc-Pelissier, N. D. Nguyen, E. Appert, D. Munoz- Rojas, V. Consonni, J. L. Deschanvres, ZnO/CuCrO2 Core-Shell Nanowire Heterostructures for Self-Powered UV Photodetectors with Fast Response. Adv. Funct. Mater. 28, 1803142 (2018). 109. J. Cai, X. J. Xu, L. X. Su, W. Yang, H. Y. Chen, Y. Zhang, X. S. Fang, Self- Powered n-SnO2/p-CuZnS Core-Shell Microwire UV Photodetector with Optimized Performance. Adv. Opt. Mater. 6, 1800213 (2018). 110. H. Z. Zhang, X. Dai, N. Guan, A. Messanvi, V. Neplokh, V. Piazza, M. Vallo, C. Bougerol, F. H. Julien, A. Babichev, N. Cavassilas, M. Bescond, F. Michelini, M. Foldyna, E. Gautier, C. Durand, J. Eymery, M. Tchernycheva, Flexible Photodiodes Based on Nitride Core/Shell p-n Junction Nanowires. ACS Appl. Mater. Inter. 8, 26198-26206 (2016). 111. Y. W. Shen, X. Q. Yan, H. N. Si, P. Lin, Y. C. Liu, Y. H. Sun, Y. Zhang, Improved Photoresponse Performance of Self-Powered ZnO/Spiro-MeOTAD Heterojunction Ultraviolet Photodetector by Piezo-Phototronic Effect. ACS Appl. Mater. Inter. 8, 6137-6143 (2016). 112. W. B. Peng, X. F. Wang, R. M. Yu, Y. J. Dai, H. Y. Zou, A. C. Wang, Y. N. He, Z. L. Wang, Enhanced Performance of a Self-Powered Organic/Inorganic Photodetector by Pyro-Phototronic and Piezo-Phototronic Effects. Adv. Mater. 29, 1606698 (2017). 113. M. Z. Peng, Y. D. Liu, A. F. Yu, Y. Zhang, C. H. Liu, J. Y. Liu, W. Wu, K. Zhang, X. Q. Shi, J. Z. Kou, J. Y. Zhai, Z. L. Wang, Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. ACS Nano 10, 1572-1579 (2016). 114. Y. B. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, J. S. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers. Nat. Mater. 10, 296-302 (2011). 115. X. Chen, X. Han, Q. D. Shen, PVDF-Based Ferroelectric Polymers in Modern Flexible Electronics. Adv. Electron. Mater. 3, 1600460 (2017). 116. M. T. Chorsi, E. J. Curry, H. T. Chorsi, R. Das, J. Baroody, P. K. Purohit, H. Ilies, T. D. Nguyen, Piezoelectric Biomaterials for Sensors and Actuators. Adv. Mater. 31, 1802084 (2019). 117. X. Han, M. X. Chen, C. F. Pan, Z. L. Wang, Progress in piezo-phototronic effect enhanced photodetectors. J. Mater. Chem. C 4, 11341-11354 (2016). 118. M. X. Chen, B. Zhao, G. F. Hu, X. S. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. D. Wang, C. F. Pan, Z. L. Wang, Piezo-Phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire. Adv. Funct. Mater. 28, 1706379 (2018). 119. Q. S. Lai, L. P. Zhu, Y. K. Pang, L. Xu, J. Chen, Z. W. Ren, J. J. Luo, L. F. Wang, L. B. Chen, K. Han, P. Lin, D. Li, S. Q. Lin, B. D. Chen, C. F. Pan, Z. L. Wang, Piezo-phototronic Effect Enhanced Photodetector Based on CH3NH3PbI3 Single Crystals. ACS Nano 12, 10501-10508 (2018). 120. Y. J. Dai, X. F. Wang, W. B. Peng, C. S. Wu, Y. Ding, K. Dong, Z. L. Wang, Enhanced performances of Si/CdS heterojunction near-infrared photodetector by the piezo-phototronic effect. Nano Energy 44, 311-318 (2018). 121. X. D. Wang, P. Wang, J. L. Wang, W. D. Hu, X. H. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. H. Tang, L. Liao, A. Q. Jiang, J. L. Sun, X. J. Meng, X. S. Chen, W. Lu, J. H. Chu, Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater. 27, 6575-6581 (2015). 122. F. R. Cao, W. Tian, L. X. Meng, M. Wang, L. Li, Ultrahigh-Performance Flexible and Self-Powered Photodetectors with Ferroelectric P(VDF-TrFE)/Perovskite Bulk Heterojunction. Adv. Funct. Mater. 29, 1808415 (2019). 123. Y. Chen, X. D. Wang, P. Wang, H. Huang, G. J. Wu, B. Tian, Z. C. Hong, Y. T. Wang, S. Sun, H. Shen, J. L. Wang, W. D. Hu, J. L. Sun, X. J. Meng, J. H. Chu, Optoelectronic Properties of Few-Layer MoS2 FET Gated by Ferroelectric Relaxor Polymer. ACS Appl. Mater. Inter. 8, 32083-32088 (2016). 124. L. X. Ruan, X. N. Yao, Y. F. Chang, L. Q. Zhou, G. W. Qin, X. M. Zhang, Properties and Applications of the beta Phase Poly(vinylidene fluoride). Polymers 10, 228 (2018). 125. L. Persano, C. Dagdeviren, Y. W. Su, Y. H. Zhang, S. Girardo, D. Pisignano, Y. G. Huang, J. A. Rogers, High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat. Commun. 4, 1633 (2013). 126. F. W. Guo, B. Yang, Y. B. Yuan, Z. G. Xiao, Q. F. Dong, Y. Bi, J. S. Huang, A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 7, 798-802 (2012). 127. D. L. Shao, M. P. Yu, H. T. Sun, G. Q. Xin, J. Lian, S. Sawyer, High-Performance Ultraviolet Photodetector Based on Organic-Inorganic Hybrid Structure. ACS Appl. Mater. Inter. 6, 14690-14694 (2014). 128. Y. J. Xu, J. Yuan, L. F. Fei, X. L. Wang, Q. L. Bao, Y. Wang, K. Zhang, Y. G. Zhang, Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. Small 12, 5000-5007 (2016). 129. X. H. Liu, D. J. Yu, F. Cao, X. M. Li, J. P. Ji, J. Chen, X. F. Song, H. B. Zeng, Low-Voltage Photodetectors with High Responsivity Based on Solution- Processed Micrometer-Scale All-Inorganic Perovskite Nanoplatelets. Small 13, 1700364 (2017). 130. R. Gregorio, M. Cestari, Effect of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly(Vinylidene Fluoride). J. Polym. Sci. B 32, 859-870 (1994). 131. W. X. Ouyang, F. Teng, X. S. Fang, High Performance BiOCl Nanosheets/TiO2 Nanotube Arrays Heterojunction UV Photodetector: The Influences of Self- Induced Inner Electric Fields in the BiOCl Nanosheets. Adv. Funct. Mater. 28, 1707178 (2018). 132. P. Cheng, X. W. Zhan, Stability of organic solar cells: challenges and strategies. Chem. Soc. Rev. 45, 2544-2582 (2016). 133. M. J. Dai, H. Y. Chen, F. K. Wang, Y. X. Hu, S. Wei, J. Zhang, Z. G. Wang, T. Y. Zhai, P. A. Hu, Robust Piezo-Phototronic Effect in Multilayer gamma-InSe for High-Performance Self-Powered Flexible Photodetectors. ACS Nano 13, 7291- 7299 (2019). 134. T. Shen, D. Binks, J. F. Yuan, G. Z. Cao, J. J. Tian, Enhanced-performance of selfpowered flexible quantum dot photodetectors by a double hole transport layer structure. Nanoscale 11, 9626-9632 (2019). 135. Q. Xu, L. Cheng, L. X. Meng, Z. Wang, S. Bai, X. Q. Tian, X. F. Jia, Y. Qin, Flexible Self-Powered ZnO Film UV Sensor with a High Response. ACS Appl. Mater. Interfaces 11, 26127-26133 (2019). 136. H. X. Sun, W. Tian, F. R. Cao, J. Xiong, L. Li, Ultrahigh-Performance Self- Powered Flexible Double-Twisted Fibrous Broadband Perovskite Photodetector. Adv. Mater. 30, 1706986 (2018). 137. S. Lim, M. Ha, Y. Lee, H. Ko, Large-Area, Solution-Processed, Hierarchical MAPbI(3) Nanoribbon Arrays for Self-Powered Flexible Photodetectors. Adv. Opt. Mater. 6, 1800615 (2018). 138. Y. Zhang, W. X. Xu, X. J. Xu, J. Cai, W. Yang, X. S. Fang, Self-Powered Dual- Color UV-Green Photodetectors Based on SnO2 Millimeter Wire and Microwires/CsPbBr3 Particle Heterojunctions. J. Phys. Chem. Lett. 10, 836-841 (2019). 139. F. R. Cao, W. Tian, K. M. Deng, M. Wang, L. Li, Self-Powered UV-Vis-NIR Photodetector Based on Conjugated-Polymer/CsPbBr3 Nanowire Array. Adv. Funct. Mater., 1906756 (2019). 140. Z. Lou, L. Li, L. L. Wang, G. Z. Shen, Recent Progress of Self-Powered Sensing Systems for Wearable Electronics. Small 13, 1701791 (2017). 141. Y. Liu, M. Pharr, G. A. Salvatore, Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano 11, 9614- 9635 (2017). 142. T. Q. Trung, N. E. Lee, Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components. Adv. Mater. 29, 1603167 (2017). 143. X. W. Wang, Z. Liu, T. Zhang, Flexible Sensing Electronics for Wearable/Attachable Health Monitoring. Small 13, 1602790 (2017). 144. J. H. Koo, D. C. Kim, H. J. Shim, T. H. Kim, D. H. Kim, Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Adv. Funct. Mater. 28, 1801834 (2018). 145. M. L. Hammock, A. Chortos, B. C. Tee, J. B. Tok, Z. Bao, 25th anniversary article: The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997-6038 (2013). 146. S. Bauer, FLEXIBLE ELECTRONICS Sophisticated skin. Nat. Mater. 12, 871- 872 (2013). 147. S. Y. Huang, Y. Liu, Y. Zhao, Z. F. Ren, C. F. Guo, Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 29, 1805924 (2019). 148. M. Y. Xie, K. Hisano, M. Z. Zhu, T. Toyoshi, M. Pan, S. Okada, O. Tsutsumi, S. Kawamura, C. Bowen, Flexible Multifunctional Sensors for Wearable and Robotic Applications. Adv. Mater. Technol. 4, 1800626 (2019). 149. N. Alexandre, J. Ribeiro, A. Gartner, T. Pereira, I. Amorim, J. Fragoso, A. Lopes, J. Fernandes, E. Costa, A. Santos-Silva, M. Rodrigues, J. D. Santos, A. C. Mauricio, A. L. Luis, Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting-In vitro and in vivo studies. J. Biomed. Mater. Res. 102, 4262-4275 (2014). 150. Y. Zhu, W. P. Lu, Y. C. Guo, Y. Chen, Y. X. Wu, H. J. Lu, Biocompatible, stretchable and mineral PVA-gelatin-nHAP hydrogel for highly sensitive pressure sensors. RSC Adv. 8, 36999-37007 (2018). 151. D. J. Lipomi, M. Vosgueritchian, B. C. K. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, Z. N. Bao, Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6, 788-792 (2011). 152. D. H. Kim, N. S. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. D. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Z. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. G. Huang, T. Coleman, J. A. Rogers, Epidermal Electronics. Science 333, 838-843 (2011). 153. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. V. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D. H. Lien, G. A. Brooks, R. W. Davis, A. Javey, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509 (2016). 154. F. R. de Gruijl, Skin cancer and solar UV radiation. Eur. J. Cancer 35, 2003-2009 (1999). 155. J. Reichrath, B. Nurnberg, Solar UV-radiation, vitamin D and skin cancer surveillance in organ transplant recipients (OTRs). Adv. Exp. Med. Biol. 624, 203- 214 (2008). 156. J. L. Linsky, Stellar Model Chromospheres and Spectroscopic Diagnostics. An | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21120 | - |
| dc.description.abstract | 本論文的研究旨在研發與電子皮膚兼容的高性能、多功能光電元件。其元件具備了物聯網應用所需的特性。本研究取得了一些突破,這些發現的重點如下。 1. 藉由顏色感知壓力:結合高靈敏度壓力感測器與多波長發光二極體的整合式元件 我們展示了一種高靈敏度、低成本且不損害環境的壓力感測器。本研究使用的壓力感測器使用嵌入了奈米銀線的羊毛纖維,壓力感測器具有高靈敏度、寬廣的壓力感應範圍、易於製造且重量輕。使其可用於便攜式和可穿戴設備。藉由與具有多波長發射的發光二極體整合,我們展示了具備多功能且發光二極體整合壓力感測器,該感測器能夠將不同的施加壓力轉換為具有不同波長的發光。由於壓力傳感器的高靈敏度,我們甚至使用節拍器和擴音器來演示聲音信號檢測與光傳輸。該多功能壓力感測器的技術可以被應用在智慧照明,醫療健康,可見光通訊和其他物聯網等應用。 2. 由光閘效應、壓電效應和鐵電效應驅動的超高性能自供電可撓光偵檢器 由於物聯網在實際應用時需要動態性、即時性、即地性進行數據收集,因此在超靈敏感測網絡中採用可自供電、可撓、輕巧的元件已成為未來感測器系統的一個重要議題。在這篇研究中,使用聚(偏二氟乙烯-三氟乙烯共聚物)的鐵電薄膜,通過光閘效應、壓電效應和鐵電效應的結合,實現了一種新型的高性能自供電光偵檢器。在合理的元件設計下,藉由光照射,外部應變或電壓極化偶極而產生的內部電場,可以調變界面處的載流子傳輸行為。這使光電流和元件的性能得以顯著提升。這項研究中提出的前所未有的光偵檢器具有許多優點,包括機械可撓性和輕巧性,使其能夠式用在任意表面形貌;此外,其自供電能力和高可靠性為下一代光電元件開發迫切需要的性質。此人性化界面元件可被應用在惡劣環境中的可穿戴式無線通信。 3. 可自供電,自我修復和可改變型態的紫外光偵檢器 近年來,自我修復元件的出現引起了學術界和業界的極大關注。自修復的元件可以在發生意外破壞時自動恢復破裂面,從而可以有效地延長元件的使用壽命,進而提高元件耐用性並降低更換成本。因此,結合可穿戴與自我修復性質的電子元件的已經成為智慧穿戴元件中不可或缺的特性。在這篇研究中,我們提出了第一個利用瓊脂糖/聚乙烯雙網狀結構水凝膠為基板的自供電、自修復和可穿戴的紫外光偵檢器;該偵檢器具有良好的優勢機械強度、自我修復能力和多重損害的耐受性。藉由雙網狀結構水凝膠,光偵檢器在五個修復週期後能夠恢復90%的初始效率,且其修復時間都僅有10秒鐘。該元件展現多種優勢,包括所有元件製程皆是使用噴塗法、自供電、生物相容性、良好的靈敏度、機械可撓性和出色的可修復性,這些都是構建智慧電子元件系統的重要條件。此自我修復光偵檢器擴展了電子皮膚的未來設計方向,也為開發下一代可穿戴式電子產品提供了新平台。 4. 同調福斯特共振能量轉移:電激發無共振腔量子點雷射 由於無共振腔雷射的獨特優勢,包括高發光強度、廣角雷射性質和簡單的製程方式,吸引了許多團隊共同研究發展。其研究方向集中在嘗試突破光激發無共振腔雷射進展到電激發無共振腔雷射。然而,目前的進展仍受限於散射過程中光子的高損耗和低增益,使得雷射不易形成。在這篇研究中,我們提出了一種新的機制名為同調福斯特共振能量轉移實現電機發無共振腔量子點雷射。在同調福斯特共振能量轉移機制中,當光在混合量子點中多次散射而形成同調封閉光路徑時,施體量子點不僅當作散射中心;還能利用調福斯特共振能量轉移機制轉移能量給受體量子點。因此,雷射可以容易地形成且雷射的臨界值可有效被降低。本研究提出產生電激發無共振腔雷射的方式可被延伸至其他量子點系統。這是邁向全光譜無共振腔雷射的重要一步,應用層面從生醫診斷到光通訊都可適用。 | zh_TW |
| dc.description.abstract | Research of this dissertation aims to high performance, multi-functional optoelectronic devices that are compatible with electronic skin. These devices feature the essential characteristics required for IoT applications. Several breakthroughs have been achieved and highlights of these discoveries are accordingly illustrated as follows. 1. Seeing Pressure in Color: An integration of highly-sensitive pressure sensor and light emitting diode with multi-wavelength emission We demonstrate a highly sensitive, low-cost, environmental friendly derived from wool-based pressure sensor with wide pressure sensing range using wool bricks embedded with a Ag nano-wires. The easy-fabrication and light weight allow portable and wearable device applications. By integration with a light emitting diode possessing multi-wavelength emission, we illustrate a hybrid multi-functional LED-integrated pressure sensor that is able to convert different applied pressures to light emission with different wavelengths. Due to the high sensitivity of the pressure sensor, the demonstration of acoustic signal detection has also been presented using sound of a metronome and a speaker playing a song. This multi-functional pressure sensor can be implemented to technologies such as smart lighting, health care, visible light communication (VLC), and other internet of things (IoT) applications. 2. Ultrahigh- Performance Self-Powered Flexible Photodetector Driven from Photogating, Piezo-phototronic, and Ferroelectric Effects Owing to the need for dynamic, real-time, and on-site data collection in internet of things (IoT) applications, the realization of ultra-sensitive sensing networks with self-powered, flexible, and lightweight devices has become an important issue for the development of sensor systems. In this work, a novel, high-performance, self-powered photodetector is achieved through the combination of photogating, piezo-phototronic and ferroelectric effect by incorporating a ferroelectric thin film of poly (vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) in a rationally designed device structure with suitable band alignment, which can modulate carrier transport behavior at the interface due to the internal electric field produced by light illumination, external strain or voltage-poled dipole. This enables photocurrent and overall device performance to improve significantly. The unprecedented photodetector presented in this study has several merits, including mechanical flexibility and light weight, that allow it to adapt to arbitrary surface topology; additionally, its self-powering capability and high reliability are urgently needed for the demanding functionality of devices for the development of next-generation optoelectronic devices, spanning from wearable communication to unattended harsh environments with a human-friendly interface. 3. Self-powered, Self-healed and Shape-adaptive Ultraviolet Photodetectors Emerging of self-healed devices in these years has drawn great attention in both academics and industries. Self-healed devices can autonomically restore the rupture as unexpected destruction occurs, which can efficiently prolong the lifespan of the devices, hence an enhanced durability and decreased replacement cost. As a result, integration of wearable devices with self-healed electronics has become an indispensable issue in smart wearable devices. In this work, we present the first self-powered, self-healed and wearable ultraviolet (UV) photodetector based on the integration of agarose/poly(vinyl alcohol) (PVA) double network (DN) hydrogels, which owns the advantages of good mechanical strength, self-healing ability, and tolerability of multiple damages. With the integration of DN hydrogel substrate, the photodetector enables 90% of initial efficiency to be restored after five healing cycles, and each rapid healing time is suppressed to only 10s. The proposed device has several merits, including all spray coating, self-sustainable, biocompatible, good sensitivity, mechanical flexibility, and outstanding healibility, which altogether are essential to build smart electronic systems. The unprecedented self-healed photodetector expands the future scope of electronic skin design, and also offers a new platform for development of next-generation wearable electronics. 4. Coherent Förster Resonance Energy Transfer: A New Paradigm for Electrically-Driven Cavity-Free Quantum Dots Laser Owning to the distinct advantages of cavity-free lasers including high spectral intensity, broad angle emission, and simple fabrication process through a great collaborative effort around the world, the present development for cavity-free lasers has been focused on a breakthrough from optical pumping to electrical pumping. However, progress is rather limited due to high optical loss and low gain. In this work, we demonstrate the first electrically-pumped cavity-free quantum dots (QDs) laser with visible emission based on a new paradigm named coherent Förster resonance energy transfer (CFRET). In the CFRET process, when a coherent closed loop is formed due to multiple scattering of the emitted light traveling in mixed donor and acceptor QDs, the donor QDs not only serve as scattering centers, but are also enabled to transfer energy to acceptor QDs coherently. The laser action can be easily achieved and the lasing threshold is greatly reduced. Our approach of electrically-pumped QD-based cavity-free lasers is quite general, and it can be extended to many other QDs systems. This represents a remarkable step toward to a full-spectrum cavity-free laser for practical applications, spanning from biomedical diagnosis to light communication. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:27:19Z (GMT). No. of bitstreams: 1 ntu-109-D04245003-1.pdf: 71416141 bytes, checksum: bca285b1e79c8813ce8b8361c84880fc (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iv ABSTRACT vi LIST OF PUBLICATIONS x TABLE OF CONTENTS xii LIST OF FIGURES xvi LIST OF TABLES xxviii Chapter 1 Introduction 1 1.1 Trends of internet of things (IoT) 1 1.2 Evolution of electronics skin (E-Skin) 3 1.3 Outlook of E-Skin 5 1.3.1 Self-healing material based devices 6 1.3.2 Self-powered devices 8 1.3.3 Optical wireless communication 11 1.4 Overview of the dissertation 12 Chapter 2 Theoretical Background 16 2.1 Quantum confinement effect 16 2.1.1 Quantum dot 17 2.2 Piezo-phototronic effect 19 2.2.1 Piezoelectricity 20 2.3 Förster resonance energy transfer (FRET) 23 2.4 Random laser 24 2.4.1 Transport mean free path 26 Chapter 3 Experiment Details 29 3.1 Photoluminescence system 29 3.2 Time-resolved photoluminescence 31 3.3 Scanning electron microscope (SEM) 32 3.4 Cathodoluminescence (CL) 34 3.5 Energy dispersive X-ray spectroscopy (EDS) 35 3.6 Atomic Force Microscope (AFM) 36 3.7 Fourier-transform infrared spectroscopy (FTIR) 39 Chapter 4 Seeing Pressure in Color: An integration of highly-sensitive pressure sensor and light emitting diode with multi-wavelength emission 41 4.1 Introduction 41 4.2 Experimental Section 44 4.2.1 Device fabrication 44 4.2.2 Patterned Sapphire Preparation 44 4.2.3 Fabrication of the eye-readable color changing LEDs 45 4.2.4 Characterization and Measurement 45 4.3 Results and Discussion 46 4.4 Summary 58 Chapter 5 Ultrahigh- Performance Self-Powered Flexible Photodetector Driven from Photogating, Piezo-phototronic, and Ferroelectric Effects 76 5.1 Introduction 76 5.2 Experimental Section 80 5.2.1 Device fabrication 80 5.2.2 Characterization and Measurement 81 5.3 Results and Discussion 81 5.4 Summary 88 Chapter 6 Self-powered, Self-healed and Shape-adaptive Ultraviolet Photodetectors 96 6.1 Introduction 96 6.2 Experimental Section 99 6.2.1 Synthesis of agarose/PVA self-healed substrate 99 6.2.2 Device fabrication 100 6.2.3 Characterization and Measurement 101 6.3 Results and Discussion 101 6.4 Summary 112 Chapter 7 Coherent Förster Resonance Energy Transfer: A New Paradigm for Electrically-Driven Cavity-Free Quantum Dots Lasers 122 7.1 Introduction 122 7.2 Experimental Section 125 7.2.1 Device fabrication 125 7.2.2 Characterization and Measurement 126 7.3 Results and Discussion 126 7.4 Summary 133 Chapter 8 Conclusion and future prospects 141 REFERENCES 145 | |
| dc.language.iso | en | |
| dc.subject | 無共振腔雷射 | zh_TW |
| dc.subject | 電子皮膚 | zh_TW |
| dc.subject | 壓力感測器 | zh_TW |
| dc.subject | 壓電光電子效應 | zh_TW |
| dc.subject | 自修復 | zh_TW |
| dc.subject | pressure sensor | en |
| dc.subject | e-skin | en |
| dc.subject | cavity-free laser | en |
| dc.subject | self-healing | en |
| dc.subject | piezo-phototronic | en |
| dc.title | 半導體奈米複合物之多功能光電元件 | zh_TW |
| dc.title | Multifunctional Optoelectronic Devices Based on Semiconductor Nanocomposites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 沈志霖(Ji-Lin Shen),林泰源(Tai-Yuan Lin),許芳琪(Fang-Chi Hsu),謝雅萍(Ya-Ping Hsieh) | |
| dc.subject.keyword | 電子皮膚,壓力感測器,壓電光電子效應,自修復,無共振腔雷射, | zh_TW |
| dc.subject.keyword | e-skin,pressure sensor,piezo-phototronic,self-healing,cavity-free laser, | en |
| dc.relation.page | 164 | |
| dc.identifier.doi | 10.6342/NTU201904454 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-01-02 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 69.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
