請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21100完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖洺漢(Ming-Han Liao) | |
| dc.contributor.author | Po-Chung Huang | en |
| dc.contributor.author | 黃柏中 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:26:59Z | - |
| dc.date.copyright | 2020-01-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-14 | |
| dc.identifier.citation | [1] 第四次工業革命-維基百科. Available: https://zh.wikipedia.org/wiki/%E7%AC%AC%E5%9B%9B%E6%AC%A1%E5%B7%A5%E6%A5%AD%E9%9D%A9%E5%91%BD (2019)
[2] E. Montalbano, 'Energy Harvesting, Low Power Consumption Are the Way Forward for IoT, Wearables,' ed, 2016. [3] Zhong Lin Wang, and J. Song, 'Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays,' 2006. [4] Z. L. Wang, 'Triboelectric Nanogenerators as New Energy Technology for Self-Powered Systems and as Active Mechanical andChemical Sensors,' vol. 7, pp. 9533–9557, 2013. [5] W. Zhang, L. Zhang, H. Gao, W. Yang, S. Wang, L. Xing, and X. Xue, 'Self-Powered Implantable Skin-Like Glucometer for Real-Time Detection of Blood Glucose Level In Vivo,' Nanomicro Lett, vol. 10, no. 2, p. 32, 2018. [6] Z. L. Wang, 'Triboelectric nanogenerators as new energy technology and self-powered sensors - principles, problems and perspectives,' Faraday Discuss, vol. 176, pp. 447-58, 2014. [7] Lynn, '植入型摩擦納米發電機,' ed: 微信公眾號:柔性電子服務平台, 2019. (2019) [8] '經濟部2017年能源及減碳辦公室第2次委員會議【能源轉型路徑規劃】簡報,' 2017, Available: https://www.ey.gov.tw/File/FE659A8C337D69EB?A=C. (2019) [9] 賀桂芬 and 辜樹仁. (2016, July) 工業4.0 58秒的競爭. 天下雜誌. Available: https://www.cw.com.tw/article/article.action?id=5077198 (2019) [10] 呂明山. (2018). 工業4.0時代來臨:機械工業4.0. Available: https://scitechvista.nat.gov.tw/c/sgTm.htm (2019) [11] 吳明機. (2005). 行政院生產力4.0發展方案. Available: https://www.ey.gov.tw/File/D3F1B635D314CA63?A=C (2019) [12] J. Curie and P. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bulletin de la Société minéralogique de France, vol. 3, no. 4, pp. 90-93, 1880. [13] G. Lippmann, 'Principe de la conservation de l'électricité, ou second principe de la théorie des phénomènes électriques,' Journal de Physique Théorique et Appliquée, vol. 10, no. 1, pp. 381-394, 1881. [14] Jacques and P. Curie, 'Contractions et dilatations produites par des tensions dans les cristaux hémièdres à faces inclinées,' Comptes rendus, vol. 93, pp. 1137-1140, 1881. [15] Y. Qin, X. Wang, and Z. L. Wang, 'Microfibre-nanowire hybrid structure for energy scavenging,' Nature, vol. 451, no. 7180, pp. 809-13, Feb 14 2008. [16] R. Yang, Y. Qin, L. Dai, and Z. L. Wang, 'Power generation with laterally packaged piezoelectric fine wires,' Nat Nanotechnol, vol. 4, no. 1, pp. 34-9, Jan 2009. [17] Z. L. Wang, 'Nanogenerators for self-powered devices and systems,' Georgia Institute of Technology, Atlanta, USA, June 2011. [18] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang, and Z. L. Wang, 'Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films,' Nano Lett, vol. 12, no. 6, pp. 3109-14, Jun 13 2012. [19] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, 'Flexible triboelectric generator,' Nano Energy, vol. 1, no. 2, pp. 328-334, 2012. [20] G. Zhu, C. Pan, W. Guo, C. Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang, 'Triboelectric-generator-driven pulse electrodeposition for micropatterning,' Nano Lett, vol. 12, no. 9, pp. 4960-5, Sep 12 2012. [21] S. Wang, L. Lin, and Z. L. Wang, 'Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,' Nano Lett, vol. 12, no. 12, pp. 6339-46, Dec 12 2012. [22] X. J. Zhao, S. Y. Kuang, Z. L. Wang, and G. Zhu, 'Highly Adaptive Solid-Liquid Interfacing Triboelectric Nanogenerator for Harvesting Diverse Water Wave Energy,' ACS Nano, vol. 12, no. 5, pp. 4280-4285, May 22 2018. [23] M.-L. Seol, J.-W. Han, J.-H. Woo, D.-I. Moon, J.-Y. Kim, and Y.-K. Choi, 'Comprehensive analysis of deformation of interfacial micro-nano structure by applied force in triboelectric energy harvester,' IEEE, pp. 8.3.1-8.3.4, 2014. [24] W.-G. Kim, D. Kim, and S.-B. Jeon, 'A novel triboelectric nanogenerator with high performance and long duration time of sinusoidal current generation,' International Electron Devices Meeting, pp. 40.3.1-40.3.4, 2017. [25] J. M. Wu, C. K. Chang, and Y. T. Chang, 'High-output current density of the triboelectric nanogenerator made from recycling rice husks,' Nano Energy, vol. 19, pp. 39-47, 2016. [26] Di Liu and Xing Yin, 'A constant current triboelectric nanogenerator arising from electrostatic breakdown,' SCIENCE ADVANCES, vol. 5, 2019. [27] M.-K. Kim, M.-S. Kim, H.-B. Kwon, S.-E. Jo, and Y.-J. Kim, 'Wearable triboelectric nanogenerator using a plasma-etched PDMS–CNT composite for a physical activity sensor,' RSC Adv., vol. 7, no. 76, pp. 48368-48373, 2017. [28] N. Cui , L. Gu, Y. Lei, J. Liu, Y. Qin, X. Ma, Y. Hao, and Z. L. Wang, 'Dynamic Behavior of the Triboelectric Charges and Structural Optimization of the Friction Layer for a Triboelectric Nanogenerator,' ACS Nano, vol. 10, no. 6, pp. 6131-8, Jun 28 2016. [29] (2018). 气相沉积新萄京官网技术. Available: http://www.accyee.com/html/2135474636.html (2019) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21100 | - |
| dc.description.abstract | 在本論文中利用摩擦起電效應來產生摩擦電荷,並藉由集能元件之特殊結構設計,將產生之摩擦電荷收集利用。本論文之摩擦集能元件結構為絕緣基板上蒸鍍一銀金屬電極用以將電荷導出至外部線路,而在金屬電極之上須在塗佈一層對聚二甲基矽氧烷,並將此結構裝置在一盒子內,最後再放入些許鋁金屬顆粒直至均勻覆蓋盒子底層,即可藉由鋁金屬顆粒與對聚二甲基矽氧烷摩擦產生可收集之能源。在此元件基礎上,想改進元件功率並提升電流,因此作了下列變因探討: 元件裝置外盒材質(接地與否)、不同摩擦材料粒徑大小(5mm/1mm)對於電性之影響、在摩擦電層與電極間插入絕緣層對於電性之影響、在對聚二甲基矽氧烷中摻入奈米碳管後之電性變化、以及將此架構對比常見之壓力式感應元件。從結果分析,可得知搖晃式元件結構能夠提供比壓力式元件更大功率、此元件須將外盒接地導出累積電荷才得以運作(因此選定外盒為金屬盒子)、摩擦材料(鋁金屬)粒徑5mm所產生之功率較大、在摩擦電層與電極間插入絕緣層後元件有些許提升、在對聚二甲基矽氧烷中摻入奈米碳管後對於元件功率有些許提升。 | zh_TW |
| dc.description.abstract | In this paper, the triboelectric effect is used to generate triboelectric charges, and the triboelectric charges generated are collected and used by the special structure design of the energy-collecting element. The structure of the shaking triboelectric energy harvester in this paper is that a silver metal electrode deposited on an insulating substrate to collect the triboelectric charges to the external circuit, and then cover the electrode by a layer of PDMS. After all the process above, make the electrode stick on the top and bottom of a box, then put some aluminum metal particles until the bottom layer of the box is uniformly covered. Finnally friction of the aluminum metal particles with PDMS generates collectable energy. Based on this component, we want to improve the power and current of the component, so the following variables are discussed: Component device box material (ground or not), the impact of different friction material particle size (5mm / 1mm) on electrical properties, the impact of inserting an insulating layer between the triboelectric layer and the electrode on electrical properties, the electrical changes after the CNT is incorporated into the PDMS, and the pressure triboelectric energy harvester compared with this structure. From the analysis of the results, it can be seen that shaking triboelectric energy harvester can provide greater power than the pressure type triboelectric energy harvester. This component must operate in a grounding outer box in order to the ground to accumulate charges (so the outer box is selected as a metal box), and the friction material (aluminum metal) particles the power produced by a diameter of 5mm is larger, and the element is slightly improved after the insulating layer is inserted between the triboelectric layer and the electrode, and the power of the element is slightly increased after the CNT is added to the PDMS. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:26:59Z (GMT). No. of bitstreams: 1 ntu-109-R06522628-1.pdf: 6735347 bytes, checksum: a5aa5dc4787dc5d407338cfbd004fcca (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 國立臺灣大學碩士學位論文切結書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目錄 vi 圖目錄 viii 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究背景與動機 3 1.3 論文架構 11 第二章 文獻回顧與理論基礎 12 2.1 歷史發展 12 2.2 摩擦電效應 14 2.3 國際發展現況 17 2.4 研究目的 23 2.5 本論文元件原理 24 第三章 實驗方法與量測架設 25 3.1 實驗流程設計 25 3.2 成長Carbon Nanotube 28 3.2.1 CNT爐管系統架構下圖 3-2為本實驗室之CNT成長爐管系統。 28 3.2.2 CNT製備流程 29 3.3 上下電極製備 34 3.3.1 SiO2之薄膜沉積 34 3.3.2 矽基板清洗 34 3.3.3 蒸鍍金屬電極薄膜 37 3.3.4 PDMS薄膜製備 43 3.4 元件組裝 47 3.4.1 壓力式摩擦電元件組裝 47 3.4.2 搖晃式摩擦電元件組裝 50 3.5 量測方法與架設 54 3.5.1 開路電壓Voc量測 54 3.5.2 短路電流Isc量測 55 3.5.3 量測架設與方法 56 第四章 實驗結果與討論 59 第五章 總結 67 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 對聚二甲基矽氧烷 | zh_TW |
| dc.subject | 摩擦電層 | zh_TW |
| dc.subject | 摩擦電荷 | zh_TW |
| dc.subject | 摩擦電能量收集元件 | zh_TW |
| dc.subject | 搖晃式摩擦集能元件 | zh_TW |
| dc.subject | 壓力式摩擦集能元件 | zh_TW |
| dc.subject | 單電極摩擦集能元件 | zh_TW |
| dc.subject | 開路電壓 | zh_TW |
| dc.subject | 短路電流 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 原子層沉積薄膜 | zh_TW |
| dc.subject | 電子束蒸鍍系統 | zh_TW |
| dc.subject | open circuit voltage | en |
| dc.subject | single electrode triboelectric energy harvester | en |
| dc.subject | short circuit current | en |
| dc.subject | PDMS | en |
| dc.subject | E-beam evaporation system | en |
| dc.subject | atomic layer deposition film(ALD) | en |
| dc.subject | nano carbon tube(CNT) | en |
| dc.subject | Triboelectric layer | en |
| dc.subject | triboelectric charge | en |
| dc.subject | triboelectric energy harvester | en |
| dc.subject | shaking triboelectric energy harvester | en |
| dc.subject | pressure triboelectric energy harvester | en |
| dc.title | 搖晃式摩擦集能元件結構開發之研究 | zh_TW |
| dc.title | Research on the Development of Shaking Triboelectric Energy Harvester | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏鴻(Min-Hung Lee),劉建豪(Chien-Hao Liu) | |
| dc.subject.keyword | 摩擦電層,摩擦電荷,摩擦電能量收集元件,搖晃式摩擦集能元件,壓力式摩擦集能元件,單電極摩擦集能元件,開路電壓,短路電流,奈米碳管,原子層沉積薄膜,電子束蒸鍍系統,對聚二甲基矽氧烷, | zh_TW |
| dc.subject.keyword | Triboelectric layer,triboelectric charge,triboelectric energy harvester,shaking triboelectric energy harvester,pressure triboelectric energy harvester,single electrode triboelectric energy harvester,open circuit voltage,short circuit current,nano carbon tube(CNT),atomic layer deposition film(ALD),E-beam evaporation system,PDMS, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU202000084 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-01-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 6.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
