請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21080完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭鐘金 | |
| dc.contributor.author | Yung-Chen Lo | en |
| dc.contributor.author | 羅永臻 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:26:44Z | - |
| dc.date.copyright | 2020-03-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-01-20 | |
| dc.identifier.citation | Ahern, C. A. and R. Horn (2004). 'Specificity of charge-carryingresidues in the voltage sensor of potassium channels.' J Gen Physiol 123(3): 205-216.
Aktas, M. K., A. H. Shah and T. Akiyama (2007). 'Dofetilide-induced long QT and torsades de pointes.' Ann Noninvasive Electrocardiol 12(3): 197-202. Babcock, J. J. and M. Li (2013). 'hERG channel function: beyond long QT.' Acta Pharmacol Sin 34(3): 329-335. Bauer, C. K. and J. R. Schwarz (2001). 'Physiology of EAG K+ channels.' J Membr Biol 182(1): 1-15. Bett, G. C., Q. Zhou and R. L. Rasmusson (2011). 'Models of HERG gating.' Biophys J 101(3): 631-642. Camm, A. J. (2008). 'Safety considerations in the pharmacological management of atrial fibrillation.' Int J Cardiol 127(3): 299-306. Catterall, W. A. (2010). 'Ion channel voltage sensors: structure, function, and pathophysiology.' Neuron 67(6): 915-928. Cheng, Y. M. and T. W. Claydon (2012). 'Voltage-dependent gating of HERG potassium channels.' Front Pharmacol 3: 83. Clancy, C. E. and Y. Rudy (2001). 'Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death.' Cardiovasc Res 50(2): 301-313. Coetzee, W. A., Y. Amarillo, J. Chiu, A. Chow, D. Lau, T. McCormack, H. Moreno, M. S. Nadal, A. Ozaita, D. Pountney, M. Saganich, E. Vega-Saenz de Miera and B. Rudy (1999). 'Molecular diversity of K+ channels.' Ann N Y Acad Sci 868: 233-285. Cuello, L. G., V. Jogini, D. M. Cortes and E. Perozo (2010). 'Structural mechanism of C-type inactivation in K(+) channels.' Nature 466(7303): 203-208. Dong, Z., H. Yao, Z. Miao, H. Wang, R. Xie, Y. Wang, Y. Shang, C. Gong and Z. Liang (2017). 'Pretreatment with intravenous amiodarone improves the efficacy of ibutilide treatment on cardioversion rate and maintenance time of sinus rhythm in patients with persistent atrial fibrillation.' Biomed Rep 6(6): 686-690. Doyle, D. A., J. Morais Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait and R. MacKinnon (1998). 'The structure of the potassium channel: molecular basis of K+ conduction and selectivity.' Science 280(5360): 69-77. Ficker, E., W. Jarolimek and A. M. Brown (2001). 'Molecular determinants of inactivation and dofetilide block in ether a-go-go (EAG) channels and EAG-related K(+) channels.' Mol Pharmacol 60(6): 1343-1348. Ficker, E., W. Jarolimek, J. Kiehn, A. Baumann and A. M. Brown (1998). 'Molecular determinants of dofetilide block of HERG K+ channels.' Circ Res 82(3): 386-395. Fragakis, N., N. Papadopoulos, S. Papanastasiou, M. Kozirakis, G. Maligkos, E. Tsaritsaniotis and G. Katsaris (2005). 'Efficacy and safety of ibutilide for cardioversion of atrial flutter and fibrillation in patients receiving amiodarone or propafenone.' Pacing Clin Electrophysiol 28(9): 954-961. Furutani, K., Y. Yamakawa, A. Inanobe, M. Iwata, Y. Ohno and Y. Kurachi (2011). 'A mechanism underlying compound-induced voltage shift in the current activation of hERG by antiarrhythmic agents.' Biochem Biophys Res Commun 415(1): 141-146. Glatter, K., Y. Yang, K. Chatterjee, G. Modin, J. Cheng, S. Kayser and M. M. Scheinman (2001). 'Chemical cardioversion of atrial fibrillation or flutter with ibutilide in patients receiving amiodarone therapy.' Circulation 103(2): 253-257. Gowda, R. M., G. Punukollu, I. A. Khan, R. R. Patlola, F. H. Tejani, B. F. Cosme-Thormann, B. C. Vasavada and T. J. Sacchi (2002). 'Ibutilide-induced long QT syndrome and torsade de pointes.' Am J Ther 9(6): 527-529. Gutman, G. A., K. G. Chandy, S. Grissmer, M. Lazdunski, D. McKinnon, L. A. Pardo, G. A. Robertson, B. Rudy, M. C. Sanguinetti, W. Stuhmer and X. Wang (2005). 'International Union of Pharmacology. LIII. Nomenclature and molecular relationships of voltage-gated potassium channels.' Pharmacol Rev 57(4): 473-508. Heger, J. J., E. N. Prystowsky, W. M. Jackman, G. V. Naccarelli, K. A. Warfel, R. L. Rinkenberger and D. P. Zipes (1981). 'Clinical efficacy and electrophysiology during long-term therapy for recurrent ventricular tachycardia or ventricular fibrillation.' N Engl J Med 305(10): 539-545. Herzberg, I. M., M. C. Trudeau and G. A. Robertson (1998). 'Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels.' J Physiol 511 ( Pt 1): 3-14. Hoshi, T., W. N. Zagotta and R. W. Aldrich (1990). 'Biophysical and molecular mechanisms of Shaker potassium channel inactivation.' Science 250(4980): 533-538. Hoshi, T., W. N. Zagotta and R. W. Aldrich (1991). 'Two types of inactivation in Shaker K+ channels: effects of alterations in the carboxy-terminal region.' Neuron 7(4): 547-556. Islas, L. D. and F. J. Sigworth (1999). 'Voltage sensitivity and gating charge in Shaker and Shab family potassium channels.' J Gen Physiol 114(5): 723-742. Jiang, M., W. Dun, J. S. Fan and G. N. Tseng (1999). 'Use-dependent'agonist' effect of azimilide on the HERG channel.' J Pharmacol Exp Ther 291(3): 1324-1336. Jiang, M., M. Zhang, I. V. Maslennikov, J. Liu, D. M. Wu, Y. V. Korolkova, A. S. Arseniev, E. V. Grishin and G. N. Tseng (2005). 'Dynamic conformational changes of extracellular S5-P linkers in the hERG channel.' J Physiol 569(Pt 1): 75-89. Johnson, J. P., Jr., F. M. Mullins and P. B. Bennett (1999). 'Human ether-a-go-go-related gene K+ channel gating probed with extracellular Ca2+. Evidence for two distinct voltage sensors.' J Gen Physiol 113(4): 565-580. Kamiya, K., R. Niwa, J. S. Mitcheson and M. C. Sanguinetti (2006). 'Molecular determinants of HERG channel block.' Mol Pharmacol 69(5): 1709-1716. Kauthale, R. R., S. S. Dadarkar, R. Husain, V. V. Karande and M. M. Gatne (2015). 'Assessment of temperature-induced hERG channel blockade variation by drugs.' J Appl Toxicol 35(7): 799-805. Kiehn, J., D. Thomas, C. A. Karle, W. Schols and W. Kubler (1999). 'Inhibitory effects of the class III antiarrhythmic drug amiodarone on cloned HERG potassium channels.' Naunyn Schmiedebergs Arch Pharmacol 359(3): 212-219. Kuo, C. C., W. Y. Chen and Y. C. Yang (2004). 'Block of tetrodotoxinresistant Na+ channel pore by multivalent cations: gating modification and Na+ flow dependence.' J Gen Physiol 124(1): 27-42. Kushida, S., T. Ogura, I. Komuro and H. Nakaya (2002). 'Inhibitory effect of the class III antiarrhythmic drug nifekalant on HERG channels: mode of action.' Eur J Pharmacol 457(1): 19-27. Lees-Miller, J. P., Y. Duan, G. Q. Teng and H. J. Duff (2000). 'Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes: involvement of S6 sites.' Mol Pharmacol 57(2): 367-374. Liu, Y., M. E. Jurman and G. Yellen (1996). 'Dynamic rearrangement of the outer mouth of a K+ channel during gating.' Neuron 16(4): 859-867. Lo, Y. C. and C. C. Kuo (2019). 'Temperature Dependence of the Biophysical Mechanisms Underlying the Inhibition and Enhancement Effect of Amiodarone on hERG Channels.' Mol Pharmacol 96(3): 330-344. Logothetis, D. E., S. Movahedi, C. Satler, K. Lindpaintner and B. Nadal-Ginard (1992). 'Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge.' Neuron 8(3): 531-540. Lu, Y., M. P. Mahaut-Smith, A. Varghese, C. L. Huang, P. R. Kemp and J. I. Vandenberg (2001). 'Effects of premature stimulation on HERG K(+) channels.' J Physiol 537(Pt 3): 843-851. Luo, C. H. and Y. Rudy (1994). 'A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes.' Circ Res 74(6): 1071-1096. McPate, M. J., R. S. Duncan, J. C. Hancox and H. J. Witchel (2008). 'Pharmacology of the short QT syndrome N588K-hERG K+ channel mutation: differential impact on selected class I and class III antiarrhythmic drugs.' Br J Pharmacol 155(6): 957-966. Milnes, J. T., O. Crociani, A. Arcangeli, J. C. Hancox and H. J. Witchel (2003). 'Blockade of HERG potassium currents by fluvoxamine: incomplete attenuation by S6 mutations at F656 or Y652.' Br J Pharmacol 139(5): 887-898. Mitcheson, J. S. (2003). 'Drug binding to HERG channels: evidence for a 'non-aromatic' binding site for fluvoxamine.' Br J Pharmacol 139(5): 883-884. Mitcheson, J. S., J. Chen, M. Lin, C. Culberson and M. C. Sanguinetti (2000). 'A structural basis for drug-induced long QT syndrome.' Proc Natl Acad Sci U S A 97(22): 12329-12333. Murray, K. T. (1998). 'Ibutilide.' Circulation 97(5): 493-497. Nattel, S. (2002). 'New ideas about atrial fibrillation 50 years on. 'Nature 415(6868): 219-226. Perrin, M. J., P. W. Kuchel, T. J. Campbell and J. I. Vandenberg (2008). 'Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels.' Mol Pharmacol 74(5): 1443-1452. Perry, M., M. J. de Groot, R. Helliwell, D. Leishman, M. Tristani-Firouzi, M. C. Sanguinetti and J. Mitcheson (2004). 'Structural determinants of HERG channel block by clofilium and ibutilide.' Mol Pharmacol 66(2): 240-249. Perry, M., P. J. Stansfeld, J. Leaney, C. Wood, M. J. de Groot, D. Leishman, M. J. Sutcliffe and J. S. Mitcheson (2006). 'Drug binding interactions in the inner cavity of HERG channels: molecular insights from structure-activity relationships of clofilium and ibutilide analogs.' Mol Pharmacol 69(2): 509-519. Perry, M. D., C. A. Ng and J. I. Vandenberg (2013). 'Pore helices play a dynamic role as integrators of domain motion during Kv11.1 channel inactivation gating.' J Biol Chem 288(16): 11482-11491. Piper, D. R., A. Varghese, M. C. Sanguinetti and M. Tristani-Firouzi (2003). 'Gating currents associated with intramembrane charge displacement in HERG potassium channels.' Proc Natl Acad Sci U S A 100(18): 10534-10539. Proks, P., C. E. Capener, P. Jones and F. M. Ashcroft (2001). 'Mutations within the P-loop of Kir6.2 modulate the intraburst kinetics of the ATP-sensitive potassium channel.' J Gen Physiol 118(4): 341-353. Ranganathan, R., J. H. Lewis and R. MacKinnon (1996). 'Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis.' Neuron 16(1): 131-139. Rasmusson, R. L., M. J. Morales, S. Wang, S. Liu, D. L. Campbell, M. V. Brahmajothi and H. C. Strauss (1998). 'Inactivation of voltagegated cardiac K+ channels.' Circ Res 82(7): 739-750. Ridley, J. M., J. T. Milnes, H. J. Witchel and J. C. Hancox (2004). 'High affinity HERG K(+) channel blockade by the antiarrhythmic agent dronedarone: resistance to mutations of the S6 residues Y652 and F656.' Biochem Biophys Res Commun 325(3): 883-891. Roden, D. M. (2004). 'Drug-induced prolongation of the QT interval.' N Engl J Med 350(10): 1013-1022. Sager, P. T., P. Uppal, C. Follmer, M. Antimisiaris, C. Pruitt and B. N. Singh (1993). 'Frequency-dependent electrophysiologic effects of amiodarone in humans.' Circulation 88(3): 1063-1071. Sanguinetti, M. C., C. Jiang, M. E. Curran and M. T. Keating (1995). 'A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel.' Cell 81(2): 299-307. Sanguinetti, M. C. and M. Tristani-Firouzi (2006). 'hERG potassium channels and cardiac arrhythmia.' Nature 440(7083): 463-469. Schonherr, R. and S. H. Heinemann (1996). 'Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel.' J Physiol 493 ( Pt 3): 635-642. Schonherr, R., L. M. Mannuzzu, E. Y. Isacoff and S. H. Heinemann (2002). 'Conformational switch between slow and fast gating modes: allosteric regulation of voltage sensor mobility in the EAG K+ channel.' Neuron 35(5): 935-949. Silverman, W. R., C. Y. Tang, A. F. Mock, K. B. Huh and D. M. Papazian (2000). 'Mg(2+) modulates voltage-dependent activation in ether-a-go-go potassium channels by binding between transmembrane segments S2 and S3.' J Gen Physiol 116(5): 663-678. Singh, B. N. (1999). 'Current antiarrhythmic drugs: an overview of mechanisms of action and potential clinical utility.' J Cardiovasc Electrophysiol 10(2): 283-301. Smith, P. L., T. Baukrowitz and G. Yellen (1996). 'The inward rectification mechanism of the HERG cardiac potassium channel.' Nature 379(6568): 833-836. Smith, P. L. and G. Yellen (2002). 'Fast and slow voltage sensor movements in HERG potassium channels.' J Gen Physiol 119(3): 275-293. Stambler, B. S., M. A. Wood, K. A. Ellenbogen, K. T. Perry, L. K. Wakefield and J. T. VanderLugt (1996). 'Efficacy and safety of repeated intravenous doses of ibutilide for rapid conversion of atrial flutter or fibrillation. Ibutilide Repeat Dose Study Investigators.' Circulation 94(7): 1613-1621. Torres, A. M., P. S. Bansal, M. Sunde, C. E. Clarke, J. A. Bursill, D. J. Smith, A. Bauskin, S. N. Breit, T. J. Campbell, P. F. Alewood, P. W. Kuchel and J. I. Vandenberg (2003). 'Structure of the HERG K+ channel S5P extracellular linker: role of an amphipathic alpha-helix in C-type inactivation.' J Biol Chem 278(43): 42136-42148. Trudeau, M. C., J. W. Warmke, B. Ganetzky and G. A. Robertson (1995). 'HERG, a human inward rectifier in the voltage-gated potassium channel family.' Science 269(5220): 92-95. Tseng, G. N. and H. R. Guy (2005). 'Structure-function studies of the outer mouth and voltage sensor domain of hERG.' Novartis Found Symp 266: 19-35; discussion 35-45. Vandenberg, J. I., A. M. Torres, T. J. Campbell and P. W. Kuchel (2004). 'The HERG K+ channel: progress in understanding the molecular basis of its unusual gating kinetics.' Eur Biophys J 33(2): 89-97. Wang, S., S. Liu, M. J. Morales, H. C. Strauss and R. L. Rasmusson (1997). 'A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes.' J Physiol 502 ( Pt 1): 45-60. Wang, W. and R. MacKinnon (2017). 'Cryo-EM Structure of the Open Human Ether-a-go-go-Related K(+) Channel hERG.' Cell 169(3): 422-430 e410. Weerapura, M., T. E. Hebert and S. Nattel (2002). 'Dofetilide block involves interactions with open and inactivated states of HERG channels.' Pflugers Arch 443(4): 520-531. Yang, Y. C., J. Y. Hsieh and C. C. Kuo (2009). 'The external pore loop interacts with S6 and S3-S4 linker in domain 4 to assume an essential role in gating control and anticonvulsant action in the Na(+) channel.' J Gen Physiol 134(2): 95-113. Yang, Y. C. and C. C. Kuo (2002). 'Inhibition of Na(+) current by imipramine and related compounds: different binding kinetics as an inactivation stabilizer and as an open channel blocker.' Mol Pharmacol 62(5): 1228-1237. Yang, Y. C. and C. C. Kuo (2005). 'An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+.' J Gen Physiol 125(5): 465-481. Yu, F. H., V. Yarov-Yarovoy, G. A. Gutman and W. A. Catterall (2005). 'Overview of molecular relationships in the voltage-gated ion channel superfamily.' Pharmacol Rev 57(4): 387-395. Zhang, M., J. Liu and G. N. Tseng (2004). 'Gating charges in the activation and inactivation processes of the HERG channel.' J Gen Physiol 124(6): 703-718. Zhang, Y., C. K. Colenso, A. El Harchi, H. Cheng, H. J. Witchel, C. E. Dempsey and J. C. Hancox (2016). 'Interactions between amiodarone and the hERG potassium channel pore determined with mutagenesis and in silico docking.' Biochem Pharmacol 113: 24-35. Zimetbaum, P. (2007). 'Amiodarone for atrial fibrillation.' N Engl J Med 356(9): 935-941. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21080 | - |
| dc.description.abstract | hERG K+ 鉀離子通道對於控制心臟動作電位的持續時間相當重要。Amiodarone (AMD)是一種廣泛使用的第三型抗心律不整藥物,可抑制hERG電流;但具備相對較少的心律失常副作用之產生。我們使用注射的非洲爪蟾卵母細胞(Xenopus oocyte)與雙電極電壓鉗制技術(two-electrode voltage clamp techniques)來表現hERG 通道於卵母細胞上,並記錄電位刺激改變產生之hERG電流以及AMD 對此通道蛋白的電流修飾作用。我們發現AMD 會結合在hERG 通道蛋白的去活化狀態,並且其解離常數(Kd)值為1.4μM。並且AMD 在22 ℃下會減緩通道蛋白活化速率(activation rate)以及增強不活化速率(inactivation rate)來抑制輕度和強去極化刺激下產生之hERG 電流。在37 ℃時hERG 通道蛋白活化速率(activation rate)會顯著的加速,但不活化速率(inactivation rate)卻減慢。因此,AMD 在輕度和強烈去極化電位刺激(例如,0.3 sec pulse)下分別以弱的和強的去極化刺激(例如-60mV 和+30mV)則各別會減弱(-60mV)與增強(+30mV)15-20%的抑制作用。同時,AMD 可以劑量依賴性地(dose-dependently)抑制hERG 回返性尾巴電流(resurgent tail current),而不會顯著改變22 ℃ 和37 ℃時尾巴電流衰減的速率,顯示藥物的抑制作用是透過促進hERG 通過靜默路徑(silent route)來進行不活化狀態的恢復。最重要的是,AMD 在37 ℃之下對於prepulse 後之去極化後刺激(afterdepolarization)所引發的hERG 電流並不會產生抑制作用而是明顯的促進作用,但在22 ℃時此促進作用的產生並沒有那麼明顯。綜合以上,AMD 是一種有效的hERG 通道門閥開關修飾(gating modifier)藥物,能夠延長心臟動作電位的高原期(而不會增加去極化後的電流抑制)。但是,在體溫過低或其它減緩hERG 通道活化速 (activation rate)的情況下,應謹慎使用AMD。
另一方面,Ibutilide(IBT)和dofetilide(DOF)有效抑制hERG K+電流以延長心臟動作電位,但會有快速性心律失常相關副作用的潛在風險。在藥理上,尚不清楚IBT 和DOF 是主要作為hERG 通道的孔洞阻斷劑或門閥開關修飾劑。在臨床上,考慮到嚴重的副作用(例如Torsade de Pointes, TdP)的風險增加,一般不建議將其它第三型抗心律不整藥物與IBT 或DOF 合併使用。但是,有臨床報告顯示,合併使用IBT 和AMD 可降低TdP 之發生率,而不是增加。我們發現IBT 和DOF 不會阻塞開啟的hERG 通道,但是劑量依賴性地增強了不活化以抑制hERG 電流。將IBT 或DOF 與AMD 合併使用時,在去極化電流和復極化hERG 回返性尾巴電流具有加成抑制的作用,但在去極化後刺激階段則不然。事實上,合併使用時,甚至可以促進去極化後刺激階段的hERG 電流。因此,IBT 或DOF 與AMD的合併使用,能更有效地延長心臟動作電位,以減慢心律,而不會使早發性去極化後刺激和致命的快速性心律失常的風險有顯著地增加。 | zh_TW |
| dc.description.abstract | hERG K+ channel is important for controlling the duration of cardiac action potentials. Amiodarone (AMD), a widely prescribed class III antiarrhythmic, could inhibit hERG currents with relatively few tachyarrhythmic adverse events. We use injected Xenopus oocyte with two-electrode voltage clamp techniques to characterize the action of AMD on hERG channels. We found that AMD binds to the resting hERG channel with an apparent dissociation constant of ~1.4 μM, and inhibits hERG currents at mild and strong depolarization pulses by slowing activation and enhancing inactivation, respectively, at 22 oC. The activation kinetics of hERG channel activation are much faster but inactivation kinetics are slower at 37 oC. AMD accordingly has a 15-20% weaker and stronger inhibitory effect at mild and strong depolarization (e.g. -60 mV and +30 mV, 0.3 sec-pulse), respectively. In the meanwhile, the resurgent hERG tail currents are dose-dependently inhibited by AMD without altering the kinetics of current decay at both 22 oC and 37 oC, indicating facilitation of recovery from inactivation via the silent route. Most importantly, AMD no longer inhibits but enhances hERG currents at a mild pulse shortly after a prepulse at 37 oC, but not so much at 22 oC. We conclude that AMD is an effective hERG channel gating modifier capable of lengthening the plateau phase of cardiac action potential (without increasing the chance of afterdepolarization). AMD, however, should be used with caution in hypothermia or the other scenarios which slow hERG channel activation.
On the other hand, ibutilide (IBT) and dofetilide (DOF) effectively inhibits hERG K+ currents to lengthen the cardiac action potential, but is associated with a potential risk of tachyarrhythmia. Pharmacologically, it is unclear whether IBT and DOF acts chiefly as a pore blocker or a gating modifier of hERG channels. Clinically, concomitant use of the other type III anti-arrhythmics with IBT or DOF is in general not recommended in view of the increased risk of serious side effect such as Torsade de Pointes (TdP). However, there are clinical reports on a decreased rather than increased incidence of TdP with concomitant application of IBT and AMD. We found that IBT and DOF do not block the open hERG channel pore, but dose-dependently enhance the inactivation to inhibit hERG currents. Concomitant use of IBT or DOF with AMD has an additive inhibitory effect on hERG currents during the depolarization and the repolarization resurgent tail, but not in the afterdepolarization phases. In fact, the hERG currents during the afterdepolarization phase could even be enhanced. Combination of IBT or DOF with AMD may therefore more effectively lengthen cardiac action potentials to slow the heart rate, without as much increase of the risk of early afterdepolarization and deadly tachyarrhythmias. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:26:44Z (GMT). No. of bitstreams: 1 ntu-109-D01441005-1.pdf: 11531551 bytes, checksum: a1c658827c019106c47c83e239270a13 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 .................................................... i
致謝 ..................................................... ii 英文摘要 ..................................................... iii 中文摘要 ....................................................... v 目錄 ..................................................... vii 第一章: 導論 ...................................................... 1 1.1 鉀離子通道的分類 ........................................... 1 1.2 hERG 鉀離子通道之電壓依賴性結構與功能 ...................... 1 1.3 心臟動作電位與hERG 之角色 .................................. 3 1.4 hERG 鉀離子通道之活化與不活化 ............................... 3 1.5 hERG 鉀離子通道之門閥開關調控特性 ........................... 6 1.6 心臟心律不整之機轉與第三型抗心律不整藥物 ................... 7 第二章: 實驗材料與方法 ............................................. 11 2.1 hERG K+通道的分子生物技術與細胞表現 ........................ 11 2.2 電生理記錄 ................................................ 11 2.3 數據分析 .................................................. 12 第三章: Amiodarone 對於hERG 鉀離子通道抑制和促進作用之生物物理機制與溫度依賴性 ...................................................... 14 3.1 結果 ...................................................... 14 3.1.1 22℃下 AMD 抑制hERG 電流是透過減緩輕微電壓(mild pulse)刺 激所誘導之hERG 電流的活化並增強較強電壓(strong pulse)刺激下產 生之hERG 通道的不活化所達成 ............................ 14 3.1.2 hERG 通道的門閥開關調控與溫度密切相關 ............. 15 3.1.3 37°C 時AMD 不太有效地減慢hERG 通道的活化,但更有效地增強不活化 ...................................................... 16 3.1.4 AMD 以解離常數值約1.4μM 結合到hERG 通道的去活化狀態 .................................................... 16 3.1.5 AMD 透過促進不活化態由靜默路徑之恢復不活化來抑制hERG 尾 巴電流 ...................................................... 18 3.1.6 有兩種不同的開啟和相對應的不活化狀態,它們藉由靜默路徑 恢復的傾向不同 ...................................................... 19 3.1.7 AMD 透過減緩整體不活化的恢復速率,增強低電位去極化後刺激 之hERG 電流 ................................................ 20 3.1.8 AMD 在模擬正常心跳和心跳過速的電位刺激下對hERG 電流顯示 出溫度依賴性(temperature-dependent)和使用依賴性修飾作用 ...................................................... 22 3.1.9 表與說明 ............................................ 23 3.1.10 圖說 ............................................... 27 3.1.11 圖 ................................................. 35 3.2 討論 ...................................................... 49 3.2.1 hERG 通道門閥開關調控的特徵:進入開啟狀態與多元的不活化 狀態產生和恢復路徑 ......................................... 49 3.2.2 AMD 對hERG 通道的分子作用:活化/不活化的電壓依賴性增加,並促進了不活化的靜默路徑恢復,尤其是在37℃時 ............... 50 3.2.3 AMD 對抗心律不整的獨特作用:在不同的心臟動作電位階段,不 同的使用依賴性和溫度依賴性的抑制和增強hERG 電流 .......... 51 第四章: IBT 和DOF 對hERG K+通道的溫度依賴性門閥開關修飾作用及其與AMD 的相互作用 ...................................................... 53 4.1 結果 ...................................................... 53 4.1.1 在22℃下IBT 和DOF 結合至hERG 通道去活化狀態,引起電壓依賴性活化速率減慢 ........................................... 53 4.1.2 IBT 對hERG 通道的抑制作用具有明顯的溫度依賴性 ..... 53 4.1.3 DOF 對hERG 通道的抑制作用類似於IBT ............... 54 4.1.4 IBT 或DOF 合併使用AMD 可能會對22℃去極化後刺激產生的 hERG 電流產生促進作用 ....................................... 55 4.1.5 同時使用DOF 和AMD 可能會對37℃去極化後刺激的hERG 電流產生促進作用 ................................................. 55 4.1.6 表與說明 ............................................ 56 4.1.7 圖說 ................................................ 60 4.1.8 圖 .................................................. 64 4.2 討論 ...................................................... 70 IBT 或DOF 與AMD 合併使用之藥理性質與交互作用之機轉 .............. 70 參考文獻 ...................................................... 71 附件 ...................................................... 82 Temperature Dependence of the Biophysical Mechanisms Underlying the Inhibition and Enhancement Effect of Amiodarone on hERG Channels(including 6 supplemental figures) ...................................................... 82 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心臟動作 | zh_TW |
| dc.subject | hERG K+ 鉀離子通道 | zh_TW |
| dc.subject | 靜默路徑恢復不活化 | zh_TW |
| dc.subject | 去極化後刺激 | zh_TW |
| dc.subject | 第三型抗 心律不整藥物 | zh_TW |
| dc.subject | 回返性hERG 尾巴電流 | zh_TW |
| dc.subject | 快速型心律不整 | zh_TW |
| dc.subject | silent route recovery from inactivation | en |
| dc.subject | cardiac action potential | en |
| dc.subject | tachyarrhythmias | en |
| dc.subject | resurgent hERG tail currents | en |
| dc.subject | type III anti-arrhythmics | en |
| dc.subject | hERG K+ channel | en |
| dc.subject | afterdepolarization | en |
| dc.title | 第三型抗心律不整藥物對於hERG鉀離子通道抑制和
促進作用之生物物理機制與溫度依賴性 | zh_TW |
| dc.title | Temperature Dependence of the Biophysical Mechanisms
Underlying the Inhibition and Enhancement Effect of type III anti-arrhythmics on hERG Channels | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡明正,劉天申,湯志永,楊雅晴,楊世斌 | |
| dc.subject.keyword | hERG K+ 鉀離子通道,靜默路徑恢復不活化,去極化後刺激,第三型抗 心律不整藥物,回返性hERG 尾巴電流,快速型心律不整,心臟動作, | zh_TW |
| dc.subject.keyword | hERG K+ channel,silent route recovery from inactivation,afterdepolarization,type III anti-arrhythmics,resurgent hERG tail currents,tachyarrhythmias,cardiac action potential, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU202000149 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-01-20 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf 未授權公開取用 | 11.26 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
