請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21072
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 銀慶剛 | |
dc.contributor.author | Chien-Ming Chi | en |
dc.contributor.author | 紀建名 | zh_TW |
dc.date.accessioned | 2021-06-08T03:26:40Z | - |
dc.date.copyright | 2020-02-05 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-01-22 | |
dc.identifier.citation | [1] N. Kunitomo and T. Yamamoto. Properties of predictors in misspecified autoregressive time series models. Journal of the American Statistical Association, 1985.
[2] H. L. Hsu, C. K. Ing, and H. Tong. On model selection from a finite family of possibly misspecified time series models. Annals of Statistics, 2018. [3] K. S. Chan. Consistency and limiting distribution of the least squares estimator of a threshold autoregressive model. Annals of Statistics, 1992. [4] H. Tong and K. S. Lim. Threshold autoregression, limit cycles and cyclical data. Journal of the Royal Statistical Society, 1980. [5] C. K. Ing. Multistep prediction in autoregressive processes. Econometric Theory, 2003. [6] R. Greenaway-McGrevy. Evaluating panel data forecasts under independent realization. Journal of Multivariate Analysis, 2015. [7] P. M. Pincheira and K. D. West. A comparison of some out-of-sample tests of predictability in iterated multi-step-ahead forecasts. Research in Economics, 2016. [8] W.A. Fuller and D.P. Hasza. Properties of predictors from autoregressive time series. Journal of the American Statistical Association, 1981. [9] Ing C. K. and C. Z. Wei. On same-realization prediction in an infinite-order autoregressive process. Journal of Multivariate Analysis, 2003. [10] T. C. F. Cheng, C. K. Ing, and S. H. Yu. Inverse moment bounds for sample autocovariance matrices based on detrended time series and their applications. Linear Algebra and its Applications, 2015. [11] C. Z. Wei. Adaptive prediction by least squares predictors in stochastic regression models with applications to time series. Annals of Statistics, 1987. [12] R. S. Tsay. Analysis of financial time series. Wiley; 3 edition, 2002. [13] J. D. Hamilton. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 1989. [14] C. W. J. Granger and A. P. Andersen. An introduction to bilinear time series models. Gottingen : Vandenhoeck and Ruprecht, 1978. [15] R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look into the future. International Journal of Forecasting, 2014. [16] B. E. Hansen. Sample splitting and threshold estimation. Econometrica, 2000. [17] J. Gonzalo and J.Y. Pitarakis. Estimation and model selection based inference in single and multiple threshold models. Journal of Econometrics, 2000. [18] B. E. Hansen. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica, 1996. [19] K. S. Chan and H. H. Tong. On the use of the deterministic lyapunov function for the ergodicity of stochastic difference equation. Advances in Applied Probability, 1985. [20] R. L. Tweedie. The existence of moments for stationary markvos chains. Journal of Applied Probability, 1983. [21] S. P. Meyn and R. L. Tweedie. Markov chains and stochastoc stability. Springer-Verlag, 2005. [22] H. Z. An and F. C. Huang. The geometrical ergodicity of nonlinear autoregressive models. Statistica Sinica, 1996. [23] R. Durrett. Probability: Theory and examples. Cambridge Series in Statistical and Probabilistic Mathematics, 2019. [24] Ing C. K. Chi, C. M. and Lv. J. Working paper. Manuscript, 2019. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21072 | - |
dc.description.abstract | 本論文考慮自迴歸時間趨勢模型 (以下稱模型一) 與自迴歸自我觸發式門檻模型 (以下稱模型二) 之均方誤差的漸進表達式。關於模型一,我們提出一費雪訊息矩陣 (Fisher information matrix) 等價定理並藉此推導出在非常一般的時間趨勢下的預測均方差。模型二包含了一門檻值與一個門檻延遲項,此二者是決定未來值的關鍵。根據本文計算,模型二的預測除取決於回歸參數的估計值外,亦與門檻延遲值落點有關。舉例而言,當模型二門檻延遲項落於門檻估計值與門檻真值之間時,預測者會誤判模型。此種誤判機率甚低,但一旦發生,將造成極大的預測誤差。本文主要貢獻之一為模型二的預測誤差包含常見的回歸係數估計誤差與模型誤判誤差。正確的均方誤差表達式將有助於模型選擇等統計應用。本文除了預測理論上有所突破外,在模型選擇及矩陣代數的研究上亦帶來新的啟發。 | zh_TW |
dc.description.abstract | In this work, we provide asymptotic expressions for mean squared prediction error (AMSPE) of autoregressive models with time trend and of self-exciting autoregressive threshold models (SETAR). For time trend models, we provide a characteristic theorem of Fisher information matrix, which in turn is used for deriving AMSPE of AR models with a general time trend. On the other hand, a SETAR process includes a threshold and threshold lag term deciding the state at the next period. According to our calculation, both coefficient and state estimation are crucial to prediction of SETAR models. Misjudgement of state occurs when the estimated state is not the true state. More specifically, it occurs when the value of threshold lag term at current time falls into the interval of estimated threshold and the real one. Such misjudgement happens with low probability, but when it does, it causes much prediction error. Our result shows AMSPE of SETAR includes both estimation variance and misjudgement of the state. Definite results of AMSPE can facilitate many statistical applications such as model selection. On the whole, besides analysis of prediction error, our work contributes to model selection and matrix algebra. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:26:40Z (GMT). No. of bitstreams: 1 ntu-109-F01323056-1.pdf: 1701450 bytes, checksum: 36f1e14aa1fa9e97c6403bf62ce15408 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Prediction Error of Time Series Models With Deterministic Time Trend 6 2.1 Introduction................................. 6 2.1.1 Notation............................... 9 2.2 InverseMomentBound........................... 9 2.3 ApplicationtoPredictionError....................... 16 2.4 SimulationResults ............................. 19 2.5 ProofoftheCharacteristicTheorem .................... 22 2.6 Appendix .................................. 27 3 Prediction Error of Time Series Models With Thresholds 32 3.1 Introduction................................. 32 3.1.1 TheModelSetting ......................... 34 3.1.2 Conditional Ordinary Least Square Estimator . . . . . . . . . . . 35 3.1.3 ModifiedEstimation ........................ 35 3.1.4 Limiting the Distribution of the Threshold Estimator . . . . . . . 37 3.1.5 h-stepEstimator .......................... 37 3.2 MainResults ................................ 39 3.2.1 MainResultforSETAR(1)..................... 39 3.2.2 ExtensiontoSETAR(p) ...................... 41 3.2.3 Extensiontoh-stepPredictionError . . . . . . . . . . . . . . . . 43 3.2.4 SimulationResults ......................... 47 3.3 SETARProcessAnalysis.......................... 51 3.3.1 MomentBoundsforNormalizedEstimators . . . . . . . . . . . . 51 3.3.2 MisjudgementofState ....................... 51 3.3.3 EstimationVariance ........................ 52 3.4 Appendix .................................. 52 3.4.1 Propositions and Theorems for the Main Results . . . . . . . . . 59 3.4.2 ProofofTheorem7......................... 61 4 Conclusion 68 5 Supplementary Material to SETAR(1) 69 5.1 Notation................................... 69 5.2 PreliminaryResults............................. 75 5.3 MomentBounds............................... 96 5.4 ProofsforStatementsintheAppendix...................101 6 Supplementary Material to SETAR(p) 137 Bibliography 150 | |
dc.language.iso | en | |
dc.title | 線型與非線型時間序列預測誤差的漸進分析 | zh_TW |
dc.title | Asymptotic Analysis of Prediction Error for Linear and Nonlinear
Time Series | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 冼芻蕘,黃信誠,俞淑惠,徐南蓉,蔡恆修 | |
dc.subject.keyword | 時間序列,非線型時間序列,預測誤差,等價定理,費雪訊息矩陣, | zh_TW |
dc.subject.keyword | time series,non-linear time series,prediction error,characteristic theorem,Fisher information matrix, | en |
dc.relation.page | 152 | |
dc.identifier.doi | 10.6342/NTU202000243 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-01-31 | |
dc.contributor.author-college | 社會科學院 | zh_TW |
dc.contributor.author-dept | 經濟學研究所 | zh_TW |
顯示於系所單位: | 經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-109-1.pdf 目前未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。