Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21014
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳宗霖(Tzong-Lin Wu)
dc.contributor.authorHui-Ling Tingen
dc.contributor.author丁惠玲zh_TW
dc.date.accessioned2021-06-08T03:15:39Z-
dc.date.copyright2017-02-16
dc.date.issued2017
dc.date.submitted2017-02-06
dc.identifier.citation[1] D. Kholodniok, G. Kalinin, E. Vernoslova, and I. Vendik, “Wideband 0-dB branch-line directional couplers,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2000, pp. 1307–1310.
[2] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, 2nd ed. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
[3] D. M. Pozar, Microwave Engineering, 3rd ed. New York, NY, USA: Wiley, 2005.
[4] C.-Y. Chi and G. M. Rebeiz, “Design of lange-couplers and single-sideband mixers using micromachining techniques,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 2, pp. 291–294, Feb. 1997
[5] R. Mongia, P. Bhartia, and I. J. Bahl, RF and Microwave Coupled-Line Circuits, 2nd ed. Boston, MA, USA: Artech House, 2007.
[6] Y. Xu and R. G. Bosisio, “Design of multi-way power divider by using stepped-impedance transformers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 9, pp. 2781–2790, Sep. 2012.
[7] I. Sakagami and T. Wuren, “Compact multi-way power dividers for dual-band, wide-band and easy fabrication,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 489–492.
[8] K. A. A. Shamaileh, A. M. Qaroot, and N. I. Dib, “Design of N-way power divider similar to the Bagley polygon divider with an even number of output ports,” Prog. Electromagn. Res., vol. 20, pp. 83–93, 2011.
[9] J. Yao and S. Bo, “Mirrored Coupling Structures for Microwave Signal Splitting and Combining,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 10, pp. 3551–3557, Oct. 2013.
[10] A. Eroglu, “ N-way planar high-power combiner design for RF power amplifiers,” IET Sci., Meas. Technol., vol. 2, no. 2, pp. 61–67, 2008.
[11] T. Ji, H. Yoon, J. K. Abraham, and V. K. Varadan, “Ku-band 553 antenna array feed distribution network with ferroelectric phase shifters 554 on silicon,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 3, 555 pp. 1131–1138, Mar. 2006.
[12] M.-J. Ho, G. L. Stüber, and M. D. Austin, “Performance of switched-beam smart antennas for cellular radio systems,” IEEE Trans. Veh. Technol., vol. 47, no. 1, pp. 10-19, Feb. 1998.
[13] J. Blass, “The multidirectional antenna: A new approach to stacked beams,” in IRE Nat. Conv. Rec., vol.8, 1966, pp. 48-50.
[14] J. Nolen, “Synthesis of multiple beam networks for arbitrary illuminations,” Radio Div., Bendix Corporation, Baltimore, MD, 1965, Ph.D. dissertation.
[15] J. Butler and R. Lowe, “Beam-forming matrix simplifies design of electronically scanned antennas,” Electron. Design, pp. 170-173, Apr. 1961.
[16] G. R. Aiello, and G. D. Rogerson, “Ultra-Wideband Wireless Systems” IEEE Microwave, vol. 4, no. 2, pp. 36-47, Jun. 2003.
[17] L. Yang and G. B. Giannaakis, “Ultra-wideband communications An Idea Whose Time Has Come,” IEEE Signal Processing Mag., vol. 21, no. 6, pp. 26-54, Nov. 2004.
[18] T. Wuren, K. Taniya, I. Sakagami, and M. Tahara, “Miniaturization of 3- and 5-way bagley polygon power dividers,' 2005 Asia-Pacific Microwave Conference (APMC) Proceedings, Vol. 4, Dec. 2005.
[19] H. Oraizi, and S. A. Ayati, “Optimum design of a modified 3-way bagley rectangular power divider,' 2010 Mediterranean Microwave Symposium (MMS), 25-28, 2010
[20] I. Sakagami, T. Wuren, M. Fujii, and M. Tahara, “Compact multi-way power dividers similar to the bagley polygon,” IEEE/MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp.419-422,.
[21] I. Sakagami, T. Wuren, M. Fujii, and Y. Tomoda, “A new type of multi-way microwave power divider based on bagley polygon power divider,' Proc. of 2006 Asia-Pacific Microw. Conf., 2006.
[22] D. Elles, and Y.-K. Yoon, “Compact dual band three way bagley polygon power divider using composite right/left handed (CRLH) transmission lines,” IEEE/MTT-S Int. Microwave Symposium, pp.485-488, 2009.
[23] B. M. Schiffman, “A new class of broadband microwave 90-degree phase shifters,” IEEE Trans. Microw. Theory Techn., vol. 6, no. 4, pp. 232-237, Apr. 1958
[24] C. Free and C. Aitchison, “Improved analysis and design of coupled line phase shifters,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 9, pp. 2126–2131, Sep. 1995.
[25] B. Schiffman, “Multisection microwave phase-shift network,” IEEE Trans. Microw. Theory Techn., vol. 14, no. 4, p. 209, Apr. 1966.
[26] J. Shelton and J. Mosko, “Synthesis and design of wideband equalripple TEM directional couplers and fixed phase shifters,” IEEE Trans. Microw. Theory Techn., vol. MTT-14, no. 10, pp. 246–252, 462–473, Oct. 1966.
[27] V. Meschanov, I. Metelnikova, V. Tupikin, and G. Chumaevskaya, “A new structure of microwave ultrawide-band differential phase shifter,” IEEE Trans. Microw. Theory Tech., vol. 42, no. 5, pp. 762–765, May 1994.
[28] D. Chai, M. Linh, M. Yim, and G. Yoon, “Asymmetric Teflon-based Schiffman phase shifter,” Electron. Lett., vol. 39, no. 6, pp. 529–530, 2003.
[29] F. Minnaar, J. Coetzee, and J. Joubert, “A novel ultra wideband microwave differential phase shifter,” IEEE Trans. Microw. Theory Techn., vol. 45, no. 8, pp. 1249–1252, Aug. 1997.
[30] H. Ahn and I. Wolff, “Asymmetric ring-hybrid phase shifters and attenuators,” IEEE Trans. Microw. Theory Techn., vol. 50, no. 4, pp. 1146–1155, Apr. 2002.
[31] S. Eom, “Broadband 180 bit phase shifter using λ/2 coupled line and parallel λ/8 stubs,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.5, pp. 228–230, May 2004.
[32] Z. Jin, S. Ortiz, and A. Mortazawi, “Design and performance of a new digital phase shifter at X-band,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 428–430, Sep. 2004.
[33] S. Cheng, E. Öjefors, P. Hallbjörner, and A. Rydberg, “Compact reflective microstrip phase shifter for traveling wave antenna applications,” IEEE Microw.Wireless Compon. Lett., vol. 16, no. 7, pp. 413–433, Jul. 2006.
[34] A. Abbosh, “Ultra-wideband phase shifters,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 9, pp. 1935–1941, Sep. 2007.
[35] S. Gruszczynski, K. Wincza, “Broadband 4 × 4 Butler Matrices as a Connection of Symmetrical Multisection Coupled-Line 3-dB Directional Couplers and Phase Correction Networks,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 1, pp. 1-9, Jan. 2009.
[36] H. T. Nguyen, K. S. Ang, G. I. Ng, “Design of a broad-band novel Butler matrix,” in Proc. Asia-Pacific Microw. Conf., 2011, pp. 753 - 756.
[37] L. M. Abdelghani, T.A. Denidni, M. Nedil, “Ultra-broadband 4×4 Compact Butler Matrix using Multilayer Directional Couplers and Phase Shifters,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[38] M. E. Bialkowski, F.-C. E. Tsai, Y.-C. Su, K.-H. Cheng, “Design of Fully Integrated 4 × 4 and 8 × 8 Butler Matrices in Microstrip/Slot Technology for Ultra Wideband Smart Antennas,” in IEEE Antennas Propag. Soc. Int. Symp., pp. 1-4, July 2008.
[39] N. N. Rao, Elements of Engineering Electromagnetics, 5th Edition, Prentica-Hall, Inc., 200, Chaps. 6 and 7.
[40] R. E. Collin, Field Theory of Guided Waves, 2nd Edition New York: Wiley, 1990.
[41] S.-K. Hsu, J.-C. Yen, and T.-L. Wu, “A novel compact forward-wave directional coupler design using periodical patterned ground structure,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 5, pp. 1249–1257, May 2011.
[42] K. C. Gupta, R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, 2nd ed. Norwood, MA, USA: Artech House, 1996.
[43] W. R. Eisenstadt and Y. Eo, “S-parameter-based IC Interconnect Transmission Line Characterization,” IEEE Trans. Compon., Hybrids, Manuf. Technol., vol. 15, no. 4, pp. 483-490, Aug. 1992.
[44] Y. Wu, W. Sun, S.-W. Leung, Y. Diao, K.-H. Chan, and Y.-M. Siu,“Single-layer microstrip high-directivity coupled-line coupler with tight coupling,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 2, pp. 746–753, Feb. 2013.
[45] H. Oraizi and S.-A. Ayati, “Optimum design of a modified 3-way Bagley rectangular power divider,” in Proc. Medit. Microw. Symp. (MMS), 2010, pp. 25–28.
[46] H. Oraizi and S.-A. Ayati, “Optimum design of broadband n-way rectangular power dividers with arbitrary power division and impedance matching,” IET Microw., Antennas Propag., vol. 5, no. 12, pp. 1447–1454, Sep. 2011.
[47] H. Oraizi and S. A. Ayati, “Optimum design of a novel N-way planar power divider/combiner with impedance matching,” IET Microw., Antennas Propag., vol. 6, no. 4, pp. 418–425, Mar. 2012.
[48] S.-K. Hsu, C.-C. Tseng, and T.-L. Wu, “Miniaturization Technique for Eight-Port Forward-Wave Directional Couplers by Using Open Stubs and Patterned Ground Structures,” in Proc. Asia–Pacific Microw. Conf., Dec. 2014, pp. 696-698.
[49] H.-L. Ting, S.-K. Hsu, T.-L. Wu, “A Novel and Compact Eight-Port Forward-Wave Directional Coupler with Arbitrary Coupling Level Design Using Four-Mode Control Technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 1-9, Dec. 2016.
[50] T. N. Kaifas and J. N. Sahalos, “On the design of a single-layer wideband Butler matrix for switched-beam UMTS system applications”, IEEE Antennas and Prop. Magazine, vol. 48, No. 6, pp. 193-204, Dec. 2006.
[51] S. Gruszczynski, K. Wincza, and K. Sachse, “Design of compensated coupled-stripline 3-dB directional couplers, phase shifters and magic-T’s—Part II: Broadband coupled-line circuits,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 9, pp. 3501–3507, Sep. 2006.
[52] Y. J. Cheng, K. Wu, and W. Hong, “Substrate integrated waveguide (SIW) broadband compensating phase shifter,” in IEEE MTT-S Int. Microw. Symp. Dig., 2009, pp. 845-848.
[53] A. Alaqeel, S. Almorqi, M. Algassim, O. Haraz, S. Alshebeili, A.-R. Sebak, “Broadband phase shifter for K- and Ka- bands beam-steering networks,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 2541 - 2542, Oct. 2015
[54] T.-H. Lin, S.-K. Hsu, and T.-L. Wu, “A Novel Broadband Forward-Wave Directional Coupler Design with Periodical H-Shaped Structure,” in Proc. Asia-Pacific Microw. Conf., 2011, pp. 1770-1773.
[55] J.-C. Yen, S.-K. Hsu, T.-H. Lin, T.-L. Wu, “A Broadband Forward-Wave Directional Coupler Using Periodic Y-Shaped Ground Via Structures With Arbitrary Coupling Levels,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 38-47, Jan. 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/21014-
dc.description.abstract本論文以週期性結構之觀念為基石,提出八埠雙對稱前向式耦合器之設計,微型化及寬頻帶的特性為此論文之兩大目標。並利用新式之寬頻八埠耦合器,設計出寬頻四路徑相移器,可應用於建構寬頻八乘八巴特勒矩陣之相移電路,並達到縮小化的目的。在此,一個四模態分析技術首次提出,用於解析雙對稱八埠網路的散射參數矩陣。舉凡八埠元件具雙對稱之結構者,可適用此四模態分析技術,將八埠網路問題簡化為解雙埠網路。
一具有兩對耦合線並於接地平面嵌入週期性缺陷設計之結構被提出,此結構由三層金屬疊構所組成。此八埠耦合線結構具有雙對稱結構,因此存在偶-偶、奇-奇、偶-奇和奇-偶等四種傳播模態。就偶-偶模態而言,其電氣長度會因缺陷結構之等效電感的影響而呈現非線性增加的現象;另外其他三個模態之電氣長度仍舊保持隨頻率線性遞增的變化。偶-偶模態和其他三個模態之相位差距,也因為偶-偶模態電氣長度改變而增加。此外,偶-偶模態之特性阻抗並非設計於50Ω,而是透過調整偶-偶模態電氣長度之方式,達到輸入阻抗的匹配。並藉由此調整電氣長度之方式可設計出不同耦合量的八埠方向耦合器。設計之6-dB方向耦合器,其長與寬各為0.57波長及0.25波長,較現有許多其他八埠方向耦合器之尺寸為小。為更進一步微型化,於兩對耦合線上,周期性地並聯一段0.25波長的殘段,將使單位長度之相位差增大,進而縮減實際長度;另外將接地平面上缺陷結構做蜿蜒處理,亦有助達到微型化之目的。微型化結構之長與寬可再縮小,分別為0.33波長及0.19波長。
前面所提兩個八埠前向式耦合器之設計,其頻寬並非相當大。因此,一新式寬頻帶八埠前向式耦合器被提出。該耦合器亦為雙對稱結構,其四模態分析皆可達到相當寬頻帶的阻抗匹配。不同前述兩種耦合電路,此結構之偶-偶模態和其他三個模態間的相位差距,在某一頻帶間會近乎常數值。根據寬頻阻抗匹配與常數相位差距此兩項特性,可設計不同之功率輸出。其中6-dB及2-dB輸出耦合器可以達到47%的比例寬頻。
將上述寬頻帶八埠前向式耦合器設計為0-dB功率輸出,並加上四條相位延遲傳輸線,形成可同時提供四對不同相位差之寬頻相移器。因為此四路徑寬頻相移電路為三層金屬結構,透過重新安排八乘八巴特勒矩陣中3-dB耦合器之擺放位置於上、下金屬層,八乘八巴特勒矩陣中第二階的相移網路,將可單由此四路徑相移器來實現。不僅避免設計複雜的交叉線路,也大幅減少八乘八巴特勒矩陣尺寸。
在目前微波及毫米波系統趨向多埠輸入,多埠輸出情形下,預期所設計之八埠方向耦合器及四路徑寬頻相移電路,將有更多實際的相關應用。
zh_TW
dc.description.abstractWe propose several eight-port, forward-wave direction couplers (FWDCs) for the purpose of compact sizes and broadband performances, based on periodic structures. We also design a broadband four-way phase shifter. This four-way phase shifter can be applied to the broadband 8 × 8 Butler matrix as phase correction network. Here, the four-mode analysis of dually symmetric networks is proposed for the first time. This technique can be used to simplify the eight-port problem to a two-port problem
An eight-port coupler, composed of two pairs of microstrip coupled lines and etched periodical structures on the middle ground plane, is proposed. There are two planes of symmetry in this structure. Such a dually symmetric structure supports four distinct propagation modes, comprising the even-even (ee) mode, odd-odd (oo) mode, even-odd mode (eo) and odd-even (oe) mode. For the even-even mode, the electrical length dramatically increases with corresponding increases in frequency due to the slow-wave effect. The electrical lengths are linearly dependent on frequencies for the other three modes. Besides, the electrical length difference between even-even and the other three modes is also enlarged. Input impedance matching for the four propagation modes can be achieved by tailoring its dispersion characteristics through the patterned ground plane. An eight-port, forward-wave coupler designed with arbitrary coupling levels can be performed by adjusting the electrical length of even-even mode. Compared to some other eight-port couplers, the total size of the proposed 6-dB couplers (0.57 λg x 0.25 λg ) is more compact. Furthermore, an eight-port, forward-wave directional coupler by using open stubs and defected ground structure (DGS) is also proposed to reduce coupler size. The electrical lengths of the odd-odd, even-odd and odd-even modes are larger than the previous structure because of the capacitive enhancement. Owing to the longer DGS, the electrical length of the even-even mode is more enhanced as well. Thus, the phase difference between the even-even mode and the other three modes will increase. By using these techniques, we can obtain an eight-port 6-dB coupler with the most compact size (0.33 λg x 0.19 λg ).
The aforementioned works concentrate on the design of size reduction. Next, a novel eight-port coupler is developed with periodic H-shape structures on the top and bottom layers for broadband applications. The broadband impedance matching for the four modes can be achieved and the phase difference between even-even mode and the other three modes can keep at an almost constant value over a broad bandwidth. 6-dB coupler, for example, is designed with the fractional bandwidth (FBW) of 47%. We utilize this broadband coupler with 0 dB through level to design a novel, broadband, four-way phase shifter by adding four delay transmission lines. It can support four pairs of phase-shifting routes designed with same or various phase differences in wild frequency range simultaneously. The errors of the phase imbalances for every pair of output ports are smaller than ±6° from 4.7 to 6.5 GHz, and the corresponding FBW is 36%.
Finally, we propose a modified broadband 8 × 8 Butler matrix with three layers to miniaturize the size by using the proposed three-layer, four-way phase shifter. This broadband four-way phase shifter can simplify the design of the phase correction network and reduce the number of components and total size of the 8 × 8 Butler matrix.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:15:39Z (GMT). No. of bitstreams: 1
ntu-106-D98942011-1.pdf: 3324589 bytes, checksum: 5a5d9d397d1b548b3cf68ea85d99f618 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 iii
中文摘要 v
ABSTRACT vii
CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xv
ACRONYMS xvi
Chapter 1 Introduction 1
1.1 Research Motivation 1
1.2 Literature Survey 3
1.3 Contributions 7
1.4 Organization of This Dissertation 9
Chapter 2 Basic Theory and Design Concepts of Eight-Port Forward-Wave Directional Couplers 12
2.1 Four-Mode Analysis of Dually Symmetric Networks……………….12
2.2 Definition of Eight-Port Forward-Wave Directional Couplers............18
2.3 Design Concepts of Eight-Port Forward-Wave Directional Couplers.19
2.3.1 Slow-Wave Transmission Line 19
2.3.2 Analysis of Periodic Structures 22
2.3.3 S-Parameters of Forward-Wave Directional Coupler with Four Symmetric Coupled Lines 25
Chapter 3 Eight-Port Forward-Wave Directional Coupler Using Periodic Patterned Ground Structure 28
3.1 Design Concept 29
3.2 Proposed Unit Cell 29
3.2.1 Equivalent Models 33
3.2.2 Propagation Characteristics 34
3.3 Coupler Design with Proposed Unit Cell 37
3.3.1 Presentation of S-Parameters 37
3.3.2 Design Procedure 39
3.3.3 Simulated and Measured Results 44
3.4 Comparison and Discussion 45
3.5 Summary 49
Chapter 4 Miniaturized Eight-Port Forward-Wave Directional Coupler with Open Stub and Defected Ground Structure 50
4.1 Design Concept 51
4.2 Equivalent Models of Proposed Unit Cell 51
4.3 Simulated and Measured Results 57
4.4 Summary 60
Chapter 5 Broadband Eight-Port Forward-Wave Directional Coupler 61
5.1 Design Concept 62
5.2 Proposed Unit Cell 62
5.2.1 Equivalent Models 66
5.2.2 Propagation Characteristics 68
5.2.3 Symmetric Behavior 73
5.3 Coupler Design with Proposed Unit Cell 74
5.3.1 Presentation of S-Parameters 74
5.3.2 Design Procedure 76
5.3.3 Bandwidth Prediction 78
5.3.4 Practical Design Considerations 79
5.4 Simulated and Measured Results 84
5.5 Summary 88
Chapter 6 Broadband Four-way Phase Shifter and Modified Broadband 8 × 8 Butler Matrix 89
6.1 Broadband Four-way Phase shifter 90
6.1.1 Design Concept 90
6.1.2 Simulated and Measured Results 93
6.2 Modified Broadband 8 × 8 Butler Matrix………………………….....97
6.2.1 Schemes of Conventional, Modified Broadband 8 × 8 Butler Matrices, and Phase Correction Network (II) 97
6.2.2 The First Order of 3-dB Couplers and Phase Correction Network (I)…………………………………………………………………...101
6.3 Summary 101
Chapter 7 Conclusion 103
APPENDIX A…………………………………………………………………………105
APPENDIX B…………………………………………………………………………107
REFERENCE…………………………………………………………………………109
PUBLICATION LIST…………………………………………………………………116
dc.language.isoen
dc.subject寬頻帶相移器zh_TW
dc.subject八乘八巴特勒矩陣zh_TW
dc.subject雙對稱結構zh_TW
dc.subject八埠前向式耦合器zh_TW
dc.subjectdually symmetric structureen
dc.subject8 × 8 Butler matrixen
dc.subjectbroadband four-way phase shifteren
dc.subjecteight-port forward-wave directional coupleren
dc.title寬頻帶八埠前向式方向耦合器暨四路徑寬頻相移器zh_TW
dc.titleBroadband Eight-Port Forward-Wave Directional Couplers and Broadband Four-Way Phase Shifteren
dc.typeThesis
dc.date.schoolyear105-1
dc.description.degree博士
dc.contributor.oralexamcommittee盧信嘉(Hsin-Chia Lu),陳士元(Shih-Yuan Chen),馬自莊(Tzyh-Ghuang Ma),林丁丙(Ding-Bing Lin),邱政男(Cheng-Nan Chiu)
dc.subject.keyword雙對稱結構,八埠前向式耦合器,寬頻帶相移器,八乘八巴特勒矩陣,zh_TW
dc.subject.keyworddually symmetric structure,eight-port forward-wave directional coupler,broadband four-way phase shifter,8 × 8 Butler matrix,en
dc.relation.page116
dc.identifier.doi10.6342/NTU201700287
dc.rights.note未授權
dc.date.accepted2017-02-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved