Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20949
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭石通
dc.contributor.authorYu-Chi Lien
dc.contributor.author李昱錡zh_TW
dc.date.accessioned2021-06-08T03:11:57Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-03-13
dc.identifier.citationAmes T., Smit N.E.J.M., Braun A.R., O’Sullivan J.N. & Skoglund L.G. (1997) Sweetpotato: Major Pests, Diseases, and Nutritional Disorders. International Potato Center. http://cipotato.org/wp-content/uploads/publication%20files/books/002435.pdf
Bandyopadhyay S., Roy A. & Das S. (2001) Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity. Plant Science 161, 1025-1033.
Berger B. & Baldwin I.T. (2007) The hydroxyproline-rich glycopeptide systemin precursor NapreproHypSys does not play a central role in Nicotiana attenuata's anti-herbivore defense responses. Plant, Cell and Environment 30, 1450-1464.
Bhattacharya R., Koramutla M.K., Negi M., Pearce G. & Ryan C.A. (2013) Hydroxyproline-rich glycopeptide signals in potato elicit signalling associated with defense against insects and pathogens. Plant Science 207, 88-97.
Bienert G.P., Schjoerring J.K. & Jahn T.P. (2006) Membrane transport of hydrogen peroxide. Biochimica et Biophysica Acta 1758, 994-1003.
Carles C.C. & Fletcher J.C. (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends in Plant Science, 8, 394-401.
Casamitjana-Martı́nez E., Hofhuis H.F., Xu J., Liu C.-M., Heidstra R. & Scheres B. (2003) Root-Specific CLE19 Overexpression and the sol1/2 Suppressors Implicate a CLV-like Pathway in the Control of Arabidopsis Root Meristem Maintenance. Current Biology, 13, 1435-1441.
Chen Y.C., Chang H.S., Lai H.M. & Jeng S.T. (2005) Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant, Cell and Environment 28, 251-259.
Chen Y.C., Siems W.F., Pearce G. & Ryan C.A. (2008) Six peptide wound signals derived from a single precursor protein in Ipomoea batatas leaves activate the expression of the defense gene sporamin. The Journal of Biological Chemistry 283, 11469-11476.
Chen Y.C., Tseng B.W., Huang Y.L., Liu Y.C. & Jeng S.T. (2003) Expression of the ipomoelin gene from sweet potato is regulated by dephosphorylated proteins, calcium ion and ethylene. Plant, Cell and Environment 26, 1373-1383.
Christensen S.A., Nemchenko A., Borrego E., Murray I., Sobhy I.S., Bosak L., DeBlasio S., Erb M., Robert C.A., Vaughn K.A., Herrfurth C., Tumlinson J., Feussner I., Jackson D., Turlings T.C., Engelberth J., Nansen C., Meeley R. & Kolomiets M.V. (2013) The maize lipoxygenase, ZmLOX10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. The Plant Journal 74, 59-73.
Constabel C.P., Yip L. & Ryan C.A. (1998) Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology 36, 55-62.
Crane C., Wright E., Dixon R.A. & Wang Z.Y. (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223, 1344-1354.
Degenhardt D.C., Refi-Hind S., Stratmann J.W. & Lincoln D.E. (2010) Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emissions in tomato, Solanum lycopersicum. Phytochemistry 71, 2024-2037.
Delessert C., Wilson I.W., Van der Straeten D., Dennis E.S. & Dolferus R. (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Molecular Biology 55, 165-181.
Denness L., McKenna J.F., Segonzac C., Wormit A., Madhou P., Bennett M., Mansfield J., Zipfel C. & Hamann T. (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiology 156, 1364-1374.
Desikan R., Reynolds A., Hancock J.T. & Neill S.J. (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochemical Journal 330 ( Pt 1), 115-120.
Dixon R.A. & Paiva N.L. (1995) Stress-Induced Phenylpropanoid Metabolism. Plant Cell 7, 1085-1097.
Ellis, S. E. (2004) New Pest Response Guidelines: Spodoptera. USDA/APHIS/PPQ/PDMP. http://www.aphis.usda.gov/ppq/manuals/
Farrokhi N., Whitelegge J.P. & Brusslan J.A. (2008) Plant peptides and peptidomics. Plant Biotechnology Journal, 6, 105-134.
Fletcher L.C., Brand U., Running M.P., Simon R. & Meyerowitz E.M. (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science, 283, 1911-1914.
Gunawardena K., Murray D.K. & Meikle A.W. (2000) Vitamin E and other antioxidants inhibit human prostate cancer cells through apoptosis. Prostate 44, 287-295.
Halitschke R. & Baldwin I.T. (2003) Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata. The Plant Journal 36, 794-807.
Howe G.A., Lightner J., Browse J. & Ryan C.A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8, 2067-2077.
Huffaker A., Dafoe N.J. & Schmelz E.A. (2011) ZmPep1, an ortholog of Arabidopsis elicitor peptide 1, regulates maize innate immunity and enhances disease resistance. Plant Physiology 155, 1325-1338.
Huffaker A., Pearce G., Veyrat N., Erb M., Turlings T.C., Sartor R., Shen Z., Briggs S.P., Vaughan M.M., Alborn H.T., Teal P.E. & Schmelz E.A. (2013) Plant elicitor peptides are conserved signals regulating direct and indirect antiherbivore defense. Proceedings of the National Academy of Sciences of the United States of America 110, 5707-5712.
Jana S. & Choudhuri M.A. (1981) Glycolate metabolism of three submersed aquatic angiosperms: Effect of heavy metals. Aquatic Botany 11, 67-77.
Jih P.J., Chen Y.C. & Jeng S.T. (2003) Involvement of hydrogen peroxide and nitric oxide in expression of the ipomoelin gene from sweet potato. Plant Physiology 132, 381-389.
Koike Y., Hoshino Y., Mii M. & Nakano M. (2003) Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes. Plant Cell Reports 21, 981-987.
Lange B.M., Lapierre C. & Sandermann H., Jr. (1995) Elicitor-Induced Spruce Stress Lignin (Structural Similarity to Early Developmental Lignins). Plant Physiology 108, 1277-1287.
Lee M.H., Yoon E.S., Jeong J.H. & Choi Y.E. (2004) Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Reports 22, 822-827.
Li C., Liu G., Xu C., Lee G.I., Bauer P., Ling H.Q., Ganal M.W. & Howe G.A. (2003) The tomato suppressor of prosystemin-mediated responses2 gene encodes a fatty acid desaturase required for the biosynthesis of jasmonic acid and the production of a systemic wound signal for defense gene expression. Plant Cell 15, 1646-1661.
Li L., Li C., Lee G.I. & Howe G.A. (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences of the United States of America 99, 6416-6421.
Lin C.C., Chu C.F., Liu P.H., Lin H.H., Liang S.C., Hsu W.E., Lin J.S., Wang H.M., Chang L.L., Chien C.T. & Jeng S.T. (2011) Expression of an Oncidium Gene Encoding a Patatin-Like Protein Delays Flowering in Arabidopsis by Reducing Gibberellin Synthesis. Plant and Cell Physiology 52, 421-435.
Lin J.S., Lin C.C., Li Y.C., Wu M.T., Tsai M.H., Hsing Y.I. & Jeng S.T. (2013) Interaction of small RNA-8105 and the intron of IbMYB1 RNA regulates IbMYB1 family genes through secondary siRNAs and DNA methylation after wounding. The Plant Journal 75, 781-794.
Lin J.S., Lin C.C., Lin H.H., Chen Y.C. & Jeng S.T. (2012) MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytologist 196, 427-440.
Lin J.S., Lin H.H., Li Y.C., King Y.C., Sung R.J., Kuo Y.W., Lin C.C., Shen Y.H. & Jeng S.T. (2014) Carbon monoxide regulates the expression of the wound-inducible gene ipomoelin through antioxidation and MAPK phosphorylation in sweet potato. Journal of Experimental Botany 65, 5279-5290.
Lu Y.T. & Ren F. (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Science 171, 286-292.
Machala Z., Tarabova B., Hensel K., Spetlikova E., Sikurova L. & Lukes P. (2013) Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects. Plasma Processes and Polymers 10, 649-659.
Matsubayashi Y. & Sakagami Y. (1996) Phytosulfokine, sulfated peptides that induce the proliferation of single mesophyll cells of Asparagus officinalis L. Proceedings of the National Academy of Sciences of the United States of America, 93, 7623-7627.
Matsubayashi Y. & Sakagami Y. (2006) Peptide hormones in plants. Annual Review of Plant Biology, 57, 649-674.
Mcgurl B., Orozco-Cárdenas M.L., Pearce G. & Ryan C.A. (1994) Overexpression of the Prosystemin Gene in Transgenic Tomato Plants Generates a Systemic Signal That Constitutively Induces Proteinase-Inhibitor Synthesis. Proceedings of the National Academy of Sciences of the United States of America 91, 9799-9802.
Meindl T., Boller T. & Felix G. (1998) The plant wound hormone systemin binds with the N-terminal part to its receptor but needs the C-terminal part to activate it. Plant Cell 10, 1561-1570.
Misra P., Pandey A., Tiwari M., Chandrashekar K., Sidhu O.P., Asif M.H., Chakrabarty D., Singh P.K., Trivedi P.K., Nath P. & Tuli R. (2010) Modulation of Transcriptome and Metabolome of Tobacco by Arabidopsis Transcription Factor, AtMYB12, Leads to Insect Resistance. Plant Physiology 152, 2258-2268.
Molloy S.S., Bresnahan P.A., Leppla S.H., Klimpel K.R. & Thomas G. (1992) Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-X-X-Arg and efficiently cleaves anthrax toxin protective antigen. Journal of Biological Chemistry, 267, 16396-16402.
Nakayama K. (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochemical Journal, 327 ( Pt 3), 625-635.
Narváez-Vásquez J., Orozco-Cárdenas M.L. & Ryan C.A. (2007) Systemic wound signaling in tomato leaves is cooperatively regulated by systemin and hydroxyproline-rich glycopeptide signals. Plant Molecular Biology 65, 711-718.
Narváez-Vásquez J., Pearce G. & Ryan C.A. (2005) The plant cell wall matrix harbors a precursor of defense signaling peptides. Proceedings of the National Academy of Sciences of the United States of America 102, 12974-12977.
Narváez-Vásquez J. & Ryan C.A. (2004) The cellular localization of prosystemin: a functional role for phloem parenchyma in systemic wound signaling. Planta 218, 360-369.
Olson P.D. & Varner J.E. (1993) Hydrogen-Peroxide and Lignification. The Plant Journal 4, 887-892.
Orozco-Cárdenas M.L., Narváez-Vásquez J. & Ryan C.A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13, 179-191.
Orozco-Cárdenas M.L. & Ryan C.A. (1999) Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 6553-6557.
Orozco-Cárdenas M.L., Mcgurl B. & Ryan C.A. (1993) Expression of an Antisense Prosystemin Gene in Tomato Plants Reduces Resistance toward Manduca-Sexta Larvae. Proceedings of the National Academy of Sciences of the United States of America 90, 8273-8276.
Ostrander B.M. & Coors J.G. (1997) Relationship between plant composition and Europen corn borer resistance in three maize populations. Crop Sci 37, 1741-1745.
Pearce G., Bhattacharya R., Chen Y.C., Barona G., Yamaguchi Y. & Ryan C.A. (2009) Isolation and characterization of hydroxyproline-rich glycopeptide signals in black nightshade leaves. Plant Physiology 150, 1422-1433.
Pearce G., Moura D.S., Stratmann J. & Ryan C.A. (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411, 817-820.
Pearce G. & Ryan C.A. (2003) Systemic signaling in tomato plants for defense against herbivores. Isolation and characterization of three novel defense-signaling glycopeptide hormones coded in a single precursor gene. The Journal of Biological Chemistry 278, 30044-30050.
Pearce G., Siems W.F., Bhattacharya R., Chen Y.C. & Ryan C.A. (2007) Three hydroxyproline-rich glycopeptides derived from a single petunia polyprotein precursor activate defensin I, a pathogen defense response gene. The Journal of Biological Chemistry 282, 17777-17784.
Pearce G., Strydom D., Johnson S. & Ryan C.A. (1991) A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253, 895-897.
Pearce G., Yamaguchi Y., Munske G. & Ryan C.A. (2008) Structure-activity studies of AtPep1, a plant peptide signal involved in the innate immune response. Peptides 29, 2083-2089.
Ren C.G. & Dai C.C. (2012) Jasmonic acid is involved in the signaling pathway for fungal endophyte-induced volatile oil accumulation of Atractylodes lancea plantlets. BMC Plant Biology 12, 128.
Ren F. & Lu Y.T. (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Science 171, 286-292.
Rocha-Granados M.C., Sanchez-Hernandez C., Sanchez-Hernandez C., Martinez-Gallardo N.A., Ochoa-Alejo N. & Delano-Frier J.P. (2005) The expression of the hydroxyproline-rich glycopeptide systemin precursor A in response to (a)biotic stress and elicitors is indicative of its role in the regulation of the wound response in tobacco (Nicotiana tabacum L.). Planta 222, 794-810.
Ryan C.A. (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochimica Et Biophysica Acta-Protein Structure and Molecular Enzymology 1477, 112-121.
Ryan C.A. & Pearce G. (1998) Systemin: a polypeptide signal for plant defensive genes. Annual Review of Phytopathology 14, 1-17.
Scheer J.M. & Ryan C.A. (1999) A 160-kD systemin receptor on the surface of lycopersicon peruvianum suspension-cultured cells. Plant Cell 11, 1525-1536.
Soltani B.M., Ehlting J., Hamberger B. & Douglas C.J. (2006) Multiple cis-regulatory elements regulate distinct and complex patterns of developmental and wound-induced expression of Arabidopsis thaliana 4CL gene family members. Planta 224, 1226-1238.
Staswick P.E., Huang J.F. & Rhee Y. (1991) Nitrogen and methyl jasmonate induction of soybean vegetative storage protein genes. Plant Physiology 96, 130-136.
Sun J.Q., Jiang H.L. & Li C.Y. (2011) Systemin/Jasmonate-mediated systemic defense signaling in tomato. Molecular Plant 4, 607-615.
Thomma B.P.H.J., Cammue B.P.A. & Thevissen K. (2002) Plant defensins. Planta 216, 193-202.
Tsai Y.-C. & Kao C. (2004) The involvement of hydrogen peroxide in abscisic acid-induced activities of ascorbate peroxidase and glutathione reductase in rice roots. Plant Growth Regulation 43, 207-212.
Tsuduki M., Takano T., Nakatsubo F., Yoshida K., Shinmyo A. & Asao H. (2006) Resistance to insects in trandgenic Solsnum plants expressing a peroxidase gene from horseradish. Plant Biotech 23, 71-74.
Wasternack C. (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100, 681-697.
War A.R., Paulraj M.G., Ahmad T., Buhroo A.A., Hussain B., Ignacimuthu S. & Sharma H.C. (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7, 1306-1320.
Yamaguchi Y. & Huffaker A. (2011) Endogenous peptide elicitors in higher plants. Current Opinion in Plant Biology 14, 351-357.
Zdravkovic-Korac S., Muhovski Y., Druart P., Calic D. & Radojevic L. (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Reports 22, 698-704.
Zhang X., Gou M., Guo C., Yang H. & Liu C.J. (2015) Down-regulation of Kelch domain-containing F-box protein in Arabidopsis enhances the production of (poly)phenols and tolerance to ultraviolet radiation. Plant Physiology 167, 337-350.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20949-
dc.description.abstractHydroxyproline-rich glycopeptides (HypSys)是一種小片段的訊號傳遞胜肽,包含了18到20個胺基酸。當甘藷(Ipomoea batatas cv. Tainung 57)受到傷害或IbHypSys處理後,透過茉莉酸(jasmonic acid)和過氧化氫(H2O2),IbHypSys的前驅物IbpreproHypSys基因會被誘導表現。透過基因轉殖甘藷大量表現 (OE) 和抑制表現 (RNAi) IbpreproHypSys來驗證IbpreproHypSys在生物體內的功能。在OE基改甘藷中進行傷害處理,傷害誘導基因Ipomoelin (IPO)在原位葉和系統葉上的基因表現量大於野生種和RNAi基改甘藷。除此之外,嫁接實驗顯示,野生種甘藷當砧木的情況下對接穗轉殖甘藷葉片進行傷害處理,接穗為OE基改甘藷較RNAi基改甘藷能在砧木野生種甘藷中誘導較高的IPO基因表現。然而,當基改甘藷為砧木野生種為接穗時,對野生種甘藷葉片進行傷害處理,在OE基改甘藷砧木中的IPO也是表現最高的,這代表了大量表現IbpreproHypSys轉殖甘藷不但能加強傷害的訊息傳送,也能加強傷害的訊息接收。分析參與在phenylpropanoid pathway的基因表現指出,人工合成的IbHypSys可以誘導木質素的生合成。並且IbpreproHypSys的基因表現可以抑制斜紋夜盜蛾幼蟲的生長。因此,傷害處理能夠誘導IbpreproHypSys基因表現,IbpreproHypSys基因能夠轉譯出IbpreproHypSys蛋白並且被剪切成IbHypSys,其中IbHypSys能夠促進IbpreproHypSys和IPO基因的表現,並且增強木質素的生合成,這些結果都有助於植物對抗昆蟲的侵襲。zh_TW
dc.description.abstractHydroxyproline-rich glycopeptides (HypSys) are small signaling peptides containing 18–20 amino acids. The expression of IbpreproHypSys, encoding the precursor of IbHypSys, was induced in sweet potato (Ipomoea batatas cv. Tainung 57) through wounding and IbHypSys treatments by using jasmonate and H2O2. Transgenic sweet potatoes overexpressing (OE) and silencing (RNAi) IbpreproHypSys were created. The expression of the wound-inducible gene ipomoelin (IPO) in the local and systemic leaves of OE plants was stronger than the expression in wild-type (WT) and RNAi plants after wounding. Furthermore, grafting experiments indicated that IPO expression was considerably higher in WT stocks receiving wounding signals from OE than from RNAi scions. However, wounding WT scions highly induced IPO expression in OE stocks. These results indicated that IbpreproHypSys expression contributed toward sending and receiving the systemic signals that induced IPO expression. Analyzing the genes involved in the phenylpropanoid pathway demonstrated that lignin biosynthesis was activated after synthetic IbHypSys treatment. IbpreproHypSys expression in sweet potato suppressed Spodoptera litura growth. In conclusion, wounding induced the expression of IbpreproHypSys, whose protein product was processed into IbHypSys. IbHypSys stimulated IbpreproHypSys and IPO expression and enhanced lignin biosynthesis, thus protecting plants from insects.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:11:57Z (GMT). No. of bitstreams: 1
ntu-106-F96b42008-1.pdf: 1816740 bytes, checksum: b121cde9eb4115a3b38535e534ca22e1 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 II
摘要 III
Abstract V
Acronym table VII
Contents VIII
Introduction 1
Materials and Methods 6
Plant materials and treatments 6
Construction of transgenic plants 7
Gene expression assays 8
H2O2 content 8
Lignin content assay 9
Insect bioassay 10
Construction and purification of partial IbpreproHypSys in the expression plasmid vector (pGEX6P-1) by E.coli BL21. 10
The effect of protease inhibitors in IbpreproHypSys procession by sweet potato extracts. 11
Results 13
Isolation and expression of IbpreproHypSys 13
Effects of IbHypSys on H2O2 and jasmonate accumulation 13
IbHypSys IV induced IPO expression 15
Expression of IbpreproHypSys in transgenic plants 16
IPO expression in local and systemic leaves upon wounding 16
Requirement of IbpreproHypSys for producing systemic wounding signals 18
Effect of IbHypSys on lignin biosynthesis 19
Effects of IbpreproHypSys expression of plants on their resistance to S. litura 20
IbpreproHypSys processing 21
Inhibition of proteinase inhibitor in IbpreproHypSys procession 22
Processing efficiency of IbHypSysIV region by plant extract 23
Discussion 24
Expression of IbpreproHypSys 24
Signal transduction of IbHypSys 25
Effects of IbpreproHypSys on local and systemic wounding responses 26
Induction of the phenylpropanoid pathway and herbivore resistance 28
IbpreproHypSys processing by plant extract 31
Conclusion 33
Figures and figure legends 34
Figure 1. Similarity of IbpreproHypSys from sweet potatoes Georgia Jet and Tainung 57 (TN 57). 34
Figure 2. IbpreproHypSys expression after wounding. 35
Figure 3. Effects of the synthetic IbHypSys IV on H2O2 accumulation, IbAOS and Ib-13-LOX expression, and IbpreproHypSys expression. 36
Figure 4. H2O2 generation after the synthetic IbHypSys IV treatment. 38
Figure 5. IPO expression in WT after the synthetic IbHypSys IV treatment. 39
Figure 6. IbpreproHypSys expression in the transgenic sweet potatoes overexpressing and silencing IbpreproHypSys. 40
Figure 7. Local and systemic wounding responses in WT and transgenic plants. 41
Figure 8. DAB staining of H2O2 in the leaves of WT, OE, and RNAi plants. 43
Figure 9. The appearance of a grafted sweet potato. 44
Figure 10. Grafting experiments. 45
Figure 11. Effects of the synthetic IbHypSys IV or wounding on IbPAL2-8, IbHCT, and IbCHS expression and lignin contents. 48
Figure 12. Bioassays with Spodoptera litura larvae. Second instar larvae were fed with the leaves of WT, OE, or RNAi plants. 49
Figure 13. IbpreproHypSys process by plant extracts. 50
Figure 14. Inhibition by proteinase inhibitors in IbpreproHypSys process. 51
Figure 15. The effect of IbHypSysIV region in processing efficiency. 52
Figure 16. Functions of IbHypSys in sweet potato upon wounding. 53
Table 1. Primers for this study 54
References 57
dc.language.isoen
dc.subject茉莉酸zh_TW
dc.subject訊息傳遞zh_TW
dc.subject斜紋夜盜蛾zh_TW
dc.subject木質素zh_TW
dc.subject過氧化氫zh_TW
dc.subjectIbHypSyszh_TW
dc.subjectipomoelinzh_TW
dc.subject系統性作用zh_TW
dc.subjectIbpreproHypSyszh_TW
dc.subjectligninen
dc.subjectIbpreproHypSysen
dc.subjectipomoelinen
dc.subjectIbHypSysen
dc.subjectsignal transductionen
dc.subjectsystemic effecten
dc.subjectjasmonateen
dc.subjecthydrogen peroxideen
dc.subjectSpodoptera lituraen
dc.titleIbpreproHypSys在甘藷中的訊息傳遞與調控zh_TW
dc.titleSignal Transduction and Regulation of
IbpreproHypSys in Sweet Potato
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee葉國楨,靳宗洛,陳玉琪,黃皓瑄,張英?
dc.subject.keywordIbpreproHypSys,ipomoelin,IbHypSys,訊息傳遞,系統性作用,茉莉酸,過氧化氫,斜紋夜盜蛾,木質素,zh_TW
dc.subject.keywordIbpreproHypSys,ipomoelin,IbHypSys,signal transduction,systemic effect,jasmonate,hydrogen peroxide,Spodoptera litura,lignin,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201700685
dc.rights.note未授權
dc.date.accepted2017-03-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved