Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20938
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon Wang)
dc.contributor.authorShih-Shin Changen
dc.contributor.author張世昕zh_TW
dc.date.accessioned2021-06-08T03:11:21Z-
dc.date.copyright2017-06-12
dc.date.issued2017
dc.date.submitted2017-04-14
dc.identifier.citation[1] G. T. Reed, and A. P. Knights, “Silicon Photonics,” Wiley New York, 2004.
[2] P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemante, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, J. V. Badding, “Microstructured optical fibers as High-Pressure microfluidic reactors,” Science, vol. 311, pp. 1583–1586, 2006.
[3] Bayindir, M., Sorin, F., Abouraddy, A. F., Viens, J., Hart, S. D., Joannopoulos, J. D., & Fink, Y. (2004). “Metal–insulator–semiconductor optoelectronic fibres,” Nature, 431(7010), 826-829.
[4] H. Tyagi, M. Schmidt, L. Prill Sempere, and P. Russell, “Optical properties of photonic crystal fiber with integral micron-sized Ge wire,” Optics Express, vol. 16, pp. 17227-17236, 2008.
[5] Mehta, P., Krishnamurthi, M., Healy, N., Baril, N. F., Sparks, J. R., Sazio, P. J. , and Peacock, A. C. “Mid-infrared transmission properties of amorphous germanium optical fibers,” Applied Physics Letters, 97(7), 071117, 2010.
[6] Sparks, J. R., He, R., Healy, N., Krishnamurthi, M., Peacock, A. C., Sazio, P. J. , and Badding, J. V. “Zinc selenide optical fibers,” Advanced Materials, 23(14), 1647-1651, 2011.
[7] A. C. Peacock, J. R. Sparks, and N. Healy, “Semiconductor optical fibres: progress and opportunities,” Laser & Photonics Reviews, vol. 8, pp. 53-72, 2014.
[8] Ballato, J., Hawkins, T., Foy, P., Stolen, R., Kokuoz, B., Ellison, M. , and Sharma, S. “Silicon optical fiber,” Optics Express, 16(23), 18675-18683, 2008.
[9] Gumennik, A., Wei, L., Lestoquoy, G., Stolyarov, A. M., Jia, X., Rekemeyer, P. H., ... & Gradečak, S. “Silicon-in-silica spheres via axial thermal gradient in-fibre capillary instabilities,” Nature communications, 4, 2013.
[10] B. R. Jackson, P. Sazio, and J. V. Badding, “Single-crystal semiconductor wires integrated into microstructured optical fibers,” Advanced Materials, vol. 20, pp. 1135-1140, 2008.
[11] B. Scott, K. Wang, V. Caluori, and G. Pickrell, “Fabrication of silicon optical fiber,” Optical Engineering, vol. 48, pp. 100501-1-100501-3, 2009.
[12] He, R., Day, T. D., Krishnamurthi, M., Sparks, J. R., Sazio, P. J., Gopalan, V., & Badding, J. V. “Silicon p‐i‐n junction fibers,” Advanced Materials, 25(10), 1461-1467, 2013.
[13] F. Martinsen, B. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. Gibson, “Silicon-core glass fibres as microwire radial-junction solar cells,” Scientific Reports, vol. 4, pp. 6283-1-6283-7, 2014.
[14] Mehta, P., Healy, N., Day, T. D., Sparks, J. R., Sazio, P. J. A., Badding, J. V., & Peacock, A. C. “All-optical modulation using two-photon absorption in silicon core optical fibers,” Optics Express, 19(20), 19078-19083, 2011.
[15] R. He, P. J. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nature Photonics, vol. 6, no.3, pp.174-179, Feb. 2012.
[16] P.F. Wang, C. C. O'Mahony, T. Lee, R. Ismaeel, T. Hawkins, Y. Semenova, L. Bo, Q. Wu, C. McDonagh, G. Farrell, J. Ballato, and G. Brambilla, “Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers,” Appl. Phys. Lett., vol.102, no. 1, pp.011111-1-011111-4, Jan. 2013.
[17] Scott, Brian L., Ke Wang, and Gary Pickrell, “Fabrication of n-type silicon optical fibers,” IEEE Photon. Technol. Lett., vol.21, no.24, pp.1798-1800, Dec. 2009.
[18] L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous Si core fibers towards the mid-infrared regime,” Optics Express, vol. 21, no.11, pp.13075-13083, Jun. 2013.
[19] B. Jalali, V. Raghunathan, D. Dimitropoulos, and O. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no.3, pp.412-421, Jun. 2006.
[20] N. Vukovic, N. Healy, F. H. Suhailin, P. Mehta, T. D. Day, J. V. Badding, and A. C. Peacock, “Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators,” Sci. Rep., vol. 3, no. 2885, Oct. 2013.
[21] J. Ballato, T. Hawkins, P. Foy, S. Morris, N. K. Hon, B. Jalali, and R. Rice, “Silica-clad crystalline germanium core optical fibers,” Optical Letters., vol. 36, no. 5, pp. 687-688, Mar. 2011.
[22] M. S. Ferreira, P. Roriz, S. O. Silva, J. L. Santos, and O. Frazo. “Next generation of Fabry-Perot sensors for high-temperature,” Op-tical Fiber Technology, vol. 19, no. 6, pp. 833-837, Aug. 2013.
[23] D. W. Duan, Y. J. Rao, Y. S. Hou, and T. Zhu, “Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement,” Applied Optics, vol. 51, no. 8, pp.1033-1036, Mar. 2012.
[24] J. Ma, J Ju, L. Jin, W Jin, D Wang, “Fiber-tip micro-cavity for temper-ature and transverse load sensing,” Opt. Express, vol. 19, no. 13, pp.12418-12426, June. 2011.
[25] C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam,” High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber,” Optics Letters, vol. 36, no.3, pp. 412-414, Feb. 2011.
[26] S. Zhang, Na Chen, F. Pang, Z. Chen, Y. Liu, and T. Wang, “Temperature characteristics of silicon core optical fiber Fabry–Perot interferometer,” Optics Letters, Vol. 40, no.7, Apr. 2015
[27] L. M. Xiao, N. Healy, T. Hawkins, M. Jones, J. Ballato, U. Gibson, and A. C. Peacock, “In-fiber silicon microsphere as a hybrid Fabry-Pérot microcavity for temperature sensing,” European Conference on Lasers and Electro-Optics, Europe 4. Jun. 2015.
[28] Lagonigro, L., Healy, N., Sparks, J. R., Baril, N. F., Sazio, P. J., Badding, J. V., & Peacock, A. C. ”Low loss silicon fibers for photonics applications,” Applied Physics Letters, 96(4), 041105, 2010.
[29] Healy, N., Lagonigro, L., Sparks, J. R., Boden, S., Sazio, P. J., Badding, J. V., & Peacock, A. C., “Polycrystalline silicon optical fibers with atomically smooth surfaces,” Optics Letters, 36(13), 2480-2482, 2011.
[30] V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Optics Letters, vol. 28, pp. 1302-1304, 2003.
[31] E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. E. Lamont, D. I. Yeom, and B. J. Eggleton, “Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers,” Optics Express, vol. 15, pp. 10324-10329, 2007.
[32] A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai and D. W. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Optics Express, vol. 11, pp. 3555-3561, 2003.
[33] N. Healy, J. R. Sparks, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Tapered silicon optical fibers,” Optics Express, vol. 18, pp. 7596-7601, 2010.
[34] N. Healy, J. R. Sparks, M. N. Petrovich, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Large mode area silicon microstructured fiber with robust dual mode guidance,” Opt. Express 17, 18076–18082, 2009.
[35] Y. O. Yilmaz, A. Demir, Student, A. Kurt, and A. Serpengüzel, “Optical Channel Dropping With a Silicon Microsphere,” IEEE Photonics Technology Letters, vol. 17, pp. 1662–1664, 2005.
[36] McKee, W. “Development of the spherical silicon solar cell,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology 5.4, 336-341, 1982.
[37] Huang, X., Uda, S., Tanabe, H., Kitahara, N., Arimune, H., & Hoshikawa, K. “In situ observations of crystal growth of spherical Si single crystals,” Journal of Crystal Growth. 307(2), 341-347, 2007.
[38] Gharghi, M., Bai, H., Stevens, G., & Sivoththaman, S. “Three-dimensional modeling and simulation of p-n junction spherical silicon solar cells,” IEEE Transactions on Electron Devices, 53(6), 1355-1363, 2006.
[39] Maruyama, T., & Minami, H. “Light trapping in spherical silicon solar cell module,” Solar energy materials and solar cells, 79(2), 113-124, 2003.
[40] Serpengüzel, A., Kurt, A., & Ayaz, U. K. “Silicon microspheres for electronic and photonic integration,” Photonics and Nanostructures-Fundamentals and Applications 6(3), 179-182, 2008.
[41] Yuce, E., Gurlu, O., & Serpenguzel, A., “Optical modulation with silicon microspheres,” IEEE Photonics Technology Letters 20(21), 1481-1483, 2009.
[42] Okamoto, C., Minemoto, T., Murozono, M., Takakura, H., & Hamakawa, Y., “Defect evaluation of spherical silicon solar cells fabricated by dropping method,” Japanese Journal of aApplied Physics, 44(11R), 7805, 2005.
[43] Liu, Z., Masuda, A., & Kondo, M. “Investigation on the crystal growth process of spherical Si single crystals by melting,” Journal of Crystal Growth, 311(16), 4116-4122, 2009.
[44] Itoh, H., Okamura, H., Nakamura, C., Abe, T., Nakayama, M., & Komatsu, R., “Growth of spherical Si crystals on porous Si 3 N 4 substrate that repels Si melt,” Journal of Crystal Growth, 401, 748-752, 2014.
[45] Shabahang, S., Kaufman, J. J., Deng, D. S., & Abouraddy, A. F.,” Observation of the Plateau-Rayleigh capillary instability in multi-material optical fibers,” Applied Physics Letters, 99(16), 161909, 2011.
[46] Kaufman, J. J., Tao, G., Shabahang, S., Banaei, E. H., Deng, D. S., Liang, X., & Abouraddy, A. F., “Structured Spheres Generated by an In-Fibre Fluid Instability,” Nature, 487(7408), 463-467, 2012.
[47] Deng, D. S., Orf, N. D., Abouraddy, A. F., Stolyarov, A. M., Joannopoulos, J. D., Stone, H. A., & Fink, Y., ” In-fiber semiconductor filament arrays,” Nano Letters, 8(12), 4265-4269,2008.
[48] Deng, D. S., Nave, J. C., Liang, X., Johnson, S. G., & Fink, Y.”Exploration of in-fiber nanostructures from capillary instability,” Optics Express, 19(17), 16273-16290, 2011.
[49] Tomotika, S., “On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 150(870), 322-337, 1935.
[50] Ma, C., Dong, B., Lally, E. M., & Wang, A., “Optimization of Single-/Multi-/Single-Mode Intrinsic Fabry–Perot Fiber Sensors,” Journal of Lightwave Technology, 30(14), 2281-2288, 2012.
[51] Rao, Yun-Jiang. “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Optical Fiber Technology 12.3 (2006): 227-237.
[52] Favero, F. C., Bouwmans, G., Finazzi, V., Villatoro, J., & Pruneri, V.,” Fabry–Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Optics Letters, 36(21), 4191-4193, 2011.
[53] Favero, F. C., Araujo, L., Bouwmans, G., Finazzi, V., Villatoro, J., & Pruneri, V., “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Optics Express, 20(7), 7112-7118, 2012.
[54] J. Ma et al. “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express, 19, 12418, 2011.
[55] Blyler, L. L., & DiMARCELLO, F. V., “Fiber drawing, coating, and jacketing, “Proceedings of the IEEE, 68(10), 1194-1198, 1980.
[56] Paek, U.,” High-speed high-strength fiber drawing,” Journal of Lightwave Technology, 4(8), 1048-1060, 1986.
[57] Paek, U. C., “Free drawing and polymer coating of silica glass optical fibers,” Journal of Heat Transfer, 121(4), 774-788, 1999.
[58] T. H. Shen and L. A. Wang, “A Two-Layer Microcoil Resonator With Very High Quality Factor,” IEEE Photonics Technology Letters, vol. 26, pp. 535-537, 2014.
[59] Okada, Y., & Tokumaru, Y., “Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K,” Journal of Applied Physics, 56(2), 314-320, 1984.
[60] Prokert, F., J. Ihringer, and H. Ritter. “X-ray diffraction study of phase transitions in Sr0. 39Ba0. 61Nb2O6 between 20 and 500 K,” Ferroelectrics Letters Section 20.3-4: 73-82, 1995.
[61] D. J. Gardiner, P. R. Graves, H. J. Bowley , D. L. Gerrard, J. D. Louden, G. Turrell, “Practical Raman Spectroscopy,” Springer-Verlag, optical frequencies, IEEE Proceedings, vol. 133, pp. 191-198, 1986.
[62] X. Wu, J. Yu, T. Ren, L. Liu, “Micro-Raman spectroscopy measurement of stress in silicon,” Microelectronics Journal, 38(1), 87-90, 2007.
[63] D. J. Won, M. O. Ramirez, H. Kang, V. Gopalana, N. F. Baril, J. Calkins, J. V. Badding, and P. J. A. Sazio, “All-optical modulation of laser light in amorphous silicon-filled microstructured optical fibers,” Applied Physics Letters, vol. 91, pp. 161112-1 – 161112-3, 2007.
[64] B. H. W. S. D. Jong, R. G. C. Beerkens, P. A. V. Nijnatten, “Ullmann's Encyclopedia of Industrial Chemistry,” Wiley, VCH, 2000.
[65] J. Goldstein, D. E. Newbury, D. C. Joy , C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, “Scanning electron microscopy and x-ray microanalysis,” Springer, 2003.
[66] Wilson, Arthur James Cochran, “Elements of X-ray Crystallography,” Reading, Massachusetts: Addison-Wesley, 1970.
[67] Govind P. Agrawal, “Fiber-Optic Communication Systems,” The Institute of Optics University of Rochester, 3rd ed, 2002
[68] John M. senior, Optical Fiber Communications Principles and Practice, 2009.
[69] Fabry, C; Perot, A. “Theorie et applications d'une nouvelle methode de spectroscopie interferentielle,” Ann. Chim. Phys. 16 (7), 1899.
[70] Van de Stadt, Herman, and Johan M. Muller. “Multimirror Fabry–Perot interferometers,” JOSA A 2.8, 1363-1370, 1985.
[71] Frazão, O., Baptista, J. M., Santos, J. L., Kobelke, J., & Schuster, K. “Refractive index tip sensor based on Fabry-Perot cavities formed by a suspended core fibre,” Journal of the European Optical Society-Rapid publications, 4.
[72] Soref, R. I. C. H. A. R. D. A., & Bennett, B. R. I. A. N. R. “Electrooptical effects in silicon,” IEEE journal of quantum electronics, 23(1), 123-129, 1987.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20938-
dc.description.abstract在本論文中,我們將粉末填入玻璃管內,並以垂直抽絲法來製作矽核光纖(silicon-cored fibers)。我們使用成本便宜許多的多晶矽粉取代成本高昂的單晶矽棒或晶種來製作矽核光纖。藉由優化抽絲的相關參數後,可以成功製作出長達數公尺的矽核光纖。最後抽出來的矽核光纖玻璃層直徑100-300微米、矽核心直徑10-30微米。由能量散佈分析儀可知製作出的矽核光纖有著高純度的特性。由拉曼、X光散射儀可知矽核光纖有著高度結晶的特性。由背向散射電子繞射儀分析得知其單晶的長度可維持超過100微米。
我們將矽核光纖以電弧平移台拉絲來進行二次抽絲,可製作出矽核椎狀光纖,已成功將原尺寸約20μm的矽核直徑抽細至2.9μm。
我們使用電弧加熱一段矽核光纖並同時控制緩慢進出料以製作一連串矽微米球,並將矽微米球置入單模光纖和中空光纖熔接後的空腔中製作光纖探針感測器,其感溫靈敏度約80pm/℃,最高感溫到700℃。除此之外,該開放式的架構也能進行酒精濃度的折射率液體量測,藉由快速傅利葉轉換分析得其靈敏度為-5.326±0.223/RIU。
zh_TW
dc.description.abstractSilicon-cored fibers were made by using a combined techniques of powder-in-tube and vertical-drawing. Much cheaper polycrystalline Si powders substituting expensive single-crystal Si powders or seed rods were packed into a fused silica tube. By optimizing the drawing parameters, several meters long silicon-cored fibers were obtained. The silicon-cored fibers were drawn with resultant silica cladding and Si core diameters being in the range of 100-300 m and 10-30 m, respectively. According to energy-dispersive x-ray spectroscopy, the fabricated Si core is in high purity. From Raman spectrum and X-Ray diffraction analysis, the silicon-cored fiber is high crystalline. The single crystalline property of silicon-cored fibers could continue for more than 100 m long according to electron backscatter diffraction analysis.
We also demonstrated a fiber drawing system for fabricating tapered silicon-cored fiber. A fiber drawing system equipped with arc discharges and motorized translation stage was used. We successfully fabricated tapered silicon-cored fibers with diameter of 2.9 μm in the waist section from an original SCF with diameter of 20 μm.
We heated a silicon-cored fiber to produce silicon microspheres sequentially by arc discharges. By tuning the splicing current parameter, SCF was slowly heated by arc discharging. And a silicon microsphere thus obtained was put in a hollow core fiber spliced with a single mode fiber to form a temperature fiber sensor. The measured thermal sensitivity was ~80pm/℃ for temperature range up to 700℃. The thermal sensitivity was about five times higher than those of silica fiber based. The structure could allow direct contact with an external environment, the fiber probe could also serve as a refractive index sensor with a sensitivity about -5.326±0.223/RIU.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:11:21Z (GMT). No. of bitstreams: 1
ntu-106-R03941071-1.pdf: 5466457 bytes, checksum: 1845c0d58594abbf1d5204d04d14cb29 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
CONTENTS iii
中文摘要 vi
ABSTRACT vii
Statement of Contributions ix
LIST OF FIGURES x
LIST OF TABLES xvii
LIST OF ABBREVIATIONS xviii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
1.2.1 Fabrication Methods of Silicon-Cored Fibers 3
1.2.2 Fabrication of Tapered Silicon-Cored Fibers 7
1.2.3 Fabrication of Silicon Spheres 10
1.2.4 Silicon-Based Fabry–Pérot Optical Sensing Applications 16
1.3 Organization of the Thesis 20
Chapter 2 PNSL’s Fabrication of Silicon-Cored Fibers, Tapered Silicon-Cored Fibers and Silicon Microspheres 21
2.1 Fabrication of Silicon-Cored Fibers 21
2.1.1 A Silicon-cored Fiber Drawing Tower 21
2.1.2 Fabrication Process of Silicon-Cored Fibers 26
2.2 Fabrication of Tapered Silicon-Cored Fibers 38
2.2.1 Setup of External Arc Fusion Discharge System 38
2.2.2 Fabrication Process of Tapered Silicon-Cored Fibers 40
2.2.3 Comparison with Miniaturized Fiber Drawing Tower System 44
2.3 Fabrication of Silicon Microspheres 46
2.4 Summary 49
Chapter 3 Characteristics of Silicon-Cored Fibers, Tapered Silicon-Cored Fibers and Silicon Microspheres 50
3.1 Material Characteristics of Silicon-Cored Fibers 50
3.1.1 Cold Shrink and Solidfying Expansion of Silicon-Cored fibers 50
3.1.2 Raman Scattering Spectra of Silicon-Cored Fibers 54
3.1.3 Element Analysis by Using Energy Dispersive Spectroscopy 59
3.1.4 X-Ray Diffraction Analysis 64
3.1.5 Electron Back-Scattered Diffraction Analysis 66
3.2 Characteristics of Tapered Silicon-Cored Fibers 70
3.2.1 Number of Guided Modes 70
3.2.2 Raman Scattering Spectra of Tapered Silicon-Cored Fibers 73
3.3 Material Characteristics of Silicon Microspheres 75
3.3.1 Plateau-Rayleigh Capillary Instability 75
3.3.2 Raman Scattering Spectra of Silicon Microspheres 79
3.3.3 Electron Back-Scattered Diffraction Analysis 81
3.4 Summary 85
Chapter 4 Theory and Sensing Applications of Silicon Microsphere Resonator 86
4.1 Theory of Optical Fiber Fabry–Pérot Interferometer 86
4.1.1 Introduction of Optical Fiber Fabry–Pérot Interferometer 86
4.1.2 Reflective Spectrum and Free Spectral Range of Silicon Microsphere Resonator 87
4.2 Fabrication of Silicon-Microsphere Based Optical Fiber Probes 88
4.3 Silicon Microsphere Based Optical Fiber Probe for Sensing Applications 91
4.3.1 Temperature Sensing Application 91
4.3.2 Refractive Index Sensing Application 94
4.4 Summary 98
Chapter 5 Conclusion and Future Work 99
5.1 Conclusion 99
5.2 Future Work 100
References 101
dc.language.isoen
dc.subject光纖折射率感測器zh_TW
dc.subject矽核光纖zh_TW
dc.subject矽微米球共振腔zh_TW
dc.subject法布里-博羅干涉儀zh_TW
dc.subject光纖溫度感測器zh_TW
dc.subjectFabry–Perot Interferometeren
dc.subjectrefractive index fiber sensoren
dc.subjecttemperature fiber sensoren
dc.subjectsilicon-cored fiberen
dc.subjectsilicon microsphere resonatoren
dc.title使用矽核光纖製作矽微米球與其在溫度與折射率感測之應用zh_TW
dc.titleFabrication of Silicon Microspheres by Using Silicon-Cored Fibers and Their Applications in Temperature and Refractive Index Sensingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee包淳偉(Chun-Wei Pao),黃念祖(Nien-Tsu Huang),蔡五湖(Woo-Hu Tsai)
dc.subject.keyword矽核光纖,矽微米球共振腔,法布里-博羅干涉儀,光纖溫度感測器,光纖折射率感測器,zh_TW
dc.subject.keywordsilicon-cored fiber,silicon microsphere resonator,Fabry–Perot Interferometer,temperature fiber sensor,refractive index fiber sensor,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201700751
dc.rights.note未授權
dc.date.accepted2017-04-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved