Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平
dc.contributor.authorChun-Yen Liaoen
dc.contributor.author廖俊諺zh_TW
dc.date.accessioned2021-06-08T03:11:17Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-04-25
dc.identifier.citationChapter 1
[1] R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77-79 (2001).
[2] Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, 'Far-field optical hyperlens magnifying sub-diffraction-limited objects,' Science 315, 1686 (2007).
[3] J. Li, L. Fok, X. Yin, G. Bartal, and X. Zhang, 'Experimental demonstration of an acoustic magnifying hyperlens,' Nature Materials 8, 931 - 934 (2009).
[4] J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu , H. Choi , G. Bartal, and X. Zhang, 'Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,' Nature Communications 1, 143 (2010).
[5] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, 'Optical activity in planar chiral metamaterials: Theoretical study,' Physical Review A 76, 023811 (2007).
[6] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M Soukoulis, 'Chiral metamaterials: simulations and experiments,' Journal of Optics a-Pure and Applied Optics 11, 114003 (2009).
[7] E. Plum, V. A. Fesotov, and N. I. Zheludev, 'Planar metamaterial with transmission and reflection that depend on the direction of incidence,' Applied Physics Letters 94, 131901 (2009).
[8] Y. Lai, H. Chen, Z. Q. Zhang, and C. T. Chan, 'Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,' Physical Review Letters 102, 093901 (2009).
[9] J. Valentine, J. Li, T. Zentgraf, and X. Zhang, 'An optical cloak made of dielectrics,' Nature metarials 8, 568-571 (2009).
[10] E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, 'Towards the lasing spaser: controlling metamaterial optical response with semiconductor quanyum dots,' Optics Express 17, 8548 (2009).
[11] H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, 'Active terahertz metamateril devices,' Nature 444, 597 (2006).
[12] F. B. P. Niesler, J. K. Gansel, S. Fishbach, and M. Wegener, 'Metamaterial metal-based bolometer,' Applied Physical Letters 100, 203508 (2012).
[13] K. M. Dani, Z. Ku, P. C. Upadhya, R. P. Prasankumar, S. R. J. Brueck, and A. J. Taylor, 'Subpicosecond optical switching with a negative index metamaterials,' Nano Letters 9, 3565-3569 (2009).
[14] V. V. Schmidt, 'The Physcics of Superconductor,” P. Mueller, A. V. Ustinov, Ed. Springer (1997).
[15] https://en.wikipedia.org/wiki/Heike_Kamerlingh_Onnes
[16] https://en.wikipedia.org/wiki/Meissner_effect#/media/File:EfektMeisnera.svg
[17] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, 'Theory of superconductivity,' Physical Review 108, 1175-1204 (1957).
[18] K. K. Likharev, 'Dynamics of Josephson Junction and Circuits,' Gordon and Breach Science Publishers (1984).
[19] K. Kitazawa, 'Superconductivity: 100th anniversary of its discovery and its future,' Japanese Journal of Applied Physics 51, 010001 (2012).
[20] H. Padamsee, 'The science and technology of superconducting cavities for acceleators,' Superconductor Science and Technology 14, R28-R51 (2001).
[21] B. H. Eom, P. K. Day, H. G. LeDuc, and J. Zmuidzinas, 'A wideband, low-noise superconducting amplifier with high dynamics range,' Nature Physics 8, 623-627 (2012).
[22] J. Zmuidzinas, and P. L. Richards, 'Supeconducting detectors and mixers for millimeter and submillimeter astrophysics,' Proceedings of the IEEE 92, 1597-1616 (2004).
[23] T. van Duzer, and C. W. Turner, 'Principles of Superconductive Devices and Circuits,' Edward Arnoid (1981).
[24] J. Q. You, and F. Nori, 'Atomic physics and quatum optics using superconducting circuits,' Nature 473, 589-591 (2011).
[25] J. Clarke, and F. K. Wilhelm, 'Superconducting quantum bits,' Nature 453, 1031-1042 (2008).
[26] National Institute of Standards and Technology, USA. http://www.nist.gov/pml/history-volt/superconducivity_2000s.cfm
[27] K. Kitazawa, 'Superconductivity: 100th Anniversary of Its Discovery and Its Future,' Japanese Journal of Applied Physics 51, 1R (2012).
[28] C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, and M. Tonouchi, 'Nonlinear response of superconducting NbN thin film and NbN metamaterial induced by intense terahertz pulses,' New Journal of Physics 15, 055017 (2013).
[29] N. K. Grady, B. G. Perkins Jr., H. Y. Hwang, N. C. Brandt, D. Torchinsky, R. Singh, L. Yan, D. Trugman, S. A. Trugman, Q. X. Jia, A. J. Taylor, K. A. Nelson, and H.-T. Chen, 'Nonlinear high-temperature superconducting terahertz metamaterials,' New Journal of Physics 15, 105016 (2013).
[30] C. Zhang, B. Jin, J. Han, I. Kawayama, H. Murakami, J. Wu, L. Kang, J. Chen, P. Wu, and M. Tonouchi, 'Terahertz nonlinear superconducting metamaterials,' Applied Physics Letters 102, 081121 (2013).
[31] V. Savinov, K. Delfanazari, V. A. Fedotov, and N. I. Zheludev, 'Giant nonlinearity in a superconducting sub-terahertz metamaterial,' Applied Physics Letters 108, 101107 (2016).
[32] M. Trepanier, D. Zhang, O. Mukhanov, and S. M. Anlage, 'Realization and Modeling of Metamaterials Made of rf Superconducting Quantum-Interference Devices,' Physical Review X 3, 041029 (2013).
[33] P. Jung, S. Butz, M. Marthaler, M. V. Fistul, J. Leppäkangas, V. P. Koshelets, and A. V. Ustinov, 'Multistability and switching in a superconducting metamaterial,' Nature Communication 5, 3730 (2014).
[34] R. Singh, J. Xiong, A. K. Azad, H. Yang, S. A. Trugman, Q. X. Jia, A. J. Taylor, and H.-T. Chen, 'Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials,' Nanophotonics 1, 117 (2012).
[35] V. Savinov, V. A. Fedotov, S. M. Anlage, P. A. J. de Groot, and N. I. Zheludev, 'Modulating Sub-THz Radiation with Current in Superconducting Metamaterial,' Physical Review Letters 109, 243904 (2012).
[36] S. M. Anlage, 'The physics and applications of superconducting metamaterials,' Journal of Optics 13, 024001 (2011).
Chapter 2
[1] M. Tinkham, Introduction to Superconductivity, New York: Dover Publications, 2004.
[2] Mattis, D. C. & Bardeen, J. Theory of the Anomalous Skin Effect in Normal and Superconducting Metals. Physical Review 111, 412-417 (1958).
[3] Zimmermann, W., Brandt, E. H., Bauer, M., Seider, E. & Genzel, L. Optical Conductivity of Bcs Superconductors with Arbitrary Purity. Physica C 183, 99-104, doi:Doi 10.1016/0921-4534(91)90771-P (1991).
[4] Finnemore, D., Stromberg, T. & Swenson, C. Superconducting properties of high-purity niobium. Physical Review 149, 231 (1966).
[5] Pronin, A. V. et al. Direct observation of the superconducting energy gap developing in the conductivity spectra of niobium. Phys Rev B 57, 14416-14421, doi:DOI 10.1103/PhysRevB.57.14416 (1998).
[6] Carless, D. C., Hall, H. E. & Hook, J. R. Vibrating Wire Measurements in Liquid-He-3 .2. The Superfluid B-Phase. J Low Temp Phys 50, 605-633, doi:Doi 10.1007/Bf00683498 (1983).
[7] COMSOL Multiphysics, 'RF module user’s guide.
Chapter 3
[1] Product Data Helios NanoLab™ 600i.
[2] Elionix ELS7000 Manuals.
[3] I. Maller, M. Hazakis, and R. Srinivasan, 'High resolution positive resists for electron beam exposure,' Journal of Research and Development 12, 251 (1968).
[4] http://www.zeon.co.jp/
[5] KEITHEY, 'Low Level Measurements Handbook, 6th Edition.'
Chapter 4
[1] V. V. Shmidt, P. Müller, and A. V. Ustinov, 'The physics of superconductors : introduction to fundamentals and applications.' (Springer, 1997).
[2] L. D. Landau, and E. M. Lifshit︠s︡, Mechanics. 3d edn, (Pergamon Press, 1976).
[3] M. Tinkham, 1 online resource (xxi, 454 p.) (Dover Publications,, Mineola, N.Y., 2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20937-
dc.description.abstract在光學領域中,超導的影響被認為相當的微弱,因為外加入射光的光子能量大小比庫柏電子對(超導電荷載子)的鍵結能高幾個數量級。藉由研究鈮(Niobium, 低溫超導體)在光學波段的電漿子響應,我們探討具有奈米結構的超導超穎材料與無結構超導體薄膜的隨溫度發生變化的光學性質。我們證明鈮超穎材料共振的位置和強度對於溫度改變具有顯著的依賴(從室溫降到數個的克式溫度),並在超導相變溫度附近(~9K)具有急劇變化。在單獨的實驗中,測量無結構的鈮膜隨溫度改變的介電常數上被觀察到同樣劇烈的變化。我們的研究結果表明超導性確實影響在光學波段的電漿子行為,且可能在形成超導相變附近的光學介電常數的響應中發揮作用。zh_TW
dc.description.abstractSuperconductivity is commonly expected to be insignificant in optics, where photon energy is orders of magnitude higher than the binding energy of the Cooper pairs, the superconducting charge carriers. By studying optical range plasmonic response of niobium, a conventional low-temperature superconductor, we investigate the temperature-induced changes in the optical properties of a nanostructured superconducting metamaterial as well as unstructured superconductor film. We demonstrate that both the position and the strength of niobium metamaterial resonances exhibit a pronounced dependence on temperature down to a few Kelvin, with a sharp change in the behavior around the superconducting transition temperature at 9K. Equivalently dramatic changes are also observed in the temperature-dependence of the dielectric constant of unstructured niobium film measured in a separate experiment. Our results show that superconductivity does affect plasmonic behavior at optical frequencies and may play a role in forming the optical dielectric response near the superconducting transition.en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:11:17Z (GMT). No. of bitstreams: 1
ntu-106-D02245001-1.pdf: 3586468 bytes, checksum: 8865787b4234a62290681e2a20084ce6 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 IV
英文摘要 V
內容 VI
圖目錄 IX
表目錄 XI
Chapter 1 緒論 1
1.1 超穎材料 1
1.2 超導現象的背景與原理 3
1.2.1 基本性質 3
1.2.2 臨界電流密度 6
1.2.3 微觀量子態 6
1.2.4 超導體的應用 7
1.3 超導體超穎材料 9
1.4 參考文獻 11
Chapter 2 模擬計算方法與樣品設計 15
2.1 研究動機 15
2.2 數值模擬計算 19
2.2.1 前言 19
2.2.2 Drude-Lorentz model 19
2.2.3 模擬計算方法介紹 20
2.2.4 模擬計算空間設定 22
2.3 設計原理 24
2.4 參考文獻 26
Chapter 3 樣品製作與量測 27
3.1 前言 27
3.2 實驗儀器介紹 28
3.2.1 聚焦離子束技術 28
3.2.2 電子束直寫曝光微影系統 29
3.2.3 樣品製作流程 33
3.3 量測系統 34
3.3.1 低溫超導量測系統 34
3.3.2 橢偏儀測量系統 36
3.4 參考資料 38
Chapter 4 結果、分析與討論 39
4.1 前言 39
4.2 鈮超導膜 40
4.2.1 光學介電常數量測 40
4.2.2 模擬分析 41
4.3 鈮超導超穎材料 44
4.3.1 模擬分析 44
4.3.2 實驗與量測結果 46
4.4 熱力學模型 50
4.4.1 前言 50
4.4.2 Ginzburg-Landau方法對超導體超穎材料的光學響應 50
4.5 參考文獻 57
Chapter 5 總結 58
Chapter 6 附錄 59
dc.language.isozh-TW
dc.title鈮超穎材料於超導相變邊界的光學性質之研究zh_TW
dc.titleOptical properties of niobium metamaterial near superconducting transitionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee林恭如,嚴大任,任貽均,藍永強,王智明
dc.subject.keyword超穎材料,超導體,電漿子學,zh_TW
dc.subject.keywordMetamaterials,Superconductor,Plasmonics,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201700759
dc.rights.note未授權
dc.date.accepted2017-04-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
3.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved