請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20933完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
| dc.contributor.author | I-Chen Lin | en |
| dc.contributor.author | 林奕辰 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:11:04Z | - |
| dc.date.copyright | 2017-06-12 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-04-27 | |
| dc.identifier.citation | [1] C. H. Wu, “Design of Inductor-Based High-Switching Frequency Step-Down DC-DC Power Converters,” National Taiwan University Master Thesis, Jan. 2016.
[2] E. A. Burton et al., “FIVR — Fully integrated voltage regulators on 4th generation Intel® Core™ SoCs,” in Applied Power Electronics Conference and Exposition (APEC), 2014 Twenty-Ninth Annual IEEE, pp.432-439, March 2014. [3] T. Y. Man, P. K. T. Mok, and M. Chan, “A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators with Transient-Response Improvement,” IEEE Trans. Circuits Syst. II., vol. 54, no. 9, pp. 755–759, Sep. 2007. [4] Available : https://en.wikipedia.org/wiki/5G. [5] “Power Topology – Buck Converter,” Texas Instruments, Inc. [Online]. Available: www.ti.com/lit/an/slva432/slva432.pdf, Aug. 2010. [6] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA: Kluwer, 2001. [7] M. C. Qiao, P. Parto and R. Amirani, “Stabilize the Buck Converter with Transconductance Amplifier,” International Rectifier, Inc. [Online]. Available: http://www.infineon.com/dgdl/an-1043.pdf?fileId=5546d462533600a40153559189a30f92, pp. 1–11, July 2010. [8] S. Lee, S. Jung, J. Huh, C. Park, C. T. Rim, and G. H. Cho, “Robust and Efficient Synchronous Buck Converter with Near-Optimal Dead-Time Control,” IEEE Int. Solid-State Circuits Conf., pp. 392–394, Feb. 2011. [9] J. Roh, “High-Performance Error Amplifier for Fast Transient DC–DC Converters,” IEEE Trans. Circuits Syst. II: Express Brief., vol. 52, no. 9, pp. 591-595, Sep. 2005. [10] M. Lee, Y. Choi, and J. Kim, “A 500-MHz, 0.76-W/mm Power Density and 76.2% Power Efficiency, Fully Integrated Digital Buck Converter in 65-nm CMOS,” IEEE Trans. on Industry Applications, vol. 52, pp. 3315-3323, July-Aug. 2016 [11] “Characterization Sheet of C1005X7R1H104K050BE,” TDK Electronics, Inc. [Online]. Available : https://product.tdk.com/info/en/documents/chara_sheet/C1005X7R1H104K050BE.pdf, March 2017. [12] Y. Gao, S. Zhang, and Y. Xu, S. Gao, “Analysis and Comparison of Three Implementation Methodologies for High-Resolution DPWM,” Power Electronics Systems and Applications 2009. 3rd International Conference on, pp. 1-7, May 2009. [13] A. V. Peterchev, and S. R. Sanders, “Quantization Resolution and Limit Cycling in Digitally Controlled PWM Converters,” IEEE Trans. on Power Electronics, vol. 18, no. 1, pp. 301-308, Jan. 2003. [14] V. Kratyuk, P. K. Hanumolu, U. Moon, and K. Mayaram, “A Design Procedure for All-Digital Phase-Locked Loops Based on a Charge-Pump Phase-Locked-Loop Analogy,” IEEE Trans. Circuits Syst. II, vol. 54, no. 5, pp. 247–251, Mar. 2007. [15] H. Q. Li, S. L. Wang, Y. Gao, Y. Song, L. Geng, “A Flash Window ADC for DVS-enabled Digital Controlled DC–DC Converters,” IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, Oct. 2012. [16] B. J. Patella, A. Prodic, A. Zirger, and D. Maksimovic, “High-Frequency Digital PWM Controller IC for DC-DC Converter,” IEEE Transactions on Power Electronics. vo1.18, no.1, pp. 43-46, Jan. 2003. [17] Available : https://en.wikipedia.org/wiki/Flip-flop_(electronics). [18] “Understanding, Measuring, and Reducing Output Voltage Ripple,” Texas Instruments, Inc. [Online]. Available :https://e2e.ti.com/support/power_management/simple_switcher/w/simple_switcher_wiki/2243.understanding-measuring-and-reducing-output-voltage-ripple. [19] J. C. Lin, M. H. Wu, P. C. Huang, and Y. C. Tsui, “The Optimized Switching of Current Mode PWM Buck Converter with High Efficiency and High Frequency,” Next-Generation Electronics (ISNE), 2014 International Symposium on, pp. 1-2, May 2014. [20] L. Cheng, Y. Liu, and W. H. Ki, “A 10/30 MHz Fast Reference-Tracking Buck Converter with DDA-Based Type-III Compensator,” IEEE J. Solid-State Circuits, vol. 49, no. 12, pp. 2788- 2799, Dec. 2014. [21] S. J. Kim, R. K. Nandwana, Q. Khan, R. C. N. Pilawa-Podgurski, and P. K. Hanumolu, “A 4-Phase 30–70 MHz Switching Frequency Buck Converter Using a Time-Based Compensator,” IEEE J. Solid-State Circuits, vol. 50, no. 12, pp. 2814- 2824, Dec. 2015. [22] H. K. Krishnamurthy, V. A. Vaidya, P. Kumar, G. E. Matthew, S. Weng, B. Thiruvengadam, W. Proefrock, K. Ravichandran and V. De, “A 500 MHz, 68% Efficient, Fully On-Die Digitally Controlled Buck Voltage Regulator on 22nm Tri-Gate CMOS,” IEEE Symp. VLSI Circuits, pp. 167-168, June. 2014. [23] Y. Jiang, and A. Fayed, “On-Chip Input and Ground Ringing Suppression in High-Frequency Buck Converters,” IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1-4, Aug. 2015. [24] Y. Duan, and H. Jin, “Digital Controller Design for Switchmode Power Converters,” IEEE Applied Power Electronics Conference and Exposition (APEC), vol. 2, pp. 967-973, March 1999. [25] H. C. Foong, Y. Zheng, Y. K. Tan, and M. T. Tan, “Fast-Transient Integrated Digital DC-DC Converter With Predictive and Feedforward Control,” ” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 7, pp. 1567–1576, July 2012. [26] C. H. Tsai, C. H. Yang, J. H. Shiau, and B. T. Yeh, “Digitally Controlled Switching Converter With Automatic Multimode Switching,” IEEE Transactions on Power Electronics, vo1.29, no.4, pp. 1830-1839, April 2014. [27] W. C. Chen, C. C. Chen, C. Y. Yao, and R. J. Yang, “A Fast-Transient Wide-Voltage-Range Digital-Controlled Buck Converter With Cycle-Controlled DPWM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, issue. 1, pp. 17-25, Jan. 2016. [28] H. Ahmad and B. Bakkaloglu, “A 300 mA 14 mV-ripple digitally controlled buck converter using frequency domain ADC and hybrid PWM generator,” IEEE Int. Solid-State Circuits Conf., pp. 202–203, Feb. 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20933 | - |
| dc.description.abstract | 在一個積體電路系統中,電源管理晶片扮演了相當重要的角色,其負責提供一個穩定的電壓源,一個理想上不隨電池電壓或是輸出電流而有所變化的電壓源;然而,電源管理晶片所需的外掛電感以及電容,佔據了相當大的使用空間。本論文提出了一個微小型電源轉換器,用以減小外掛元件的數量以及大小。
本作品採用台積電90奈米製程,實作並量測一個同時使用數位控制以及高操作頻率的方式,達到將補償器外掛元件完全移除,並且大幅降低所需元件數值。另外藉由數位控制的方式,完全排除設計誤差放大器的頻寬問題。使用二進制權延遲線數位脈衝寬度調變器,將原本六十四轉一數據選擇器的面積節省下來。四位元窗型快閃類比數位轉換器有效節省百分之八十七點五的能源消耗及面積,並且將類比數位轉換器的延遲時間減至最低。在五千萬赫茲的操作頻率下,本作品使用一百奈米亨利的電感及一百奈米法拉的電容,輸入電壓為一點二伏特,輸出電壓為零點八伏特,實現一能源轉換效率高達百分之八十二的微小型基於電感之數位控制高切換頻率降壓型直流對直流電源轉換器。 | zh_TW |
| dc.description.abstract | Power management IC (PMIC) is a critical building block in integrated circuits for providing stable supply voltages, which ideally don’t change with the battery voltage and the output load current. However, due to the limited area, large inductors and capacitors used in the PMICs are not preferred in modern portable devices. In this thesis, a compact dc-dc power converter is proposed to minimize the off-chip components sizes.
In this work, an inductor-based high-switching frequency digitally-controlled step-down dc-dc power converter with weighted delay-line DPWM is adopted to reduce the off-chip component sizes and eliminates the bandwidth restriction of the error amplifier. A 4-bit window-flash ADC is employed to save 87.5 % of the power and area and minimize the ADC latency. Meanwhile, the weighted delay-line DPWM successfully converts the digital code into time-domain duty cycle information without the redundant 64-to-1 MUX. Operating at 50 MHz switching frequency, a compact dc-dc power converter is realized with 100 nH inductor and 100 nF capacitor and the power conversion efficiency is as high as 82 %. The circuit has been implemented in TSMC 90 nm CMOS process. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:11:04Z (GMT). No. of bitstreams: 1 ntu-106-R03943019-1.pdf: 4173900 bytes, checksum: 961b16640c3c8ab241b18ffe8392db89 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文審定書 i
英文審定書 iii 摘要 vii Abstract viii List of Figures xi List of Tables xv Chapter 1 Introduction 1 1.1 Introduction to Power Management IC 1 1.2 Motivation 3 1.3 Thesis Overview 4 Chapter 2 Fundamentals of Inductor-Based DC-DC Power Converter 5 2.1 A Brief Overview of Inductor-Based DC-DC Power Converter 5 2.1.1 Theory of Operation 5 2.1.2 Steady-State Converter Analysis 8 2.1.3 Calculation of Output Voltage Ripple 13 2.2 System Stability Analysis 16 2.2.1 Circuit Modeling 16 2.2.2 Control-To-Output Transfer Function Gvd(s) 17 2.2.3 Pulse-Width Modulator Transfer Function GPWM(s) 19 2.2.4 Compensator Transfer Function GC(s) 21 2.3 Summary 30 Chapter 3 Designing Inductor-Based High-Switching Frequency Digitally-Controlled Step-Down DC-DC Power Converter 31 3.1 Digitally-Controlled Method 31 3.2 System Design 32 3.2.1 Digitally-Controlled Feedback Loop 32 3.2.2 Frequency Choosing 33 3.2.3 Limit-Cycle Oscillation 34 3.3 Circuit Implementation 36 3.3.1 System Stability and Compensator 36 3.3.2 Window-Flash ADC 42 3.3.3 Weighted Delay-Line DPWM 46 3.4 Simulation Results 51 Chapter 4 Measurement Result 55 4.1 Measurement Setup 55 4.2 Measurement Result 59 Chapter 5 Conclusion and Future Works 67 5.1 Conclusions 67 5.2 Future Works 67 References 69 | |
| dc.language.iso | en | |
| dc.subject | 直流對直流降壓型轉換器 | zh_TW |
| dc.subject | 數位控制 | zh_TW |
| dc.subject | 高切換頻率 | zh_TW |
| dc.subject | Step-Down DC-DC Power Converter | en |
| dc.subject | High-Switching Frequency | en |
| dc.subject | Digitally-Controlled | en |
| dc.title | 高切換頻率的數位控制直流對直流降壓型轉換器設計 | zh_TW |
| dc.title | Design of an Inductor-Based High-Switching Frequency Digitally-Controlled Step-Down DC-DC Power Converter | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳筱青,劉深淵,林永裕 | |
| dc.subject.keyword | 高切換頻率,數位控制,直流對直流降壓型轉換器, | zh_TW |
| dc.subject.keyword | High-Switching Frequency,Digitally-Controlled,Step-Down DC-DC Power Converter, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU201700768 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-04-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.08 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
