Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余忠仁(Chong-Jen Yu)
dc.contributor.authorChin-Chung Shuen
dc.contributor.author樹金忠zh_TW
dc.date.accessioned2021-06-08T03:11:00Z-
dc.date.copyright2017-09-12
dc.date.issued2017
dc.date.submitted2017-04-26
dc.identifier.citation1 Mycobacterium kansasii pulmonary infection: a prospective study of the results of nine months of treatment with rifampicin and ethambutol. Research Committee, British Thoracic Society. Thorax 1994. 49: 442-445.
2 Trends in tuberculosis--United States, 2008. MMWR Morb Mortal Wkly Rep 2009. 58: 249-253.
3 Global Tuberculosis Report 2016. World Health Organization, Geneva, Switzerland 2016.
4 Adjemian, J., Olivier, K. N., Seitz, A. E., Holland, S. M. and Prevots, D. R., Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 2012. 185: 881-886.
5 Akbari, O., Stock, P., Singh, A. K., PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol 2010. 3: 81-91.
6 Alvarez, I. B., Pasquinelli, V., Jurado, J. O., Role played by the programmed death-1-programmed death ligand pathway during innate immunity against Mycobacterium tuberculosis. J Infect Dis 2010. 202: 524-532.
7 Andrejak, C., Lescure, F. X., Douadi, Y., Non-tuberculous mycobacteria pulmonary infection: management and follow-up of 31 infected patients. J Infect 2007. 55: 34-40.
8 Angiolillo, A. L., Sgadari, C., Taub, D. D., Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 1995. 182: 155-162.
9 Bao, Y., Liu, X., Han, C., Identification of IFN-gamma-producing innate B cells. Cell Res 2014. 24: 161-176.
10 Barleon, B., Sozzani, S., Zhou, D., Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996. 87: 3336-3343.
11 Barnes, P. F., Mistry, S. D., Cooper, C. L., Compartmentalization of a CD4+ T lymphocyte subpopulation in tuberculous pleuritis. J Immunol 1989. 142: 1114-1119.
12 Bhamidi, S., Scherman, M. S., Jones, V., Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis. J Biol Chem 2011. 286: 23168-23177.
13 Bhatnagar, S. and Schorey, J. S., Elevated mitogen-activated protein kinase signalling and increased macrophage activation in cells infected with a glycopeptidolipid-deficient Mycobacterium avium. Cell Microbiol 2006. 8: 85-96.
14 Bielsa, S., Palma, R., Pardina, M., Comparison of polymorphonuclear- and lymphocyte-rich tuberculous pleural effusions. Int J Tuberc Lung Dis 2013. 17: 85-89.
15 Bien, M. Y., Wu, M. P., Chen, W. L. and Chung, C. L., VEGF correlates with inflammation and fibrosis in tuberculous pleural effusion. ScientificWorldJournal 2015. 2015: 417124.
16 Black, S., Kushner, I. and Samols, D., C-reactive Protein. J Biol Chem 2004. 279: 48487-48490.
17 Bleharski, J. R., Kiessler, V., Buonsanti, C., A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J Immunol 2003. 170: 3812-3818.
18 Borghaei, H., Paz-Ares, L., Horn, L., Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med 2015. 373: 1627-1639.
19 Bots, M. and Medema, J. P., Granzymes at a glance. J Cell Sci 2006. 119: 5011-5014.
20 Braun, N. A., Celada, L. J., Herazo-Maya, J. D., Blockade of the programmed death-1 pathway restores sarcoidosis CD4(+) T-cell proliferative capacity. Am J Respir Crit Care Med 2014. 190: 560-571.
21 Budak, F., Uzaslan, E. K., Cangur, S., Goral, G. and Oral, H. B., Increased pleural soluble fas ligand (sFasL) levels in tuberculosis pleurisy and its relation with T-helper type 1 cytokines. Lung 2008. 186: 337-343.
22 Butte, M. J., Keir, M. E., Phamduy, T. B., Sharpe, A. H. and Freeman, G. J., Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007. 27: 111-122.
23 Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. and Springer, T. A., Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci U S A 1994. 91: 3652-3656.
24 Centers of Disease Control, D. o. H., R.O.C. (Taiwan), CDC Annual Report 2011. Centers of Disease Control, Department of Health, R.O.C. (Taiwan), Taipei: 2012.
25 Centers of Disease Control, D. o. H., R.O.C. (Taiwan), CDC Annual Report 2016. Centers of Disease Control, Department of Health, R.O.C. (Taiwan), Taipei: 2016.
26 Chambers, C. A., Kuhns, M. S., Egen, J. G. and Allison, J. P., CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol 2001. 19: 565-594.
27 Chan, E. D., Bai, X., Kartalija, M., Orme, I. M. and Ordway, D. J., Host immune response to rapidly growing mycobacteria, an emerging cause of chronic lung disease. Am J Respir Cell Mol Biol 2010. 43: 387-393.
28 Chan, E. D. and Iseman, M. D., Underlying host risk factors for nontuberculous mycobacterial lung disease. Semin Respir Crit Care Med 2013. 34: 110-123.
29 Chang, K., Svabek, C., Vazquez-Guillamet, C., Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care 2014. 18: R3.
30 Chen, L., Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004. 4: 336-347.
31 Chen, L. and Flies, D. B., Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013. 13: 227-242.
32 Chien, J. Y., Lai, C. C., Sheng, W. H., Yu, C. J. and Hsueh, P. R., Pulmonary infection and colonization with nontuberculous mycobacteria, Taiwan, 2000-2012. Emerg Infect Dis 2014. 20: 1382-1385.
33 Colonna, M., TREMs in the immune system and beyond. Nat Rev Immunol 2003. 3: 445-453.
34 Cooper, A. M. and Flynn, J. L., The protective immune response to Mycobacterium tuberculosis. Curr Opin Immunol 1995. 7: 512-516.
35 Darwich, L., Coma, G., Pena, R., Secretion of interferon-gamma by human macrophages demonstrated at the single-cell level after costimulation with interleukin (IL)-12 plus IL-18. Immunology 2009. 126: 386-393.
36 Datta, M., Via, L. E., Kamoun, W. S., Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery. Proc Natl Acad Sci U S A 2015. 112: 1827-1832.
37 Deng, R., Cassady, K., Li, X., B7H1/CD80 interaction augments PD-1-dependent T cell apoptosis and ameliorates graft-versus-host disease. J Immunol 2015. 194: 560-574.
38 Dheda, K., Van-Zyl Smit, R. N., Sechi, L. A., Clinical diagnostic utility of IP-10 and LAM antigen levels for the diagnosis of tuberculous pleural effusions in a high burden setting. PLoS One 2009. 4: e4689.
39 Diel, R., Loddenkemper, R. and Nienhaus, A., Evidence-based comparison of commercial interferon-gamma release assays for detecting active TB: a metaanalysis. Chest 2010. 137: 952-968.
40 Dirac, M. A., Horan, K. L., Doody, D. R., Environment or host?: A case-control study of risk factors for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2012. 186: 684-691.
41 Egen, J. G., Kuhns, M. S. and Allison, J. P., CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 2002. 3: 611-618.
42 Field, S. K. and Cowie, R. L., Lung disease due to the more common nontuberculous mycobacteria. Chest 2006. 129: 1653-1672.
43 Fife, B. T. and Bluestone, J. A., Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008. 224: 166-182.
44 Finnefrock, A. C., Tang, A., Li, F., PD-1 blockade in rhesus macaques: impact on chronic infection and prophylactic vaccination. J Immunol 2009. 182: 980-987.
45 Flores-Villanueva, P. O., Ruiz-Morales, J. A., Song, C. H., A functional promoter polymorphism in monocyte chemoattractant protein-1 is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 2005. 202: 1649-1658.
46 Galanti, B. and Giusti, G., [Direct colorimetric method for the determination of adenosine deaminase and 5-AMP deaminase in the blood]. Boll Soc Ital Biol Sper 1966. 42: 1316-1320.
47 Garcia-Zamalloa, A. and Taboada-Gomez, J., Diagnostic accuracy of adenosine deaminase and lymphocyte proportion in pleural fluid for tuberculous pleurisy in different prevalence scenarios. PLoS One 2012. 7: e38729.
48 Garg, T., Rath, G., Murthy, R. R., Current nanotechnological approaches for an effective delivery of bioactive drug molecules to overcome drug resistance tuberculosis. Curr Pharm Des 2015. 21: 3076-3089.
49 Gibot, S., Cravoisy, A., Levy, B., Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 2004. 350: 451-458.
50 Gilbert, D. N., Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J Clin Microbiol 2010. 48: 2325-2329.
51 Gopi, A., Madhavan, S. M., Sharma, S. K. and Sahn, S. A., Diagnosis and treatment of tuberculous pleural effusion in 2006. Chest 2007. 131: 880-889.
52 Grell, M., Douni, E., Wajant, H., The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995. 83: 793-802.
53 Griffith, D. E., Adjemian, J., Brown-Elliott, B. A., Semiquantitative culture analysis during therapy for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2015. 192: 754-760.
54 Griffith, D. E., Aksamit, T., Brown-Elliott, B. A., An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007. 175: 367-416.
55 Griffith, D. E., Brown-Elliott, B. A., Langsjoen, B., Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006. 174: 928-934.
56 Hassan, S. S., Akram, M., King, E. C., Dockrell, H. M. and Cliff, J. M., PD-1, PD-L1 and PD-L2 Gene Expression on T-Cells and Natural Killer Cells Declines in Conjunction with a Reduction in PD-1 Protein during the Intensive Phase of Tuberculosis Treatment. PLoS One 2015. 10: e0137646.
57 Haverkamp, M. H., van Dissel, J. T. and Holland, S. M., Human host genetic factors in nontuberculous mycobacterial infection: lessons from single gene disorders affecting innate and adaptive immunity and lessons from molecular defects in interferon-gamma-dependent signaling. Microbes Infect 2006. 8: 1157-1166.
58 Hendel, A., Hiebert, P. R., Boivin, W. A., Williams, S. J. and Granville, D. J., Granzymes in age-related cardiovascular and pulmonary diseases. Cell Death Differ 2010. 17: 596-606.
59 Hiraki, A., Aoe, K., Eda, R., Comparison of six biological markers for the diagnosis of tuberculous pleuritis. Chest 2004. 125: 987-989.
60 Ho, C. C., Liao, W. Y., Wang, C. Y., TREM-1 expression in tumor-associated macrophages and clinical outcome in lung cancer. Am J Respir Crit Care Med 2008. 177: 763-770.
61 Hoefsloot, W., van Ingen, J., Andrejak, C., The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 2013. 42: 1604-1613.
62 Honda, J. R., Knight, V. and Chan, E. D., Pathogenesis and risk factors for nontuberculous mycobacterial lung disease. Clin Chest Med 2015. 36: 1-11.
63 Huber, S., Hoffmann, R., Muskens, F. and Voehringer, D., Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood 2010. 116: 3311-3320.
64 Jenkins, P. A. and Campbell, I. A., Pulmonary disease caused by Mycobacterium xenopi in HIV-negative patients: five year follow-up of patients receiving standardised treatment. Respir Med 2003. 97: 439-444.
65 Jeong, B. H., Jeon, K., Park, H. Y., Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2015. 191: 96-103.
66 Jiang, J., Shi, H. Z., Liang, Q. L., Qin, S. M. and Qin, X. J., Diagnostic value of interferon-gamma in tuberculous pleurisy: a metaanalysis. Chest 2007. 131: 1133-1141.
67 Jiyong, J., Tiancha, H., Wei, C. and Huahao, S., Diagnostic value of the soluble triggering receptor expressed on myeloid cells-1 in bacterial infection: a meta-analysis. Intensive Care Med 2009. 35: 587-595.
68 Jo, E. K., Mycobacterial interaction with innate receptors: TLRs, C-type lectins, and NLRs. Curr Opin Infect Dis 2008. 21: 279-286.
69 Jo, E. K., Yang, C. S., Choi, C. H. and Harding, C. V., Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 2007. 9: 1087-1098.
70 Jung, S. B., Yang, C. S., Lee, J. S., The mycobacterial 38-kilodalton glycolipoprotein antigen activates the mitogen-activated protein kinase pathway and release of proinflammatory cytokines through Toll-like receptors 2 and 4 in human monocytes. Infect Immun 2006. 74: 2686-2696.
71 Kang, P. B., Azad, A. K., Torrelles, J. B., The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 2005. 202: 987-999.
72 Kartalija, M., Ovrutsky, A. R., Bryan, C. L., Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am J Respir Crit Care Med 2013. 187: 197-205.
73 Kee, S. J., Kwon, Y. S., Park, Y. W., Dysfunction of natural killer T cells in patients with active Mycobacterium tuberculosis infection. Infect Immun 2012. 80: 2100-2108.
74 Keir, M. E., Butte, M. J., Freeman, G. J. and Sharpe, A. H., PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008. 26: 677-704.
75 Keir, M. E., Freeman, G. J. and Sharpe, A. H., PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol 2007. 179: 5064-5070.
76 Keng, L. T., Shu, C. C., Chen, J. Y., Evaluating pleural ADA, ADA2, IFN-gamma and IGRA for diagnosing tuberculous pleurisy. J Infect 2013. 67: 294-302.
77 Khan, F. Y., Hamza, M., Omran, A. H., Diagnostic value of pleural fluid interferon-gamma and adenosine deaminase in patients with pleural tuberculosis in Qatar. Int J Gen Med 2013. 6: 13-18.
78 Kim, R. D., Greenberg, D. E., Ehrmantraut, M. E., Pulmonary nontuberculous mycobacterial disease: prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 2008. 178: 1066-1074.
79 Kitada, S., Kobayashi, K., Ichiyama, S., Serodiagnosis of Mycobacterium avium-complex pulmonary disease using an enzyme immunoassay kit. Am J Respir Crit Care Med 2008. 177: 793-797.
80 Kitada, S., Levin, A., Hiserote, M., Serodiagnosis of Mycobacterium avium complex pulmonary disease in the USA. Eur Respir J 2013. 42: 454-460.
81 Kitada, S., Uenami, T., Yoshimura, K., Long-term radiographic outcome of nodular bronchiectatic Mycobacterium avium complex pulmonary disease. Int J Tuberc Lung Dis 2012. 16: 660-664.
82 Koh, W. J., Kwon, O. J., Jeon, K., Clinical significance of nontuberculous mycobacteria isolated from respiratory specimens in Korea. Chest 2006. 129: 341-348.
83 Krenke, R. and Korczynski, P., Use of pleural fluid levels of adenosine deaminase and interferon gamma in the diagnosis of tuberculous pleuritis. Curr Opin Pulm Med 2010. 16: 367-375.
84 Krenke, R., Safianowska, A., Paplinska, M., Pleural fluid adenosine deaminase and interferon gamma as diagnostic tools in tuberculosis pleurisy. J Physiol Pharmacol 2008. 59 Suppl 6: 349-360.
85 Krummel, M. F. and Allison, J. P., CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 1995. 182: 459-465.
86 Kwon, Y. S., Kim, E. J., Lee, S. H., Decreased cytokine production in patients with nontuberculous mycobacterial lung disease. Lung 2007. 185: 337-341.
87 Lai, C. C., Tan, C. K., Chou, C. H., Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000-2008. Emerg Infect Dis 2010. 16: 294-296.
88 Lam, P. K., Griffith, D. E., Aksamit, T. R., Factors related to response to intermittent treatment of Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006. 173: 1283-1289.
89 Lankford, C. S. and Frucht, D. M., A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 2003. 73: 49-56.
90 Larson, R. P., Shafiani, S. and Urdahl, K. B., Foxp3(+) regulatory T cells in tuberculosis. Adv Exp Med Biol 2013. 783: 165-180.
91 Lazar-Molnar, E., Chen, B., Sweeney, K. A., Programmed death-1 (PD-1)-deficient mice are extraordinarily sensitive to tuberculosis. Proc Natl Acad Sci U S A 2010. 107: 13402-13407.
92 Lee, B. Y., Kim, S., Hong, Y., Risk factors for recurrence after successful treatment of Mycobacterium avium complex lung disease. Antimicrob Agents Chemother 2015. 59: 2972-2977.
93 Lee, J. J., Chan, A. and Tang, T., Tuberculosis reactivation in a patient receiving anti-programmed death-1 (PD-1) inhibitor for relapsed Hodgkin's lymphoma. Acta Oncol 2016. 55: 519-520.
94 Lee, M. R., Yang, C. Y., Chang, K. P., Factors associated with lung function decline in patients with non-tuberculous mycobacterial pulmonary disease. PLoS One 2013. 8: e58214.
95 Lei, G. S., Zhang, C. and Lee, C. H., Myeloid-derived suppressor cells impair alveolar macrophages through PD-1 receptor ligation during Pneumocystis pneumonia. Infect Immun 2015. 83: 572-582.
96 Li, M., Sun, X. H., Zhu, X. J., HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitis-B-infected patients. Lab Invest 2012. 92: 295-304.
97 Light, R. W., Clinical practice. Pleural effusion. N Engl J Med 2002. 346: 1971-1977.
98 Light, R. W., Update on tuberculous pleural effusion. Respirology 2010. 15: 451-458
99 Lin, C. H., Shu, C. C., Hsu, C. L., The trend and the disease prediction of vascular endothelial growth factor and placenta growth factor in nontuberculous mycobacterial lung disease. Sci Rep 2016. 6: 37266.
100 Lin, M. T., Wang, J. Y., Yu, C. J., Lee, L. N. and Yang, P. C., Mycobacterium tuberculosis and polymorphonuclear pleural effusion: incidence and clinical pointers. Respir Med 2009. 103: 820-826.
101 Lin, W. W. and Hsieh, S. L., Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol 2011. 81: 838-847.
102 Liu, Y. C., Shin-Jung Lee, S., Chen, Y. S., Differential diagnosis of tuberculous and malignant pleurisy using pleural fluid adenosine deaminase and interferon gamma in Taiwan. J Microbiol Immunol Infect 2011. 44: 88-94.
103 Loke, P. and Allison, J. P., PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc Natl Acad Sci U S A 2003. 100: 5336-5341.
104 Lu, D., Heeren, B. and Dunne, W. M., Comparison of the Automated Mycobacteria Growth Indicator Tube System (BACTEC 960/MGIT) with Lowenstein-Jensen medium for recovery of mycobacteria from clinical specimens. Am J Clin Pathol 2002. 118: 542-545.
105 Luh KT, C. C., Lee JJ, Wang JY, Wang KF, Yu MC, Lee PI, Lee PH, Lin HH, Chiang IH, Chan PC, So R, Su WJ, Hung CC, Taiwan guidelines for TB diangosis and treatment, 4th Edn. Center for Disease Control, Executive Yuan, Taiwan (R.O.C.) Taipei: 2011.
106 Luh KT, W. J., Wang KF, Chiang CY, Yu MC, Lee JJ, Lee PI, Lee PH, Lin HH, Chiang IH, Hung CC, So R, Chan PC, Su WJ, Taiwan guidelines for TB diangosis and treatment, 5th Edn. Center for Disease Control, Executive Yuan, Taiwan (R.O.C.) Taipei: 2015.
107 Luster, A. D., Unkeless, J. C. and Ravetch, J. V., Gamma-interferon transcriptionally regulates an early-response gene containing homology to platelet proteins. Nature 1985. 315: 672-676.
108 Marchi, E., Vargas, F. S., Acencio, M. M., Proinflammatory and antiinflammatory cytokine levels in complicated and noncomplicated parapneumonic pleural effusions. Chest 2012. 141: 183-189.
109 Marras, T. K., Mendelson, D., Marchand-Austin, A., May, K. and Jamieson, F. B., Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis 2013. 19: 1889-1891.
110 Matsuyama, W., Kubota, R., Hamasaki, T., Enhanced inhibition of lymphocyte activation by Mycobacterium avium complex in human T lymphotrophic virus type I carriers. Thorax 2001. 56: 394-397.
111 Naderi, M., Hashemi, M., Kouhpayeh, H. and Ahmadi, R., The status of serum procalcitonin in pulmonary tuberculosis and nontuberculosis pulmonary disease. J Pak Med Assoc 2009. 59: 647-648.
112 Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M. and Puzo, G., Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol 2001. 166: 7477-7485.
113 Nyamande, K. and Lalloo, U. G., Serum procalcitonin distinguishes CAP due to bacteria, Mycobacterium tuberculosis and PJP. Int J Tuberc Lung Dis 2006. 10: 510-515.
114 Okazaki, T., Chikuma, S., Iwai, Y., Fagarasan, S. and Honjo, T., A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013. 14: 1212-1218.
115 Pai, M., Zwerling, A. and Menzies, D., Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med 2008. 149: 177-184.
116 Pande, J. N., Singh, S. P., Khilnani, G. C., Khilnani, S. and Tandon, R. K., Risk factors for hepatotoxicity from antituberculosis drugs: a case-control study. Thorax 1996. 51: 132-136.
117 Patera, A. C., Drewry, A. M., Chang, K., Frontline Science: Defects in immune function in patients with sepsis are associated with PD-1 or PD-L1 expression and can be restored by antibodies targeting PD-1 or PD-L1. J Leukoc Biol 2016. 100: 1239-1254.
118 Patsoukis, N., Brown, J., Petkova, V., Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 2012. 5: ra46.
119 Perez-Rodriguez, E., Perez Walton, I. J., Sanchez Hernandez, J. J., ADA1/ADAp ratio in pleural tuberculosis: an excellent diagnostic parameter in pleural fluid. Respir Med 1999. 93: 816-821.
120 Periasamy, S., Dhiman, R., Barnes, P. F., Programmed death 1 and cytokine inducible SH2-containing protein dependent expansion of regulatory T cells upon stimulation With Mycobacterium tuberculosis. J Infect Dis 2011. 203: 1256-1263.
121 Peter-Getzlaff, S., Luthy, J., Boddinghaus, B., Bottger, E. C. and Springer, B., Development and evaluation of a molecular assay for detection of nontuberculous mycobacteria by use of the cobas amplicor platform. J Clin Microbiol 2008. 46: 4023-4028.
122 Peto, H. M., Pratt, R. H., Harrington, T. A., LoBue, P. A. and Armstrong, L. R., Epidemiology of extrapulmonary tuberculosis in the United States, 1993-2006. Clin Infect Dis 2009. 49: 1350-1357.
123 Piras, M. A., Gakis, C., Budroni, M. and Andreoni, G., Adenosine deaminase activity in pleural effusions: an aid to differential diagnosis. Br Med J 1978. 2: 1751-1752.
124 Polzin, A., Pletz, M., Erbes, R., Procalcitonin as a diagnostic tool in lower respiratory tract infections and tuberculosis. Eur Respir J 2003. 21: 939-943.
125 Porcel, J. M., Vives, M., Cao, G., Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J 2009. 34: 1383-1389.
126 Porfyridis, I., Plachouras, D., Karagianni, V., Diagnostic value of triggering receptor expressed on myeloid cells-1 and C-reactive protein for patients with lung infiltrates: an observational study. BMC Infect Dis 2010. 10: 286.
127 Premack, B. A. and Schall, T. J., Chemokine receptors: gateways to inflammation and infection. Nat Med 1996. 2: 1174-1178.
128 Prevots, D. R. and Marras, T. K., Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med 2015. 36: 13-34.
129 Prezzemolo, T., Guggino, G., La Manna, M. P., Functional Signatures of Human CD4 and CD8 T Cell Responses to Mycobacterium tuberculosis. Front Immunol 2014. 5: 180.
130 Qama, D., Choi, W. I. and Kwon, K. Y., Immune responses in the lungs of patients with tuberculous pleural effusion without pulmonary tuberculosis. BMC Immunol 2012. 13: 45.
131 Rozali, E. N., Hato, S. V., Robinson, B. W., Lake, R. A. and Lesterhuis, W. J., Programmed death ligand 2 in cancer-induced immune suppression. Clin Dev Immunol 2012. 2012: 656340.
132 Ruan, S. Y., Chuang, Y. C., Wang, J. Y., Revisiting tuberculous pleurisy: pleural fluid characteristics and diagnostic yield of mycobacterial culture in an endemic area. Thorax 2012. 67: 822-827.
133 Ryu, Y. J., Kim, E. J., Lee, S. H., Impaired expression of Toll-like receptor 2 in nontuberculous mycobacterial lung disease. Eur Respir J 2007. 30: 736-742.
134 Safdar, A., White, D. A., Stover, D., Armstrong, D. and Murray, H. W., Profound interferon gamma deficiency in patients with chronic pulmonary nontuberculous mycobacteriosis. Am J Med 2002. 113: 756-759.
135 Sakai, S., Kauffman, K. D., Sallin, M. A., CD4 T cell-derived IFN-gamma plays a minimal role in control of pulmonary Mycobacterium tuberculosis infection and must be actively repressed by PD-1 to prevent lethal disease. PLoS Pathog 2016. 12: e1005667.
136 Sampaio, E. P., Elloumi, H. Z., Zelazny, A., Mycobacterium abscessus and M. avium trigger Toll-like receptor 2 and distinct cytokine response in human cells. Am J Respir Cell Mol Biol 2008. 39: 431-439.
137 Schneider, H., Downey, J., Smith, A., Reversal of the TCR stop signal by CTLA-4. Science 2006. 313: 1972-1975.
138 Sharma, S. K., Mitra, D. K., Balamurugan, A., Pandey, R. M. and Mehra, N. K., Cytokine polarization in miliary and pleural tuberculosis. J Clin Immunol 2002. 22: 345-352.
139 Sharma, S. K. and Mohan, A., Adenosine deaminase in the diagnosis of tuberculosis pleural effusion. Indian J Chest Dis Allied Sci 1996. 38: 69-71.
140 Sharma, S. K. and Mohan, A., Extrapulmonary tuberculosis. Indian J Med Res 2004. 120: 316-353.
141 Shu, C. C., Ato, M., Wang, J. T., Sero-diagnosis of Mycobacterium avium complex lung disease using serum immunoglobulin A antibody against glycopeptidolipid antigen in Taiwan. PLoS One 2013. 8: e80473.
142 Shu, C. C., Lee, C. H., Hsu, C. L., Clinical characteristics and prognosis of nontuberculous mycobacterial lung disease with different radiographic patterns. Lung 2011. 189: 467-474.
143 Shu, C. C., Lee, C. H., Wang, J. Y., Nontuberculous mycobacteria pulmonary infection in medical intensive care unit: the incidence, patient characteristics, and clinical significance. Intensive Care Med 2008. 34: 2194-2201.
144 Shu, C. C., Lee, L. N., Wu, M. F., Use of soluble triggering receptor expressed on myeloid cells-1 in non-tuberculous mycobacterial lung disease. Int J Tuberc Lung Dis 2011. 15: 1415-1420.
145 Shu, C. C., Wang, J. T., Wang, J. Y., Lee, L. N. and Yu, C. J., In-hospital outcome of patients with culture-confirmed tuberculous pleurisy: clinical impact of pulmonary involvement. BMC Infect Dis 2011. 11: 46.
146 Shu, C. C., Wu, M. F., Hsu, C. L., Apoptosis-associated biomarkers in tuberculosis: promising for diagnosis and prognosis prediction. BMC Infect Dis 2013. 13: 45.
147 Silver, R. F., Li, Q., Boom, W. H. and Ellner, J. J., Lymphocyte-dependent inhibition of growth of virulent Mycobacterium tuberculosis H37Rv within human monocytes: requirement for CD4+ T cells in purified protein derivative-positive, but not in purified protein derivative-negative subjects. J Immunol 1998. 160: 2408-2417.
148 Singh, A., Mohan, A., Dey, A. B. and Mitra, D. K., Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis. J Infect Dis 2013. 208: 603-615.
149 Singh, A., Mohan, A., Dey, A. B. and Mitra, D. K., Programmed death-1+ T cells inhibit effector T cells at the pathological site of miliary tuberculosis. Clin Exp Immunol 2017. 187: 269-283.
150 Snider, G. L., Doctor, L., Demas, T. A. and Shaw, A. R., Obstructive airway disease in patients with treated pulmonary tuberculosis. Am Rev Respir Dis 1971. 103: 625-640.
151 Stenger, S., Hanson, D. A., Teitelbaum, R., An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998. 282: 121-125.
152 Stephen-Victor, E., Saha, C., Sharma, M., Inhibition of programmed death 1 ligand 1 on dendritic cells enhances Mycobacterium-mediated interferon gamma (IFN-gamma) production without modulating the frequencies of IFN-gamma-producing CD4+ T cells. J Infect Dis 2015. 211: 1027-1029.
153 Sweet, L. and Schorey, J. S., Glycopeptidolipids from Mycobacterium avium promote macrophage activation in a TLR2- and MyD88-dependent manner. J Leukoc Biol 2006. 80: 415-423.
154 Tahhan, M., Ugurman, F., Gozu, A., Akkalyoncu, B. and Samurkasoglu, B., Tumour necrosis factor-alpha in comparison to adenosine deaminase in tuberculous pleuritis. Respiration 2003. 70: 270-274.
155 Thiery, J., Keefe, D., Boulant, S., Perforin pores in the endosomal membrane trigger the release of endocytosed granzyme B into the cytosol of target cells. Nat Immunol 2011. 12: 770-777.
156 Thomas, M. P., Whangbo, J., McCrossan, G., Leukocyte protease binding to nucleic acids promotes nuclear localization and cleavage of nucleic acid binding proteins. J Immunol 2014. 192: 5390-5397.
157 Tousif, S., Singh, Y., Prasad, D. V., T cells from Programmed Death-1 deficient mice respond poorly to Mycobacterium tuberculosis infection. PLoS One 2011. 6: e19864.
158 Trinchieri, G., Cytokines acting on or secreted by macrophages during intracellular infection (IL-10, IL-12, IFN-gamma). Curr Opin Immunol 1997. 9: 17-23.
159 Valdes, L., Alvarez, D., San Jose, E., Tuberculous pleurisy: a study of 254 patients. Arch Intern Med 1998. 158: 2017-2021.
160 Valdes, L., Pose, A., San Jose, E. and Martinez Vazquez, J. M., Tuberculous pleural effusions. Eur J Intern Med 2003. 14: 77-88.
161 Valdes, L., San Jose, E., Alvarez, D. and Valle, J. M., Adenosine deaminase (ADA) isoenzyme analysis in pleural effusions: diagnostic role, and relevance to the origin of increased ADA in tuberculous pleurisy. Eur Respir J 1996. 9: 747-751.
162 van Ingen, J., Bendien, S. A., de Lange, W. C., Clinical relevance of non-tuberculous mycobacteria isolated in the Nijmegen-Arnhem region, The Netherlands. Thorax 2009. 64: 502-506.
163 Vankayalapati, R., Wizel, B., Samten, B., Cytokine profiles in immunocompetent persons infected with Mycobacterium avium complex. J Infect Dis 2001. 183: 478-484.
164 Walch, M., Dotiwala, F., Mulik, S., Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 2014. 157: 1309-1323.
165 Wallace, R. J., Jr., Brown-Elliott, B. A., McNulty, S., Macrolide/Azalide therapy for nodular/bronchiectatic mycobacterium avium complex lung disease. Chest 2014. 146: 276-282.
166 Wang, J. Y., Chou, C. H., Lee, L. N., Diagnosis of tuberculosis by an enzyme-linked immunospot assay for interferon-gamma. Emerg Infect Dis 2007. 13: 553-558.
167 Wang, J. Y., Hsueh, P. R., Wang, S. K., Disseminated tuberculosis: a 10-year experience in a medical center. Medicine (Baltimore) 2007. 86: 39-46.
168 Wang, L., Pino-Lagos, K., de Vries, V. C., Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A 2008. 105: 9331-9336.
169 Wang, X., Barnes, P. F., Dobos-Elder, K. M., ESAT-6 inhibits production of IFN-gamma by Mycobacterium tuberculosis-responsive human T cells. J Immunol 2009. 182: 3668-3677.
170 Weng, N. P., Araki, Y. and Subedi, K., The molecular basis of the memory T cell response: differential gene expression and its epigenetic regulation. Nat Rev Immunol 2012. 12: 306-315.
171 Wherry, E. J., T cell exhaustion. Nat Immunol 2011. 12: 492-499.
172 Wolfle, S. J., Strebovsky,
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20932-
dc.description.abstract背景: 分枝桿菌肺部感染,仍然是全世界相當重要的感染症之一,而對感染的宿主免疫調節是其中值得研究的方向,但目前仍有許多課題的研究是較不足而需要努力的。其中一個是肺外結核的免疫診斷,雖然目前肺結核有逐漸被控制的趨勢,但肺外結核仍然是不容易診斷的,而因為其診斷的延遲而會造成預後的不良。可能的困難診斷原因包括了表現較不典型、檢體的不易取得等因素,而結核胸腔積水 (tuberculous pleural effusion) 則是肺外結核中最常見的表現之一,但其死亡率並不罕見。除了通過微生物學診斷的傳統診斷,胸腔積水中免疫學診斷輔助是可行的,雖然胸腔積水中的一些發炎指標已知有助於診斷,但仍有局限,且尚未有研究關於胸腔積水中抗發炎細胞激素和細胞毒性T淋巴細胞效應分子的研究,整體的多因子調查將免疫反應應用到臨床診斷是缺乏的。另一個隨著肺結核的下降的課題,是非結核分枝桿菌肺部感染 (Nontuberculous mycobacteria lung disease, NTM-LD) 的發生卻是正在增加的,而宿主免疫調節失調是可能的因素之一。NTM-LD中,鳥型分枝桿菌 (Mycobacterium avium complex, MAC) 正是最常見的菌種,因為它是環境中就存在的伺機性菌種,且痰液中培養出非結核分枝桿菌的病人卻只有一小部份最後被認定為有疾病,故推論宿主的免疫易感受性是一個可能的原因,但目前對於MAC-LD感染當下的宿主免疫調節並沒有好的了解,需要進一步探究。故我們希望研究這兩個尚未清楚宿主免疫調節反應但卻重要的分枝桿菌肺部感染議題。
方法: 我們在這項前瞻性研究中收案95名具有淋巴細胞為主 (≥50%) 的滲出性胸腔積水,並分析其發炎、抗發炎細胞激素和細胞毒性T淋巴細胞的效應分子,分析其作結核胸腔積水的預測評估。並招募了50名MAC-LD和30名對照組,採集受試者的周邊血液單核細胞,並處理為淋巴細胞和巨噬細胞,用於後續MAC抗原刺激,研究其宿主免疫反應。
結果: 在淋巴細胞為主的滲出性胸腔積水中,35名為患有結核胸腔積水,其胸腔積水中的IFN-γ、腺苷脫氨酶 (Adenosine deaminase, ADA)、誘餌受體 (Decoy receptor, DcR) 3、單核細胞化學引誘蛋白(monocyte chemo-attractant protein, MCP)-1,干擾素誘導蛋白(interferon-induced protein,IP)-10,顆粒酶 (granzyme) A和穿孔素 (perforin) 的結果,都是高於46位惡性和14位其它原因引起的胸腔積水的,通過logistic多變數回歸分析,IFN-γ ≥75pg / ml、ADA ≥40IU / ml、DcR3≥9.3ng / ml和可溶性腫瘤壞死因子受體1(TNF-sR1)≥3.2ng / ml是結核性胸腔積水相關的獨立因素,基於四個預測因子的預測機率在ROC曲線下面積為0.920,在四因子預測臨界值為0.303之下,可具有82.9%的靈敏度和86.7%的特異性。在結核胸腔積水病人中,具有陽性胸腔積水或胸膜培養為結核菌陽性的患者,具有比其它培養陰性的病人有較高的IFN-γ、MCP-1、IP-10和穿孔素。在MAC-LD的病人,PBMC接受MAC桿菌刺激試驗下,與對照組相比較是具有較低的腫瘤壞死因子-α (tumor necrosis factor-alpha, TNF-α) 和丙型干擾素 (interferon-gamma, IFN-γ) 反應。這些反應在MAC治療後有觀察到改善。另外,MAC-LD患者的淋巴細胞上的程序性細胞死亡受體-1 (programmed cell death-1, PD-1) 、程序性細胞死亡配體-1 (PD-1 ligand-1, PD-L1) 和細胞凋亡 (apoptosis) 表達,都比對照組更高。在MAC-LD患者中,通過直接的MAC桿菌或間接MAC活化的巨噬細胞來刺激淋巴球胞下,T淋巴細胞上的PD-1和細胞凋亡表現都有顯著增加。在使用PD-1和PD-1配體有的拮抗性抗體來阻斷PD-1路徑下,可觀察到在上述刺激測定中的IFN-γ產生有顯著的增加,並能減少T淋巴細胞的細胞凋亡現象。
結論: 在不易診斷的淋巴球為主胸腔積水中,雖然IFN-γ和ADA是診斷結胸腔積水的常見免疫指標,但同時測量抗發炎的DcR3和TNF-sR1,可以提高免疫指標模組的診斷效力,減少遺漏的病人。在MAC-LD的患者中,可發現減弱的淋巴細胞免疫,這可能與淋巴細胞上增加表現的PD-1和PD-1配體有關,進一步抑制淋巴細胞的活化過程,阻斷PD-1相關路徑可以改善淋巴細胞的IFN-γ產生並減少其細胞凋亡,未來可能可以應用在難治的MAC-LD病人。
zh_TW
dc.description.abstractBackground: Mycobacterial pulmonary infection is still one of the most important infectious diseases. The host immune regulation is worthy of study, but there are many topics needed further investigation. On of them is immune-diagnosis for extra-pulmonary tuberculosis (TB). Although pulmonary TB has been gradually controlled, the diagnosis of extrapulmonary TB remains difficult because of less typical manifestations, difficultly collecting specimens, and low yield rate in mycobacteria culture. Among the extrapulmonary TB, tuberculous pleural effusion (TPE) is a common type but the mortality rate is not uncommon. In addition to the traditional microbiology, the immune-diagnosis is feasible but lacks an integrated study. Anti-inflammatory cytokines and effector molecules of cytotoxic T lymphocytes in PE has rarely been studied and might be helpful. In addition, the occurrence of nontuberculous mycobacteria lung disease (NTM-LD) is increasing, and MAC (Mycobacterium avium complex) is one of the most common causing species. Because it exists in the environment, and only a small part of those with sputum isolating MAC is identified as MAC-LD, the immune susceptibility is a probable cause, but there is lack of understanding. Therefore, we studied the two unsolved issues regarding the understanding and applicaton of the host immune regulation in TPE and MAC-LD.
Methods: We recruited 95 cases with lymphocyte predominant exudative PE. Inflammatory and anti-inflammatory cytokines as well as effector molecules of the cytotoxic T lymphocytes were measured in the PE and were analyzed for the predictive value for TPE. In addition, 50 MAC-LD patients and 30 controls were enrolled, and we collected and isolated the peripheral blood mononuclear cells (PBMC), lymphocytes and macrophages for MAC antigen stimulation.
Results: The 35 patients with TPE had higher interferon (IFN)-γ, adenosine deaminase (ADA), Decoy receptor (DcR) 3, monocyte chemo-attractant protein (MCP)-1, interferon-induced protein (IP)-10, granzyme A, and perforin than those with malignant PE (n=46) or other PE (n=14). By logistic regression analysis, IFN-γ ≥75 pg/ml, ADA ≥40 IU/ml, DcR3 ≥9.3 ng/ml and soluble tumor necrosis factor receptor 1 (TNF-sR1) ≥3.2 ng/ml were independent factors associated with TPE. The predicted probability based on the four predictors had an area under ROC curve of 0.920, with 82.9% sensitivity and 86.7% specificity under the cut-off value of 0.303. In the TPE group, patients with positive PE/pleura culture for Mycobacterium tuberculosis had higher pleural IFN-γ, MCP-1, IP-10, and perforin than those with positive sputum but negative PE culture. With regards to MAC-LD, patients had lower tumor necrosis factor-α and IFN-γ responses compared to the healthy controls in PBMC stimulation assays with MAC bacilli. These responses improved after MAC treatment. The PD (programmed cell death)-1 and PD-1 ligand expressions and apoptosis were higher in the lymphocytes of the patients with MAC-LD compared to the controls. Both PD-1 and apoptosis on T lymphocytes were significantly increased in the patients with MAC-LD, either by direct MAC or by MAC-priming macrophage activation. Partially blocking PD-1 and the PD ligand with antagonizing antibodies in the stimulation assay significantly increased the cytokine production of IFN-γ and decreased the apoptosis on T lymphocytes.
Conclusions: For patients with lymophocye predominant pleural effusion, while pleural IFN-γ and ADA are conventional inflammatory markers for suspecting TPE, simultaneously measuring DcR3 and TNF-sR1 can improve diagnostic efficacy. The patients with MAC-LD have attenuated lymphocyte immunity, which might be associated with increasing activation of PD-1 pathway. Blocking such activation might improve the lymphocytic secretion of IFN-γ and reduce apoptosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:11:00Z (GMT). No. of bitstreams: 1
ntu-106-D00421008-1.pdf: 4433251 bytes, checksum: cdb6ae5744d1024873f3672d4c54dab6 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書………………………………………………………… i
誌謝……………………………………………………………………………………… ii
中文摘要…………………………………………………………………………… iv
英文摘要…………………………………………………………………………… vii
博士論文內容
1.緒論(Introduction) 1
1.1 分枝桿菌的簡介 1
1.2 分枝桿菌能引起人類感染的種類 1
1.3 分枝桿菌導致人類感染的疾病種類 2
1.4 分枝桿菌肺部感染的免疫反應 2
1.5 分枝桿菌肺部感染的免疫觀點:肺外結核免疫診斷和NTM-LD得病機轉 4
1.6 結核胸腔積水的重要性 6
1.7 結核胸腔積水 (TPE) 的診斷困難性 7
1.8 免疫診斷的重要性 7
1.9 TPE免疫診斷的目前文獻 – 發炎性物質 8
1.10 TPE免疫診斷的可能發展指標 – 抗發炎物質 9
1.11 TPE免疫診斷的可能發展指標 – 毒殺T淋巴細胞的效應分子 10
1.12 TPE免疫診斷的需求以及研究方向 12
1.13 非結核分枝桿菌肺部疾病的重要性: 慢性病變以及高致死率 13
1.14 非結核分枝桿菌肺部疾病目前的免疫指標及反應 14
1.15 目前MAC-LD免疫反應的文獻 17
1.16 對於MAC-LD可能免疫低下的假說與研究需要 18
1.17 研究目標 (Specific Aims) 22
2. 研究方法與材料 23
2.1. 研究方法 23
2.1.1患者收案 23
2.1.2 分離peripheral blood mononuclear cells (PBMCs) 24
2.1.3 M. avium bacilli 的準備 25
2.1.4 PBMC 刺激試驗和PD-1路徑的阻斷試驗 25
2.1.5 細胞表面指摽和apoptosis 的表現 26
2.1.6 巨噬細胞刺激與後續的淋巴細胞活化試驗 27
2.1.7 PD-1和PD-L1 在MAC-LD病理上的免疫組織染色 29
2.1.8 使用酵素連結免疫分析法測量血中或反應液的細胞激素 29
2.1.9 偵測胸腔積水的免疫指標 30
2.1.10 資料收集與統計分析 31
2.2. 材料 33
2.2.1 試劑與溶液 33
2.2.2 儀器 42
2.2.3 細菌株 42
3. 結果 43
3.1 胸腔積水收案病人的基本特徵 43
3.2 胸水內指標的分析 43
3.3預測結核肋膜炎的建立 44
3.4 預測模式的應用可能 45
3.5鳥型分枝桿菌肺部感染病人的特徵 46
3.6 在病人的PBMCs 使用MAC刺激的細胞激素反應下降 47
3.7 MAC-LD病人的T淋巴球細胞的PD-1 表現以及細胞凋亡增加 48
3.8 MAC-LD治療後的PD-1表現和細胞凋亡的改善 50
3.9 MAC 刺激使T淋巴球細胞有增強的 PD-1 表達與細胞凋亡 51
3.10 PD-1路徑阻斷在PBMC的刺激下可改善細胞激素反應跟凋亡 52
3.11 MAC活化的巨噬細胞會增強淋巴球上的PD-1/PD-L1 表達 53
4討論 56
4.1 結核胸腔積水的產生和相關的免疫反應 56
4.2 目前發炎生物標記在臨床胸腔積水中的應用問題 58
4.3 抗發炎細胞激素在結核胸腔積水中可能的角色 58
4.4 毒殺性T細胞的相關分子在TPE的表現與探討 60
4.5 趨化因子在TPE的表現與探討 61
4.6 合併發炎和抗發炎免疫指標在臨床胸腔積水中的可能應用 62
4.7合併發炎和抗發炎生物免疫指標在預測TPE的侷限 63
4.8 MAC-LD宿主的淋巴球細胞免疫反應下降和可能原因 64
4.9 PD-1路徑在MAC-LD中白血球細胞激反應下降的角色 65
4.10 PD-1路徑阻斷實驗結果,與之前文獻差異的探討 67
4.11 PD-1路徑表現在MAC-LD的機轉假設 69
4.12 PD-1路徑在MAC-LD治療前後表現變化探討 70
4.13 PD-1路徑阻斷程度與效果在分枝桿菌的探討 71
4.14 PD-1路徑在MAC-LD的調控 72
4.15 研究的侷限 72
4.16 研究討論總結 74
5.展望 75
5.1 臨床上胸腔積水的診斷需求 75
5.2 臨床上結核胸積水的可能免疫機轉 75
5.3 CD8毒殺細胞為主的釋放分子在結核胸積水的可能幫忙 76
5.4抗發炎反應在結核胸積水的輔佐角色 77
5.5合併指標模組對結核胸積水的診斷協助 77
5.6 周邊血液血球的免疫反應在MAC-LD的觀察以及應用 78
5.7 PD-1路徑在MAC-LD表現以及應用 79
5.8 PD-1細胞內路徑的發展 81
5.9 MAC 抗原專一T細胞的發展與應用 82
5.10 PD-1在臨床治療下的追蹤 83
5.11 PD-1阻斷在MAC-LD的影響以及可能應用 84
5.7 PD-1的調節與調控量 85
5.12 PD-1在MAC-LD的角色在基礎的幫忙 85
6. 論文英文簡述(summary) 87
7.參考文獻 112
8. 表 126~139
9. 圖 140~160
10. 附錄1: 附錄圖示 161
11. 附錄2: 博士班修業期間論文清單 164
dc.language.isozh-TW
dc.title分枝桿菌肺部感染的宿主免疫調節zh_TW
dc.titleHost Immune Regulation in Mycobacterial Pulmonary Infectionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.coadvisor江伯倫(Bor-Luen Chiang)
dc.contributor.oralexamcommittee王振源(Jann-Yuan Wang),余明治,賴信志
dc.subject.keyword丙型干擾素,腺?脫氨?,誘餌受體 3,可溶性腫瘤壞死因子受體1,鳥型分枝桿菌,程序性細胞死亡受-1,細胞凋亡,zh_TW
dc.subject.keywordadenosine deaminase,apoptosis,decoy receptor 3,interferon-γ,Mycobacterium avium complex,programmed cell death-1,soluble tumor necrosis factor receptor 1,en
dc.relation.page165
dc.identifier.doi10.6342/NTU201700780
dc.rights.note未授權
dc.date.accepted2017-04-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved