請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20855
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱文英 | |
dc.contributor.author | Yen-Ting Lin | en |
dc.contributor.author | 林彥廷 | zh_TW |
dc.date.accessioned | 2021-06-08T03:07:00Z | - |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-06-29 | |
dc.identifier.citation | 1. Wu, C.-S., Influence of post-curing and temperature effects on bulk density, glass transition and stress-strain behaviour of imidazole-cured epoxy network. Journal of Materials Science, 1992. 27(11): p. 2952-2959.
2. Rajagopalan, N.; Khanna, A.S., Effect of Methyltrimethoxy Silane Modification on Yellowing of Epoxy Coating on UV (B) Exposure. Journal of Coatings, 2014. 2014: p. 1-7. 3. Mailhot, B.; Morlat-Thérias, S.; Ouahioune, M.; Gardette, J.-L., Study of the Degradation of an Epoxy/Amine Resin, 1. Macromolecular Chemistry and Physics, 2005. 206(5): p. 575-584. 4. Down, J.L., The Yellowing of Epoxy Resin Adhesives: Report on High-Intensity Light Aging. Studies in Conservation, 1986. 31(4): p. 159. 5. Rivaton, A.; Moreau, L.; Gardette, J.-L., Photo-oxidation of phenoxy resins at long and short wavelengths—II. Mechanisms of formation of photoproducts. Polymer Degradation and Stability, 1997. 58(3): p. 333-339. 6. Zhang, G.; Pitt, W.G.; Goates, S.R.; Owen, N.L., Studies on oxidative photodegradation of epoxy resins by IR-ATR spectroscopy. Journal of Applied Polymer Science, 1994. 54(4): p. 419-427. 7. Lowrey, K.W., The use of epoxy resins in civil engineering. Pigment & Resin Technology, 1974. 3(6): p. 4-5. 8. Hristov, V.; Vasileva, S., Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromolecular Materials and Engineering, 2003. 288(10): p. 798-806. 9. Bard, A.J.; Faulkner, L.R.; Leddy, J.; Zoski, C.G., Electrochemical methods: fundamentals and applications (Wiley New York, Vol. 2. 1980). 10. Huang, W.-S.; Humphrey, B.D.; MacDiarmid, A.G., Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986. 82(8): p. 2385. 11. Chiang, J.-C.; MacDiarmid, A.G., ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime. Synthetic Metals, 1986. 13(1-3): p. 193-205. 12. MacDiarmid, A.G.; Epstein, A.J., Secondary doping in polyaniline. Synthetic Metals, 1995. 69(1-3): p. 85-92. 13. Tzou, K.; Gregory, R.V., Kinetic study of the chemical polymerization of aniline in aqueous solutions. Synthetic Metals, 1992. 47(3): p. 267-277. 14. Geng, Y.; Li, J.; Sun, Z.; Jing, X.; Wang, F., Polymerization of aniline in an aqueous system containing organic solvents. Synthetic Metals, 1998. 96(1): p. 1-6. 15. Wei, Y.; Tang, X.; Sun, Y.; Focke, W.W., A study of the mechanism of aniline polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 1989. 27(7): p. 2385-2396. 16. Geniès, E.M.; Boyle, A.; Lapkowski, M.; Tsintavis, C., Polyaniline: A historical survey. Synthetic Metals, 1990. 36(2): p. 139-182. 17. Tan, S.X.; Zhai, J.; Wan, M.X.; Jiang, L.; Zhu, D.B., Polyaniline as Hole Transport Material to Prepare Solid Solar Cells. Synthetic Metals, 2003. 137(1-3): p. 1511-1512. 18. Tang, Q.; Cai, H.; Yuan, S.; Wang, X., Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications. J. Mater. Chem. A, 2013. 1(2): p. 317-323. 19. Zhang, K.; Zhang, L.L.; Zhao, X.S.; Wu, J.S., Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes. Chemistry of Materials, 2010. 22(4): p. 1392-1401. 20. Kobayashi, T.; Yoneyama, H.; Tamura, H., Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1984. 161(2): p. 419-423. 21. Wei, H.; Zhu, J.; Wu, S.; Wei, S.; Guo, Z., Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer, 2013. 54(7): p. 1820-1831. 22. Mengoli, G.; Munari, M.T.; Bianco, P.; Musiani, M.M., Anodic synthesis of polyaniline coatings onto fe sheets. Journal of Applied Polymer Science, 1981. 26(12): p. 4247-4257. 23. DeBerry, D.W., Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. Journal of The Electrochemical Society, 1985. 132(5): p. 1022. 24. Wessling, B.; Posdorfer, J., Corrosion prevention with an organic metal (polyaniline): corrosion test results. Electrochimica Acta, 1999. 44(12): p. 2139-2147. 25. Wessling, B., Corrosion prevention with an organic metal (polyaniline): Surface ennobling, passivation, corrosion test results. Materials and Corrosion/Werkstoffe und Korrosion, 1996. 47(8): p. 439-445. 26. Lu, W.-K.; Elsenbaumer, R.L.; Wessling, B., Corrosion protection of mild steel by coatings containing polyaniline. Synthetic Metals, 1995. 71(1-3): p. 2163-2166. 27. Wessling, B., Passivation of metals by coating with polyaniline: Corrosion potential shift and morphological changes. Advanced Materials, 1994. 6(3): p. 226-228. 28. Zhong, L.; Zhu, H.; Hu, J.; Xiao, S.H.; Gan, F.X., A passivation mechanism of doped polyaniline on 410 stainless steel in deaerated H2SO4 solution. Electrochimica Acta, 2006. 51(25): p. 5494-5501. 29. Kinlen, P.J.; Ding, Y.; Silverman, D.C., Corrosion Protection of Mild Steel Using Sulfonic and Phosphonic Acid-Doped Polyanilines. Corrosion, 2002. 58(6): p. 490-497. 30. Torresi, R.M.; de Souza, S.; da Silvaa, J.E.P.; de Torresi, S.I.C., Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanism. Electrochimica Acta, 2005. 50(11): p. 2213-2218. 31. Kinlen, P.J., A Mechanistic Investigation of Polyaniline Corrosion Protection Using the Scanning Reference Electrode Technique. Journal of The Electrochemical Society, 1999. 146(10): p. 3690. 32. Alvi, F., Corrosion Inhibition Study of Zinc Oxide-Polyaniline Nanocomposite for Aluminum and Steel. American Journal of Applied Chemistry, 2015. 3(2): p. 57. 33. Chang, C.H.; Huang, T.C.; Peng, C.W.; Yeh, T.C.; Lu, H.I.; Hung, W.I.; Weng, C.J.; Yang, T.I.; Yeh, J.M., Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon, 2012. 50(14): p. 5044-5051. 34. Jang, B.Z.; Huang, W.C., Nano-scaled graphene plates. 2006, Google Patents. 35. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9. 36. Geim, A.K.; Novoselov, K.S., The rise of graphene. Nat Mater, 2007. 6(3): p. 183-91. 37. Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200. 38. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008. 321(5887): p. 385-8. 39. Jang, B.Z.; Zhamu, A., Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review. Journal of Materials Science, 2008. 43(15): p. 5092-5101. 40. Hummers, W.S.; Offeman, R.E., Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339. 41. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565. 42. Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J., The Chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 2013. 53: p. 38-49. 43. Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; Geim, A.K., Raman spectrum of graphene and graphene layers. Phys Rev Lett, 2006. 97(18): p. 187401. 44. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun'Ko, Y.K.; Boland, J.J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A.C.; Coleman, J.N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol, 2008. 3(9): p. 563-8. 45. Nuvoli, D.; Valentini, L.; Alzari, V.; Scognamillo, S.; Bon, S.B.; Piccinini, M.; Illescas, J.; Mariani, A., High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. Journal of Materials Chemistry, 2011. 21(10): p. 3428-3431. 46. Fan, S., Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, 1999. 283(5401): p. 512-514. 47. Tasca, F.; Harreither, W.; Ludwig, R.; Gooding, J.J.; Gorton, L., Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Anal Chem, 2011. 83(8): p. 3042-9. 48. Chatterjee, S.; Layek, R.K.; Nandi, A.K., Changing the morphology of polyaniline from a nanotube to a flat rectangular nanopipe by polymerizing in the presence of amino-functionalized reduced graphene oxide and its resulting increase in photocurrent. Carbon, 2013. 52: p. 509-519. 49. Kotal, M.; Bhowmick, A.K., Multifunctional Hybrid Materials Based on Carbon Nanotube Chemically Bonded to Reduced Graphene Oxide. The Journal of Physical Chemistry C, 2013. 117(48): p. 25865-25875. 50. Gao, Z.; Wang, F.; Chang, J.; Wu, D.; Wang, X.; Wang, X.; Xu, F.; Gao, S.; Jiang, K., Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochimica Acta, 2014. 133: p. 325-334. 51. Wang, G.; Wang, B.; Park, J.; Wang, Y.; Sun, B.; Yao, J., Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon, 2009. 47(14): p. 3242-3246. 52. Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J., Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon, 2009. 47(5): p. 1359-1364. 53. Dobbins, T.; Chevious, R.; Lvov, Y., Behavior of Na+-Polystyrene Sulfonate at the Interface with Single-Walled Carbon Nanotubes (SWNTs) and Its Implication to SWNT Suspension Stability. Polymers, 2011. 3(4): p. 942-954. 54. Liu, S.; Liu, X.; Li, Z.; Yang, S.; Wang, J., Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J. Chem., 2011. 35(2): p. 369-374. 55. Yoo, D.; Kim, J.; Kim, J.H., Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014. 7(5): p. 717-730. 56. Liang, Q.; Yao, X.; Wang, W.; Liu, Y.; Wong, C.P., A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano, 2011. 5(3): p. 2392-401. 57. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S.K.; Waghmare, U.V.; Novoselov, K.S.; Krishnamurthy, H.R.; Geim, A.K.; Ferrari, A.C.; Sood, A.K., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol, 2008. 3(4): p. 210-5. 58. Lin, Y.M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P., Operation of graphene transistors at gigahertz frequencies. Nano Lett, 2009. 9(1): p. 422-6. 59. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y., Supercapacitor Devices Based on Graphene Materials. The Journal of Physical Chemistry C, 2009. 113(30): p. 13103-13107. 60. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z., Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-8. 61. Li, Z.; Wang, R.; Young, R.J.; Deng, L.; Yang, F.; Hao, L.; Jiao, W.; Liu, W., Control of the functionality of graphene oxide for its application in epoxy nanocomposites. Polymer, 2013. 54(23): p. 6437-6446. 62. Tang, L.-C.; Wan, Y.-J.; Yan, D.; Pei, Y.-B.; Zhao, L.; Li, Y.-B.; Wu, L.-B.; Jiang, J.-X.; Lai, G.-Q., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon, 2013. 60: p. 16-27. 63. Hussein, A.; Sarkar, S.; Oh, D.; Lee, K.; Kim, B., Epoxy/p-phenylenediamine functionalized graphene oxide composites and evaluation of their fracture toughness and tensile properties. Journal of Applied Polymer Science, 2016. 133(34). 64. Bortz, D.R.; Heras, E.G.; Martin-Gullon, I., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites. Macromolecules, 2012. 45(1): p. 238-245. 65. Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G.H.; Vahid, S., Improving the fracture toughness and the strength of epoxy using nanomaterials--a review of the current status. Nanoscale, 2015. 7(23): p. 10294-329. 66. Wan, Y.-J.; Gong, L.-X.; Tang, L.-C.; Wu, L.-B.; Jiang, J.-X., Mechanical properties of epoxy composites filled with silane-functionalized graphene oxide. Composites Part A: Applied Science and Manufacturing, 2014. 64: p. 79-89. 67. Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L.H.; Chen, Y.; Fox, B., Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci Rep, 2014. 4: p. 4375. 68. Zaman, I.; Kuan, H.-C.; Meng, Q.; Michelmore, A.; Kawashima, N.; Pitt, T.; Zhang, L.; Gouda, S.; Luong, L.; Ma, J., A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Advanced Functional Materials, 2012. 22(13): p. 2735-2743. 69. Zhang, H.B.; Yan, Q.; Zheng, W.G.; He, Z.; Yu, Z.Z., Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces, 2011. 3(3): p. 918-24. 70. Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L., Impermeable atomic membranes from graphene sheets. Nano Lett, 2008. 8(8): p. 2458-62. 71. Sun, W.; Wang, L.D.; Wu, T.T.; Pan, Y.Q.; Liu, G.C., Synthesis of low-electrical-conductivity graphene/pernigraniline composites and their application in corrosion protection. Carbon, 2014. 79: p. 605-614. 72. Chang, K.-C.; Hsu, M.-H.; Lu, H.-I.; Lai, M.-C.; Liu, P.-J.; Hsu, C.-H.; Ji, W.-F.; Chuang, T.-L.; Wei, Y.; Yeh, J.-M.; Liu, W.-R., Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon, 2014. 66: p. 144-153. 73. Schriver, M.; Regan, W.; Gannett, W.J.; Zaniewski, A.M.; Crommie, M.F.; Zettl, A., Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano, 2013. 7(7): p. 5763-8. 74. Si, W.; Wu, X.; Zhou, J.; Guo, F.; Zhuo, S.; Cui, H.; Xing, W., Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes. Nanoscale Res Lett, 2013. 8(1): p. 247. 75. Toupin, M.; Belanger, D., Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations. Langmuir, 2008. 24(5): p. 1910-7. 76. Huang, Y.L.; Tien, H.W.; Ma, C.C.M.; Yang, S.Y.; Wu, S.Y.; Liu, H.Y.; Mai, Y.W., Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. Journal of Materials Chemistry, 2011. 21(45): p. 18236-18241. 77. Li, Z.F.; Zhang, H.Y.; Liu, Q.; Liu, Y.D.; Stanciu, L.; Xie, J., Covalently-grafted polyaniline on graphene oxide sheets for high performance electrochemical supercapacitors. Carbon, 2014. 71: p. 257-267. 78. Yuan, B.H.; Bao, C.L.; Song, L.; Hong, N.N.; Liew, K.M.; Hu, Y., Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chemical Engineering Journal, 2014. 237: p. 411-420. 79. Galande, C.; Mohite, A.D.; Naumov, A.V.; Gao, W.; Ci, L.; Ajayan, A.; Gao, H.; Srivastava, A.; Weisman, R.B.; Ajayan, P.M., Quasi-molecular fluorescence from graphene oxide. Sci Rep, 2011. 1: p. 85. 80. Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C.F., Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. Journal of Materials Chemistry C, 2013. 1(33): p. 5101. 81. Xu, J.; Wang, K.; Zu, S.Z.; Han, B.H.; Wei, Z., Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 2010. 4(9): p. 5019-26. 82. Nguyen, V.H.; Shim, J.J., Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites. Journal of Spectroscopy, 2015. 2015: p. 1-9. 83. Trchová, M.; Morávková, Z.; Bláha, M.; Stejskal, J., Raman spectroscopy of polyaniline and oligoaniline thin films. Electrochimica Acta, 2014. 122: p. 28-38. 84. Wang, G.; Xing, W.; Zhuo, S., The production of polyaniline/graphene hybrids for use as a counter electrode in dye-sensitized solar cells. Electrochimica Acta, 2012. 66: p. 151-157. 85. Cochet, M.; Louarn, G.; Quillard, S.; Buisson, J.P.; Lefrant, S., Theoretical and experimental vibrational study of emeraldine in salt form. Part II. Journal of Raman Spectroscopy, 2000. 31(12): p. 1041-1049. 86. Wang, H.; Wang, Y.; Cao, X.; Feng, M.; Lan, G., Vibrational properties of graphene and graphene layers. Journal of Raman Spectroscopy, 2009. 40(12): p. 1791-1796. 87. Sobon, G.; Sotor, J.; Jagiello, J.; Kozinski, R.; Zdrojek, M.; Holdynski, M.; Paletko, P.; Boguslawski, J.; Lipinska, L.; Abramski, K.M., Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt Express, 2012. 20(17): p. 19463-73. 88. Barton, J.M., The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions. 1985. 72: p. 111-154. 89. Palaniappan, S.; Sreedhar, B.; Nair, S.M., Polyaniline as a Curing Agent for Epoxy Resin: Cure Kinetics by Differential Scanning Calorimetry. Macromolecular Chemistry and Physics, 2001. 202(7): p. 1227-1231. 90. Jang, J.; Bae, J.; Lee, K., Synthesis and characterization of polyaniline nanorods as curing agent and nanofiller for epoxy matrix composite. Polymer, 2005. 46(11): p. 3677-3684. 91. Lu, J.; Moon, K.-S.; Kim, B.-K.; Wong, C.P., High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications. Polymer, 2007. 48(6): p. 1510-1516. 92. Olivier, P.A., A note upon the development of residual curing strains in carbon/epoxy laminates. Study by thermomechanical analysis. Composites Part A: Applied Science and Manufacturing, 2006. 37(4): p. 602-616. 93. Green, K.J.; Dean, D.R.; Vaidya, U.K.; Nyairo, E., Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior. Composites Part A: Applied Science and Manufacturing, 2009. 40(9): p. 1470-1475. 94. Huang, J.; Xiao, Y.; Mya, K.Y.; Liu, X.; He, C.; Dai, J.; Siow, Y.P., Thermomechanical properties of polyimide-epoxy nanocomposites from cubic silsesquioxane epoxides. Journal of Materials Chemistry, 2004. 14(19): p. 2858. 95. Yamashita, T.; Hayes, P., Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science, 2008. 254(8): p. 2441-2449. 96. Wang, S.G.; Han, G.; Yu, G.H.; Jiang, Y.; Wang, C.; Kohn, A.; Ward, R.C.C., Evidence for FeO formation at the Fe/MgO interface in epitaxial TMR structure by X-ray photoelectron spectroscopy. Journal of Magnetism and Magnetic Materials, 2007. 310(2): p. 1935-1936. 97. Wessling, B., Scientific and Commercial Breakthrough for Organic Metals. Synthetic Metals, 1997. 85(1-3): p. 1313-1318. 98. Mak, K.F.; Ju, L.; Wang, F.; Heinz, T.F., Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Communications, 2012. 152(15): p. 1341-1349. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20855 | - |
dc.description.abstract | 本研究主要在探討以環氧樹脂為基質,添加不同的石墨烯或石墨烯-聚苯胺(graphene-PANI)複合物之後的機械性質和抗腐蝕能力。我們使用化學改質或高分子分散劑使石墨烯較好的分散在水中,並在其上合成PANI,之後使用元素分析、XRD、拉曼光譜、FT-IR、XPS 分析其表面性質,並利用SEM 觀測複合物的形態,由分析結果確認我們成功的將聚苯胺以不同的方式合成在石墨烯上,其中化學改質後合成聚苯胺的樣品稱為a-NP,以高分子分散後聚合聚苯胺的樣品稱為P-P/N。之後我們將上述合成的複合物與環氧樹脂及其固化劑混合,利用DSC 研究其固化反應放熱量以估算固化程度,並且以複合物的斷面來觀察環氧樹脂與填料的相容性。實驗結果發現a-NP 的分散性最好,P-P/N 和N002 的分散性較差。接下來我們利用拉伸測試(Tensile test)和動態機械分析儀(DMA)測量複合物在post curing 前後不同的機械性質,發現epoxy/a-NP 在post curing 前機械性質較佳,epoxy/P-P/N 在postcuring 之後則具有非常好的韌性。抗腐蝕性質的部分,以環氧樹脂複合物薄膜塗佈在碳鋼片上,經過post curing 之後我們採用電化學測試來模擬腐蝕的情形,而抗腐蝕的效果則是以epoxy/a-NP 最佳,而這是因為此種複合物填料的分散性最好,使的石墨烯和聚苯胺都發揮良好的抗腐蝕功效。另外我們也針對不同的複合物進行抵抗黃化的評估,我們選用FT-IR 來分析環氧樹脂在經過照射之後內部化學結構的變化,並以carbonyl index 來分析結果。結果顯示a-NP 和N002 作為填料的複合物抗黃化效果最佳。總結而言,我們成功製造出兩種不同的環氧樹脂/石墨烯-聚苯胺複合物薄膜,兩者在post curing 前後的機械性質各有優劣,並且都有良好的抗腐蝕性能,未來應能在抗腐蝕塗料和高強度環氧樹脂的材料領域有所應用。 | zh_TW |
dc.description.abstract | In this work, polyaniline/graphene oxide composites were fabricated via in situ redox polymerization on the surface of PSS-dispersed graphene oxide or p-phenelene diamine-modified graphene oxide. The results of EDX and EA as well as the characteristic peaks in FT-IR and XRD spectrum all pointed out that the surface of graphene oxide platelets was covered by PANI. P-P/N, a-NP and pristine graphene oxide (N002) were then blended separately with bisphenol-A type epoxy and a curing agent at different loadings. Analyzed by DSC, DMA, tensile test and TMA, the thermal and mechanical properties of epoxy composites revealed that a-NP and P-P/N platelets were more compatible in epoxy matrix than N002 after the post curing process, upon which the PANI on the surface of a-NP and P-P/N platelets was allowed to participate in the curing reaction of epoxy resin. The enhanced filler-matrix interface and the stiffness provided by graphene oxide platelets improved the toughness of post cured epoxy/P-P/N by 154% for 0.5 wt. % compared to that of pristine epoxy. Moreover, in potentiodynamic polarization analysis, the presence of N002 filler in epoxy coatings reduce the corrosion current density by increasing the tortuosity of diffusion pathways for gas and ions, whereas the specimens with epoxy/ a-NP epoxy/P-P/N coatings exhibited even higher corrosion potentials and lower corrosion rates. The XPS spectrum of the carbon steel surface also confirmed the existence of Fe2O3/Fe3O4 layer, which was ascribed to the passivation of carbon steel surface by PANI. The superior anticorrosion performance of epoxy/P-P/N coatings were ascribed to the more compact filler-matrix interface and the presence of passivation layer. In summary, the incorporation of a-NP and P-P/N in epoxy composites enhanced the mechanical properties of epoxy and provided promising potential in anticorrosion applications. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:07:00Z (GMT). No. of bitstreams: 1 ntu-106-R04524005-1.pdf: 6895122 bytes, checksum: 26424308dbd32d714bd4b8c6431b6aaa (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 ------------------------------------------------------------------------------------------------------ I
摘要 ------------------------------------------------------------------------------------------------------ II ABSTRACT -------------------------------------------------------------------------------------------- III 目錄 ------------------------------------------------------------------------------------------------------ IV 圖目錄 --------------------------------------------------------------------------------------------------- VII 表目錄 --------------------------------------------------------------------------------------------------- X 第一章 研究介紹及文獻回顧---------------------------------------------------------------------- 1 1.1. 環氧樹脂的簡介與應用------------------------------------------------------------------ 1 1.1.1. 環氧樹脂簡介--------------------------------------------------------------------- 1 1.1.2. 環氧樹脂的固化反應------------------------------------------------------------ 4 1.1.3. 環氧樹脂的應用------------------------------------------------------------------ 5 1.2. 金屬腐蝕------------------------------------------------------------------------------------ 7 1.2.1. 金屬腐蝕原理--------------------------------------------------------------------- 7 1.2.2. 腐蝕防治方法--------------------------------------------------------------------- 8 1.2.3. 抗腐蝕能力評估------------------------------------------------------------------ 10 1.3. 聚苯胺--------------------------------------------------------------------------------------- 15 1.3.1. 聚苯胺簡介------------------------------------------------------------------------ 15 1.3.2. 聚苯胺的合成--------------------------------------------------------------------- 16 1.3.3. 聚苯胺的聚合機制--------------------------------------------------------------- 17 1.3.4. 聚苯胺的應用--------------------------------------------------------------------- 19 1.4. 石墨烯的研究發展------------------------------------------------------------------------ 22 1.4.1. 石墨烯/氧化石墨烯簡介-------------------------------------------------------- 22 1.4.2. 石墨烯/氧化石墨烯的製備----------------------------------------------------- 22 1.4.3. 石墨烯的應用--------------------------------------------------------------------- 25 第二章 實驗方法------------------------------------------------------------------------------------- 29 2.1. 實驗藥品------------------------------------------------------------------------------------ 29 2.2. 實驗流程------------------------------------------------------------------------------------ 32 2.3. Polystyrene sulfonate-Polyaniline/N002 (P-P/N) 複合物製備----------------- 33 2.4. Amine-functionalized-N002/Polyaniline (a-NP) 複合物製備------------------ 33 2.5. 環氧樹脂複合物製備--------------------------------------------------------------------- 34 2.6. 環氧樹脂複合物固化特性評估--------------------------------------------------------- 34 2.7. 石墨烯/聚苯胺複合物性質-------------------------------------------------------------- 34 2.8. 環氧樹脂複合物機械性質與熱性質分析-------------------------------------------- 35 2.9. 環氧樹脂塗層的抗腐蝕性質------------------------------------------------------------ 35 2.10. 環氧樹脂黃化評估---------------------------------------------------------------------- 38 第三章 結果與討論---------------------------------------------------------------------------------- 39 3.1. 材料性質鑑定------------------------------------------------------------------------------ 39 3.1.1. N002, a-N002, a-NP and P-P/N 複合材料之表面型態分析--------------- 39 3.1.2. N002, a-N002, P-P/N and a-NP 性質鑑定------------------------------------ 42 3.2. 環氧樹脂複合物性質分析--------------------------------------------------------------- 52 3.2.1. 環氧樹脂複合物的固化性質--------------------------------------------------- 52 3.2.2. 環氧樹脂複合物的斷面影像--------------------------------------------------- 58 3.2.3. 環氧樹脂複合物的機械性質--------------------------------------------------- 64 3.3. 環氧樹脂複合物的表面保護能力----------------------------------------------------- 83 3.3.1. 水接觸角--------------------------------------------------------------------------- 83 3.3.2. 百格附著試驗--------------------------------------------------------------------- 84 3.3.3. 電化學測定------------------------------------------------------------------------ 85 3.3.4. 鹽霧測試--------------------------------------------------------------------------- 91 3.4. 環氧樹脂複合物黃化評估--------------------------------------------------------------- 93 第四章 結論 ------------------------------------------------------------------------------------------- 96 附錄 ------------------------------------------------------------------------------------------------------ 99 參考文獻 ------------------------------------------------------------------------------------------------ 106 | |
dc.language.iso | zh-TW | |
dc.title | 環氧樹脂/石墨烯聚苯胺複合材料之製備以及其於高強度、韌性與抗腐蝕機制之探討 | zh_TW |
dc.title | Synthesis of epoxy/graphene-polyaniline composites and the mechanisms of enhanced stiffness, toughness and anticorrosion performance | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何國川,董崇民,李佳芬,林怡君 | |
dc.subject.keyword | 石墨烯,環氧樹脂,聚苯胺,抗腐蝕,韌性, | zh_TW |
dc.subject.keyword | graphene,epoxy,polyaniline,anticorrosion,toughness, | en |
dc.relation.page | 113 | |
dc.identifier.doi | 10.6342/NTU201701024 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-06-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 6.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。