Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曲芳華(Fang-Hua Chu)
dc.contributor.authorChia-Chen Wuen
dc.contributor.author吳家禎zh_TW
dc.date.accessioned2021-06-08T03:06:58Z-
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-20
dc.identifier.citation行政院農業委員會林務局。2004。臺灣的自然資源與生物多樣性III。農林漁牧。頁100。
朱麗萍。2006。牛樟、冇樟及樟樹之族群遺傳變異及相關種屬之親緣關係研究。國立臺灣大學博士論文。頁94。
何政坤、張淑華、邱志明、陳永修、陳盈如、吳家禎。2012。牛樟選育與育林技術。牛樟生物學與利用研討會。
周立涵、吳家禎、張鎔敏、李幸怡。2019。以分子標誌與葉片性狀探討臺灣樟樹族群分佈與移動之研究。108年森林資源永續發展研討會。
馮豐隆、李宣德。2009。臺灣之樟樹資源現狀與展望。生命科學: 51(2)。頁37-52。
張淑華、何政坤、蔡錦瑩、陳媶、林培雅、鍾依萍。2010。牛樟體胚再生與芽體增殖之微體繁殖。「森林資源保存與利用」研討會。林業叢刊第210刊。頁207-218。
張淑華、何政坤、林世宗。2014。牛樟分生苗與實生苗培育與造林比較。林業研究專訊21(4): 頁31-34。
蔡佳蓉。2013。牛樟木材DNA 萃取與定序技術。國立嘉義大學碩士論文。頁6-8。
劉業經、呂福源、歐辰雄。1994。臺灣樹木誌增補修訂版。國立中興大學農學院叢書。頁109-110。
鍾振德、簡慶德、蔡佳彬。2012。牛樟母樹與種子園。林業研究專訊19(4): 頁21-25。
臺灣總督府專賣局。1927。臺灣樟樹調查事業報告書。
Anderson, E.C., Thompson, E.A., 2002. A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229.
Ayala, F.J., 2017. In the light of evolution: volume x: Comparative phylogeography. The National Academies Press, Washington, DC. 146-147.
Baack, E.J., Rieseberg, L.H., 2007. A genomic view of introgression and hybrid speciation. Curr. Opin. Genet. Dev. 17, 513–518.
Bajaj, D., Das, S., Badoni, S., Kumar, V., Singh, M., Bansal, K.C., Tyagi, A.K., Parida, S.K., 2015. Genome-wide high-throughput SNP discovery and genotyping for understanding natural (functional) allelic diversity and domestication patterns in wild chickpea. Sci. Rep. 5, 12468.
Ball, J.W., Robinson, T.P., Bovill, J., Byrne, M., Nevill, P.G., 2020. Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species. Sci. Rep. 10, 1562.
Balloux, Lugon-Moulin, 2002. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 11, 155–165.
Bansal, K.C., Lenka, S.K., Mondal, T.K., 2014. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breed. 133, 1–11.
Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S., 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.
Bremer, B., Bremer, K., Chase, M.W., Fay, M.F., Reveal, J.L., Bailey, L.H., Soltis, D.E., Soltis, P.S., Stevens, P.F., 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121.
Cardle, L., Ramsay, L., Milbourne, D., Macaulay, M., Marshall, D., Waugh, R., 2000. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156, 847–854.
Caser, M., Torello Marinoni, D., Scariot, V., 2010. Microsatellite-based genetic relationships in the genus Camellia: potential for improving cultivars. Genome 53, 384–399.
Catherine I, C., Cooke, J.E.K., Dang, S., Davis, C.S., Cooke, B.J., Coltman, D.W., 2011. Mountain pine beetle host range expansion threatens the boreal forest. Mol. Ecol. 20, 2157–2171.
Chanderbali, A.S., van der Werff, H., Renner, S.S., 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. Ann. Missouri Bot. Gard. 88, 104–134.
Chang, S., Puryear, J., Cairney, J., 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Report. 11, 113–116.
Chase, M., Salamin, N., Wilkinson, M.M., Dunwell, J.J.M., Kesanakurthi, R.P., Haidar, N., Savolainen, V., 2005. Land plants and DNA barcodes: short-term and long-term goals. Philos. Trans. R. Soc. London, Ser. B 360, 1889–1895.
Chaw, S.M., Liu, Y.C., Wu, Y.W., Wang, H.Y., Lin, C.Y.I., Wu, C.S., Ke, H.M., Chang, L.Y., Hsu, C.Y., Yang, H.T., Sudianto, E., Hsu, M.H., Wu, K.P., Wang, L.N., Leebens Mack, J.H., Tsai, I., 2019. Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat. Plants 5, 63–73.
Chen, B., Cole, J.W., Grond-ginsbach, C., 2017. Departure from Hardy Weinberg Equilibrium and Genotyping Error. Forntier Genet. 8, 1–6.
Chen, C.Y., Chien, S.C., Tsao, N.W., Lai, C.S., Wang, Y.Y., Hsiao, W.W., Chu, F.H., Kuo, Y.H., Wang, S.Y., 2015. Metabolite profiling and comparison of bioactivity in Antrodia cinnamomea and Antrodia salmonea fruiting bodies. Planta Med. 82, 244–249.
Cheng, S.S., Lin, C.Y., Yang, C.K., Chen, Y.J., Chung, M.J., Chang, S.T., 2015. Chemical polymorphism and composition of leaf essential oils of Cinnamomum kanehirae using gas chromatography/mass spectrometry, cluster analysis, and principal component analysis. J. Wood Chem. Technol. 35, 207–219.
Cheng, Y.P., Hwang, S.Y., Lin, T.P., 2005. Potential refugia in Taiwan revealed by the phylogeographical study of Castanopsis carlesii Hayata (Fagaceae). Mol. Ecol. 14, 2075–2085.
Cho, K.S., Yun, B.K., Yoon, Y.H., Hong, S.Y., Mekapogu, M., Kim, K.H., Yang, T.J., 2015. Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS One 10, e0125332.
Corlett, R.T., 2001. Pollination in a degraded tropical landscape : a Hong Kong case study. J. Trop. Ecol. 17, 155–161.
Dai, F., Tang, C., Wang, Z., Luo, G., He, L., Yao, L., 2015. De novo assembly, gene annotation, and marker development of mulberry (Morus atropurpurea) transcriptome. Tree Genet. Genomes 11.
Das, S., Upadhyaya, H.D., Srivastava, R., Bajaj, D., Gowda, C.L.L., Sharma, S., Singh, S., Tyagi, A.K., Parida, S.K., 2015. Genome-wide insertion-deletion (InDel)marker discovery and genotyping for genomics-assisted breeding applications in chickpea. DNA Res. 22(5), 377–386.
Dautt-Castro, M., Ochoa-Leyva, A., Contreras-Vergara, C.A., Pacheco-Sanchez, M.A., Casas-Flores, S., Sanchez-Flores, A., Kuhn, D.N., Islas-Osuna, M.A., 2015. Mango (Mangifera indica L.) cv. Kent fruit mesocarp de novo transcriptome assembly identifies gene families important for ripening. Front. Plant Sci. 6, 62.
Desiderio, F., Bitocchi, E., Bellucci, E., Rau, D., Rodriguez, M., Attene, G., Papa, R., Nanni, L., 2012. Chloroplast microsatellite diversity in Phaseolus vulgaris. Front. Plant Sci. 3, 312.
Do, H.D.K., Kim, J.S., Kim, J.H., 2013. Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Gene 530, 229–235.
Doyle, JJ, Doyle, JL, 1990. Isolation of plant DNA from fresh tissue. Focus (Madison). 12, 13–15.
Du, Q.Z., Zhang, D.Q., Li, B.L., 2012. Development of 15 novel microsatellite markers from cellulose synthase genes in Populus tomentosa (Salicaceae). Am. J. Bot. 99, 2011–2013.
Dutta, S., Kumawat, G., Singh, B.P., Gupta, D.K., Singh, S., Dogra, V., Gaikwad, K., Sharma, T.R., Raje, R.S., Bandhopadhya, T.K., Datta, S., Singh, M.N., Bashasab, F., Kulwal, P., Wanjari, K.B., K Varshney, R., Cook, D.R., Singh, N.K., 2011. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. BMC Plant Biol. 11, 17.
Earl, D.A., vonHoldt, B.M., 2012. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361.
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, S.E., 2011. A robust, simple Genotyping-by-Sequencing (GBS) approach for high diversity species PLoS One 6, 1–10.
Fan, Y.B., 2006. The Floral and Pollination Biology of Lauraceae in Taiwan. National Taiwan university. Doctoral dissertation.
Fogelqvist, J., Verkhozina, A.V., Katyshev, A.I., Pucholt, P., Dixelius, C., Rönnberg-Wästljung, A.C., Lascoux, M., Berlin, S., 2015. Genetic and morphological evidence for introgression between three species of willows. BMC Evol. Biol. 15, 1–10.
Fujita, Y., 1967. Classification and phylogeny of genus Cinnamomum viewed from the constituents of essential oil. Bot. Mag. Tokoyo 80, 261–271.
Fujita, Y., 1960. Classification of the plants viewed from the constituents of essential oils (I)Cinnamomum micranthum HAY. and C. Kanahirai HAY. Acta Phytotax Geobot 8, 178–179.
Fujita, Y., 1952. Cinnamomum camphora Sieb. and its allied species. Their inter-relations considered from the view-points of species characterics, chemical constituents, geographical distributions and evolution. Bot. Mag. Tokoyo 65, 245–250.
Gamal El-Dien, O., Ratcliffe, B., Klápště, J., Chen, C., Porth, I., El-Kassaby, Y. A., 2015. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16, 370.
Ge, X., Chen, H., Wang, H., Shi, A., Liu, K., 2014. De novo assembly and annotation of Salvia splendens transcriptome using the illumina platform. PLoS One 9, 1–9.
Grassi, F., Labra, M., Scienza, A., Imazio, S., 2002. Chloroplast SSR markers to assess DNA diversity in wild and cultivated grapevines. Vitis 41, 157–158.
Han, S., Wu, Z., Jin, Y., Yang, W., Shi, H., 2015. RNA-Seq analysis for transcriptome assembly, gene identification, and SSR mining in ginkgo (Ginkgo biloba L.). Tree Genet. Genomes 11.
Hansen, O.K., Nielsen, U.B., 2010. Microsatellites used to establish full pedigree in a half-sib trial and correlation between number of male strobili and paternal success. Ann. For. Sci. 67, 703.
Hanson, M.R., Gray, B.N., Ahner, B.A., 2012. Chloroplast transformation for engineering of photosynthesis. J. Exp. Bot. 63, 695–709.
Hayden, M.J., Nguyen, T.M., Waterman, A., Chalmers, K.J., 2008. Multiplex-Ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9, 80.
Hirschberg, J., McIntosh, L., 1983. Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222, 1346–1349.
Hsieh, T.J., Lu, L.H., Su, C.C., 2005. NMR spectroscopic, mass spectroscopic, X-ray crystallographic, and theoretical studies of molecular mechanics of natural products: Farformolide B and sesamin. Biophys. Chem. 114, 13–20.
Huang, T.C., 2003. Flora of Taiwan, Second. ed. Editorial Committee of the Flora of Taiwan, Taipei.
Huang, X., Yang, S., Gong, J., Zhao, Q., Feng, Q., Zhan, Q., Zhao, Y., Li, W., Cheng, B., Xia, J., Chen, N., Huang, T., Zhang, L., Fan, D., Chen, J., Zhou, C., Lu, Y., Weng, Q., Han, B., 2016. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633.
Huang, Y.Y., Lee, C.P., Fu, J.L., Chang, B.C.H., Matzke, A. J.M., Matzke, M., 2014. De Novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-Directed DNA methylation. G3: Genes|Genomes|Genetics 4, 2147–2157.
Hubisz, M.J., Falush, D., Stephens, M., Pritchard, J.K., 2009. Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Resour. 9, 1322–1332.
Hung, K.H., Lin, C.H., Ju, L.P., 2017. Tracking the geographical origin of timber by DNA fingerprinting : a study of the endangered species Cinnamomum kanehirae in Taiwan. Holzforschung 71, 853–862.
Hung, K.H., Lin, C.H., Chuan, S.H., Chung, C.Y., Ping, J.L., 2014. Development, characterization and cross-species amplification of new microsatellite primers from an endemic species Cinnamomum kanehirae (Lauraceae) in Taiwan. Conserv. Genet. Resour. online version.
Inouye, D.W., Larson, B.M.H., Ssymank, A., Kevan, P.G., 2015. Files and flowers III: ecology of foraging and pollination. J. Pollinat. Ecol. 16, 115–133.
Ivanova, N.V, DeWaard, J.R., Hajibabaei, M., Hebert, P.D.N., 2009. Protocols for high-volume DNA barcode analysis. Draft Submiss. to DNA Work. Gr. Consort. Barcode Life D, 1–24.
Jiao, L., Yin, Y., Cheng, Y., Jiang, X., 2014. DNA barcoding for identification of the endangered species Aquilaria sinensis : comparison of data from heated or aged wood samples. Holzforschung 68, 487–494.
Kameyama, Y., Furumichi, J., Li, J., Tseng, Y.H., 2017. Natural genetic differentiation and human-mediated gene flow: the spatiotemporal tendency observed in a long-lived Cinnamomum camphora (Lauraceae) tree. Tree Genet. Genomes 13.
Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.
Kim, K., Lee, S.C., Lee, J., Lee, H.O., Joh, H.J., Kim, N.H., Park, H.S., Yang, T.J., 2015. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS One 10, e0117159.
Kuo, D.C., Lin, C.C., Ho, K.C., Cheng, Y.P., Hwang, S.Y., Lin, T.P., 2010. Two genetic divergence centers revealed by chloroplastic DNA variation in populations of Cinnamomum kanehirae Hay. Conserv. Genet. 11, 803–812.
Kurtz, S., Choudhuri, J.V, Ohlebusch, E., Schleiermacher, C., Stoye, J., Giegerich, R., 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633–4642.
Lambeth, C., Lee, B.C., O’Malley, D., Wheeler, N., 2001. Polymix breeding with parental analysis of progeny: An alternative to full-sib breeding and testing. Theor. Appl. Genet. 103, 930–943.
Levänen, R., Thulin, C.G., Spong, G., Pohjoismäki, J.L.O., 2018. Widespread introgression of mountain hare genes into Fennoscandian brown hare populations. PLoS One 13, 1–12.
Li, H., Durbin, R., 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760.
Liao, P.C., Kuo, D.C., Lin, C.C., Ho, K.C., Lin, T.P., Hwang, S.Y., 2010. Historical spatial range expansion and a very recent bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred from nuclear genes. BMC Evol. Biol. 10, 124.
Librado, P., Rozas, J., 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
Lin, C.P., Wu, C.S., Huang, Y.Y., Chaw, S.M., 2012. The complete chloroplast genome of Ginkgo biloba reveals the mechanism of inverted repeat contraction. Genome Biol. Evol. 4, 374–381.
Lin, T.-P., 1993. Cinnamomum kanehirae Hay. and Cinnamomum micranthum (Hay.). Bull Taiwan Res Inst 8, 11–20.
Lin, T.P., Cheng, Y.P., Huang, S.G., 1997. Allozyme Variation in Four Geographic Areas of Cinnamomum kanehlrae. J. Hered. 88, 433–438.
Lin, T.Y., Chen, C.Y., Chien, S.C., Hsiao, W.W., Chu, F.H., Li, W.H., Lin, C.C., Shaw, J.F., Wang, S.Y., 2011. Metabolite profiles for Antrodia cinnamomea fruiting bodies harvested at different culture ages and from different wood substrates. J. Agric. Food Chem. 59, 7626–7635.
Lin, Y.L., Ma, L.T., Lee, Y.R., Lin, S.S., Wang, S.Y., Chang, T.T., Shaw, J.F., Li, W.H., Chu, F.H., 2015. MicroRNA-like small RNAs prediction in the development of antrodia cinnamomea. PLoS One 10.
Liu, C., Shi, L., Zhu, Y., Chen, H., Zhang, J., Lin, X., Guan, X., 2012. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC Genomics 13, 715.
Liu, H.Y., Yang, Y.P., Lu, S.Y., Shih, B.L., 2000. Manual of Taiwan vascular plants. The council of agriculture, The Executive Yuan, Taipei.
Liu, M., Qiao, G., Jiang, J., Yang, H., Xie, L., Xie, J., Zhuo, R., 2012. Transcriptome sequencing and de novo analysis for Ma bamboo (Dendrocalamus latiflorus Munro) using the Illumina platform. PLoS One 7, 1–11.
Lohse, M., Drechsel, O., Bock, R., 2007. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 52, 267–274.
Lukas, B., Novak, J., 2013. The complete chloroplast genome of Origanum vulgare L. (Lamiaceae). Gene 528, 163–169.
Ma, J., Yang, B., Zhu, W., Sun, L., Tian, J., Wang, X., 2013. The complete chloroplast genome sequence of Mahonia bealei (Berberidaceae) reveals a significant expansion of the inverted repeat and phylogenetic relationship with other angiosperms. Gene 528, 120–131.
Ma, J.Q., Yao, M.Z., Ma, C.L., Wang, X.C., Jin, J.Q., Wang, X.M., Chen, L., 2014. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS One 9.
Magee, A.M., Aspinall, S., Rice, D.W., Cusack, B.P., Sémon, M., Perry, A.S., Stefanović, S., Milbourne, D., Barth, S., Palmer, J.D., Gray, J.C., Kavanagh, T.A., Wolfe, K.H., 2010. Localized hypermutation and associated gene losses in legume chloroplast genomes. Genome Res. 20, 1700–1710.
Mallet, J., 2005. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237.
Mammadov, J., Aggarwal, R., Buyyarapu, R., Kumpatla, S., 2012. SNP markers and their impact on plant breeding. Int. J. Plant Genomics 2012.
Martins, W.S., César, D., Lucas, S., Fabricio, K., Neves, D.S., John, D., 2009. Bioinformation WebSat -A web software for microsatellite marker development Bioinformation 2063, 282–283.
Mazur, B.J., Falco, S.C., 1989. The Development of Herbicide Resistant Crops. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 441–470.
Melotto-Passarin, D.M., Tambarussi, E.V., Dressano, K., deMartin, V.F., Carrer, H., 2011. Characterization of chloroplast DNA microsatellites from Saccharum spp and related species. Genet. Mol. Res. 10, 2024–2033.
Merritt, B.J., Culley, T.M., Avanesyan, A., Stokes, R., Brzyski, J., 2015. An empirical review: characteristics of plant microsatellite markers that confer higher levels of genetic variation. Appl. Plant Sci. 3.
Miyagawa, T., Nishida, N., Ohashi, J., Kimura, R., Fujimoto, A., Momose, Y., Nakahara, Y., Gotoh, J., Okazaki, Y., Tsuji, S., Tokunaga, K., 2008. Appropriate data cleaning methods for genome-wide association study. Jounral Hum. Genet. 886–893.
Mudalkar, S., Golla, R., Ghatty, S., Reddy, A.R., 2014. De novo transcriptome analysis of an imminent biofuel crop, Camelina sativa L. using Illumina GAIIX sequencing platform and identification of SSR markers. Plant Mol. Biol. 84, 159–171.
Narnoliya, L.K., Kaushal, G., Singh, S.P., Sangwan, R.S., 2017. De novo transcriptome analysis of rose-scented geranium provides insights into the metabolic specificity of terpene and tartaric acid biosynthesis. BMC Genomics 18, 74.
Navascues, M., Emerson, B.C., 2005. Chloroplast microsatellites: measures of genetic diversity and the effect of homoplasy. Mol. Ecol. 14, 1333–1341.
Niihama, M., Mochizuki, M., Kurata, N., Nonomura, K., 2015. PCR-based INDEL markers co-dominant between Oryza sativa, japonica cultivars and closely-related wild Oryza species. Breed. Sci. 65, 357–361.
Pacurar, D.I., Monica, L.P., Street, N., Bussell, J.D., Pop, T.I., Laurent, G., Catherine, B., 2012. A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions. J. Exp. Bot. 63, 2491–2501.
Palmer, J.D., Stein, D.B., 1986. Conservation of chloroplast genome structure among vascular plants. Curr. Genet. 10, 823–833.
Peakall, R., Smouse, P.E., 2012. GenALEx 6.5: genetic analysis in excel. population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539.
Poland, J. a, Rife, T.W., 2012. Genotyping-by-Sequencing for plant breeding and genetics. Plant Genome 5, 92–102.
Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
Rachmayanti, Y., Leinemann, L., Gailing, O., 2006. Extraction , amplification and characterization of wood DNA from dipterocarpaceae 45–55.
Rader, R., Edwards, W., Westcott, D.A., Cunningham, S.A., Howlett, B.G., 2011. Pollen transport differs among bees and flies in a human-modified landscape. Divers. Distrib. 17, 519–529.
Rasheed, A., Hao, Y., Xia, X., Khan, A., Xu, Y., Varshney, R.K., He, Z., 2017. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol. Plant 10, 1047–1064.
Ravishankar, K.V., Dinesh, M.R., Nischita, P., Sandya, B.S., 2015. Development and characterization of microsatellite markers in mango (Mangifera indica) using next-generation sequencing technology and their transferability across species. Mol. Breed. 35.
Reboud, X., Zeyl, C., 1994. Organelle inheritance in plants. Heredity (Edinb). 72, 132–140.
Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26.
Rollo, A., Lojka, B., Honys, D., Mandák, B., Wong, J.A.C., Santos, C., Costa, R., Quintela-Sabarís, C., Ribeiro, M.M., 2016. Genetic diversity and hybridization in the two species Inga ingoides and Inga edulis: potential applications for agroforestry in the Peruvian Amazon. Ann. For. Sci. 73, 425–435.
Saarela, J.M., Sokoloff, P.C., Gillespie, L.J., Consaul, L.L., Bull, R.D., 2013. DNA barcoding the Canadian Arctic flora: core plastid barcodes (rbcL + matK) for 490 vascular plant species. PLoS One 8, e77982.
Sahu, J., Sarmah, R., Dehury, B., Sarma, K., Sahoo, S., Sahu, M., Barooah, M., Modi, M.K., Sen, P., 2012. Mining for SSRs and FDMs from expressed sequence tags of Camellia sinensis. Bioinformation 8, 260–266.
Scheben, A., Batley, J., Edwards, D., 2017. Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol. J. 15, 149–161.
Senthil Kumar, K.J., Gokila Vani, M., Chen, C.Y., Hsiao, W.W., Li, J., Lin, Z. xi, Chu, F.H., Yen, G.C., Wang, S.Y., 2020. A mechanistic and empirical review of antcins, a new class of phytosterols of formosan fungi origin. J. Food Drug Anal. 28, 38–59.
Shen, Y.C., Chou, C.J., Wang, Y.H., Chen, C.F., Chou, Y.C., Lu, M.K., 2004. Anti-inflammatory activity of the extracts from mycelia of Antrodia camphorata cultured with water-soluble fractions from five different Cinnamomum species. FEMS Microbiol. Lett. 231, 137–143.
Song, Y., Dong, W., Liu, B., Xu, C., Yao, X., Gao, J., Corlett, R.T., 2015. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front. Plant Sci. 6, 1–8.
Song, Y., Yao, X., Tan, Y., Gan, Y., Corlett, R.T., 2016. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis and phylogenetic relationships with other Lauraceae. Can. J. For. Res. 1293–1301.
Squillace, A. E., 1974. Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet.
Su, H.J., Hogenhout, S. A., Al-Sadi, A.M., Kuo, C.H., 2014. Complete chloroplast genome sequence of omani lime (Citrus aurantiifolia) and comparative analysis within the Rosids. PLoS One 9, e113049.
Sudmoon, R., Chaveerach, A., Sanubol, A., Monkheang, P., Kwanda, N., Aungkapattamagul, S., Tanee, T., Noikotr, K., Chuachan, C., Kaewdoungdee, N., 2014. Identifying efficiency in herbal medicine Cinnamomum species(Lauraceae) using banding patterns and sequence alignments of rpoB , rbcL and matK regions. Chiang Mai J. Sci. 41, 1094–1108.
Susanne S, R., 2011. Laurales. eLS 1–4.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6 : Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.
Tillich, M., Lehwark, P., Pellizzer, T., Ulbricht-jones, E.S., Fischer, A., Bock, R., Greiner, S., 2017. GeSeq - versatile and accurate annotation of organelle genomes 45, 6–11.
Tnah, L.H., Lee, S.L., Ng, K.K.S., Bhassu, S., Othman, R.Y., 2012. DNA extraction from dry wood of Neobalanocarpus heimii (Dipterocarpaceae) for forensic DNA profiling and timber tracking. Wood. Sci. Technol. 46, 813–825.
Torre, A.D.La, Ingvarsson, P.K., Aitken, S.N., 2015. Genetic architecture and genomic patterns of gene flow between hybridizing species of Picea. Heredity. 115, 153–164.
Tu, N., Junji, K., Kazuyuki, M., 2009. Possibility of improvement in fundamental properties of wood of acacia hybrids by artificial hybridization. J. Wood Sci. 55, 8–12.
Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B.C., Remm, M., Rozen, S.G., 2012. Primer3 - new capabilities and interfaces. Nucleic Acids Res. 40, e115, 1–12.
VanTassell, C.P., Smith, T.P.L., Matukumalli, L.K., Taylor, J.F., Schnabel, R.D., Lawley, C.T., Haudenschild, C.D., Moore, S.S., Warren, W.C., Sonstegard, T.S., 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 5, 247–252.
Victoria, F.C., daMaia, L.C., deOliveira, A.C., 2011. In silico comparative analysis of SSR markers in plants. BMC Plant Biol. 11, 15.
Wang, Y., Yang, C., Jin, Q., Zhou, D., Wang, S., Yu, Y., Yang, L., 2015. Genome-wide distribution comparative and composition analysis of the SSRs in Poaceae. BMC Genet. 16, 18.
Wickland, D.P., Battu, G., Hudson, K.A., Diers, B.W., Hudson, M.E., 2017. A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new 18, 1–12.
Wu, C.C., Ho, C.K., Chang, S.H., 2015. The complete chloroplast genome of Cinnamomum kanehirae Hayata (Lauraceae). Mitochondrial DNA 00, 1–2.
Wu, F.H., Chan, M.T., Liao, D.C., Hsu, C.T., Lee, Y.W., Daniell, H., Duvall, M.R., Lin, C.S., 2010. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 10, 68.
Wu, T., Luo, S., Wang, R., Zhong, Y., Xu, X., Lin, Y., He, X., Sun, B., Huang, H., 2014. The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development. Mol. Breed. 34, 1437–1447.
Wyman, S.K., Jansen, R.K., Boore, J.L., 2004. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252–3255.
Xiao, Y., Zhou, L., Xia, W., Mason, A.S., Yang, Y., Ma, Z., Peng, M., 2014. Exploiting transcriptome data for the development and characterization of gene-based SSR markers related to cold tolerance in oil palm (Elaeis guineensis). BMC Plant Biol. 14, 384.
You, F.M., Huo, N., Gu, Y.Q., Luo, M.-C., Ma, Y., Hane, D., Lazo, G.R., Dvorak, J., Anderson, O.D., 2008. BatchPrimer3: a high throughput web application for PCR and sequencing primer design. BMC Bioinformatics 9, 253.
Youngman, B.J.., 1952. Professor Naonori Hirota's work on camphor trees. Kew Bull. 7, 61–65.
Yu, M., Liu, K., Zhou, L., Zhao, L., Liu, S., 2016. Testing three proposed DNA barcodes for the wood identification of Dalbergia odorifera. Holzforschung 70, 127–136.
Yuan, J., Wen, Z., Gu, C., Wang, D., 2014. Introduction of high throughput and cost effective SNP Genotyping platforms in soybean 2, 90–94.
Zalapa, J.E., Brunet, J., Guries, R.P., 2010. The extent of hybridization and its impact on the genetic diversity and population structure of an invasive tree, Ulmus pumila (Ulmaceae). Evol. Appl. 3, 157–168.
Zhang, H., Wei, L., Miao, H., Zhang, T., Wang, C., 2012. Development and validation of genic-SSR markers in sesame by RNA-seq. BMC Genomics 13, 316.
Zhang, J., Wang, X., Yao, J., Li, Q., Liu, F., Yotsukura, N., 2017. Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China. Sci. Rep. 7, 42158.
Zhang, L., Zuo, K., Zhang, F., Cao, Y., Wang, J., Zhang, Y., Sun, X., Tang, K., 2006. Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics 7, 323.
Zhang, Y., Ma, J., Yang, B., Li, R., Zhu, W., Sun, L., Tian, J., Zhang, L., 2014. The complete chloroplast genome sequence of Taxus chinensis var. mairei (Taxaceae): Loss of an inverted repeat region and comparative analysis with related species. Gene 540, 201–209.
Zhao, Y., Yin, J., Guo, H., Zhang, Y., Xiao, W., Sun, C., Wu, J., Qu, X., Yu, J., Wang, X., Xiao, J., 2015. The complete chloroplast genome provides insight into the evolution and polymorphism of Panax ginseng. Front. Plant Sci. 5, 696.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20854-
dc.description.abstract牛樟(Cinnamomum kanehirae Hayata)為臺灣特有林木物種,也是重要貴重樹種,近年來,由於天然寄生於牛樟木的牛樟芝價格不斐,更提高牛樟的使用需求,進而使得牛樟生產、鑑定、溯源甚至是保育遺傳的相關研究也孕育而生。本研究希望透過DNA分子標誌,在牛樟分類上進行有效的鑑定工作。
本研究收集牛樟樣本,以次世代定序技術,建立牛樟轉錄體基因組序列,組裝分析後得到58,950個unigene,並從中初步驗證94組微衛星體序列(Microsatellite, Simple sequence repeat,SSR),從中挑選使用11組SSR進行牛樟、冇樟(C. micranthum)、樟樹(C. camphora)的種間遺傳分析,可以明顯從主座標分析中看出三個物種的分群,但是卻無法進行牛樟、樟樹、冇樟間的快速分子鑑定。
為了達成牛樟、樟樹、冇樟種間的快速鑑定,以次世代定序技術,得到牛樟、樟樹、冇樟的全葉綠體基因組序列,藉由全葉綠體基因組間的序列變異,開發插入缺失序列(insertion/deletion,InDel)作為鑑定有分類爭議的牛樟與冇樟,提出可快速鑑定牛樟與冇樟樣本的6組InDel序列,以及對牛樟與冇樟葉片甲醇萃取物進行成分分析,其中牛樟葉片甲醇萃取物中含有芳樟醇與芝麻素,但冇樟卻無此成分,也可做為鑑別2者差異的化學分子標誌。
然而,牛樟與樟樹的全葉綠體基因組序列分析中,葉綠體InDel序列無法將牛樟與樟樹進行區分鑑定,主要的原因在於牛樟與臺灣東部樟樹葉綠體序列相似,在親緣關係圖上也表示出牛樟與東部樟樹遺傳距離較近,而與西部樟樹族群的葉綠體序列有較大的序列變異,在葉綠體InDel序列上,牛樟與東部樟樹族群樣本屬於同樣的基因型,因此無法進行有效鑑定。
因此,本研究進一步透過GATK(Genome Analysis Tool Kit )流程進行牛樟、樟樹、冇樟全基因組低覆蓋度定序分析,並相互比對組裝的基因資料庫,開發種間全基因組的InDel序列,有5組InDel可以成功用於牛樟與樟樹種間的快速鑑定,但也進一步發現無法透過InDel序列鑑定區別牛樟與雜交牛樟樣本。
為了深入解決牛樟與雜交牛樟鑑定與評估,進一步藉由簡化基因組定序技術(Reduced representation libraries),得到牛樟、樟樹與雜交牛樟的全基因組中差異的SNP位點,最終分析840S個SNPs,再搭配除具有母系遺傳與共顯性特性的InDel序列,確定雜交的母本為牛樟,證實牛樟、樟樹間出現天然的雜交牛樟個體,透過遺傳結構分析,表示牛樟與樟樹的雜交是屬於雙向的,並且已經產生F1、F2與回交的後代,雜交發生的原始區域推測應為臺灣東部,且多發生於人為開發區域的種子園、苗圃或是行道樹。因此,在尚未完全了解雜交牛樟特性,以及雜交是否對於純牛樟或是純樟樹的基因庫產生汙染,未來在生產牛樟種子或是苗木時,在牛樟種子園周遭應該設立緩衝帶,避免樟樹跨樹種間的雜交,確保牛樟基因庫的維持與保育,同時,SNP的分析結果也發現分布於臺灣東部西南部與西北部的樟樹族群間,存在分子結構的差異。
本研究透過SSR、葉綠體InDel、基因體InDel與SNP,針對牛樟、樟樹、冇樟與雜交牛樟進行種間分子鑑定,有助於正確培育牛樟苗木,甚至有效保存復育牛樟族群,未來牛樟復育策略,應該配合分子技術,將可以有效正確鑑定牛樟,甚至分析牛樟種源與遺傳特性,有助於牛樟資源的復育與育種工作。
zh_TW
dc.description.abstractCinnamomum kanehirae Hayata is an endemic and important precious tree species in Taiwan. In recent years, due to the high price of Antrodia cinnamomea which is naturally parasitized on C. kanehirae, the demand of C. kanehirae are increased. Thus, the relevant researches are necessary, such as species identification, origin traceability and genetic conservation. This study focuses on species identification of C. kanehirae by using molecular markers.
In the results of C. kanehirae transcriptome sequencing, 58,950 unigenes were obtained after de novo assembly, and 94 SSR molecular markers were developed and preliminarily verified. Evelen SSRs were used to conduct interspecies genetic analysis of C. kanehirae, C. camphora, and C. micranthum. The PcoA shows the clearly three separate groups in C. kanehirae, C. camphora, and C. micranthum. It shows the genetically diefference between these three species. However, the analysis of SSR markers is not a rapid method for species identification.
In order to develop a rapid identification method, the comparative analysis of complete chloroplast genomes can help develop useful DNA markers for species identification. We provided six chloroplastic InDels to solve the controversially taxmomic event between C. kanehirae and C. micranthum. High amounts of linalool and sesamin were present in the methanol extracts of C. kanehirae leaves, but not in C. micranthum leaves. These chemical profiles of methanol extraction of C. kanehirae and C. micranthum leaves are also could be used for chemical markers.
Unfortunately, the chloroplast InDel can not be use for distingulishing C. kanehirae and C. camphora. The chloroplast genomes of C. kanehirae and easrern and south wastern C. kanehirae are too similar with each other to design suitable Indel regions. In the phylogenetic analysis which was based on Luraceae complete choloplast genomic sequences shows that the C. kanehirae is closer to C. camphora (JLH2) than to C. micranthum and northern and western C. camphora.
Because the chloroplst InDel could not for identification effectively, the genomic InDel markers were developed by using low-coverage sequencing with GATK (Genome analysis tool kit) pipeline. These InDel markers can be used for rapidly species identification. Five InDels were successfully used for identification between C. kanehirae and C. camphora. However, the putative hybrids are differently to be distingulished from C. kanehirae.
Due to doubts about the hybridization between C. kanehirae and C. camphora for many years and the objective of successful hybrids identification. The reduced representation library was used for developing single nucleotide polymorphism (SNP). Eventually, 840 SNPs and maternal inheritance, codominant InDel sequences were used for hybridization analysis. The results of 840 SNP genetic analysis indicate that the naturally hybridization happened between C. kanehirae ans C. camphora. Hybridization originally occurred in the human-mediated areas of eastern Taiwan and the introgression was bidirectional. Hybrids even could be classified as F1 (C. kanehirae x C. camphora), F2 and backcrosses. For producing pure wood or conservation aspects, the buffering-zones should be established for the seed orchard to avoid the cross-species pollination and to preserve the pure genetic composition of C. kanehirae. Results of SNP analysis also found that there are genetic differences between the C. camphora populations in eastern and western regions of Taiwan.
In present study, SSR, chloroplastic and genomic InDel, and SNP were successful for identification of C. kanehirae, C. micranthum, C. camphora and hybrids. In order to ensure the correct cultivation of C. kanehirae, and even to effectively preserve the high genetic diversity of C. kanehirae, more active restoration strategies should be adopted in the furture. Therefore, the DNA markers provided in this study and molecular genetic technologies sholud be applied for C. kanehirae genetic analysis such as species identification, provance and also could be contributed to the future restoration and molecular breeding of C. kanehirae.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:06:58Z (GMT). No. of bitstreams: 1
U0001-1908202000345900.pdf: 5194735 bytes, checksum: c50b8509261ccf400fba8c213eae049f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 IX
表目錄 XI
1.前言 1
2.文獻回顧 3
2.1牛樟背景與相關研究回顧 3
2.1.1牛樟與相近物種的比較研究 3
2.1.2 牛樟分子遺傳暨基因體學研究 5
2.1.3 牛樟與雜交牛樟 8
2.2次世代定序與分子標誌開發 11
2.2.1微衛星體分子標誌 14
2.2.2 插入與缺失分子標誌 16
2.2.3單一核苷酸多型性 17
3. 材料與方法 19
3.1 植物樣本收集與處理 19
3.2 植物基因體DNA(genomic DNA)及總體RNA(total RNA)之萃取 19
3.3次世代定序 20
3.3.1 轉錄組文庫建立與定序 20
3.3.2 全基因組低覆蓋率定序文庫建立與定序 21
3.3.3 Genotyping by sequencing 文庫建立與定序 21
3.4 生物資訊分析 22
3.4.1轉錄組基因組組裝(de novo assembly) 22
3.4.2微衛星體序列探尋與分子標誌引子開發 22
3.4.3 基因體DNA序列組裝與分析 23
3.4.4全葉綠體基因組組裝與分析註解 23
3.4.5全葉綠體微衛星體分析與建構親源關係圖 23
3.4.6 葉綠體DNA重複序列與變異性分析 24
3.4.7 SNP分子標誌開發 24
3.5 DNA分子標誌驗證 25
3.5.1微衛星體標誌聚合酶連鎖反應與基因型鑑定分析 25
3.5.2 插入缺失分子標誌開發與驗證 26
3.5.3 SNP定序資料整理與遺傳多樣性之分析 27
3.5.4 雜交牛樟之分子鑑定與分類 27
3.6 牛樟與冇樟葉片甲醇萃取物的差異表現分析 28
4.結果與討論 30
4.1牛樟轉錄體定序與開發genic SSR引子 30
4.1.1以微衛星體標誌進行牛樟、樟樹、冇樟種間的遺傳分析 38
4.2 Genomic DNA低覆蓋度定序與序列組裝 40
4.3牛樟與冇樟樹種鑑定分析 43
4.3.1牛樟與冇樟葉綠體基因組序列比較 45
4.3.2 牛樟與冇樟葉綠體基因組的插入缺失序列與驗證 49
4.3.3 化學分子標誌:牛樟、冇樟葉片甲醇萃取物的比較分析 53
4.3.4以全葉綠體插入缺失序列進行牛樟、樟樹(JZS)、冇樟鑑定分析 55
4.4以低覆蓋度定序分析開發插入缺失序列並鑑定牛樟與樟樹 60
4.5以插入缺失序列與SNP資料進行牛樟雜交之分子評估 71
4.5.1 牛樟、樟樹、雜交樣本間的表型分析 71
4.5.2透過InDel引子進行雜交牛樟的親本推估 73
4.5.3 SNP變異與牛樟、樟樹、雜交牛樟的遺傳多樣性 74
4.5.4 以SNP分析資料作為雜交牛樟的分子證據 78
4.6以本研究開發之分子標誌進行牛樟與近緣樹種間序列與遺傳分析 88
4.6.1牛樟、冇樟與樟樹全葉綠體基因組中重覆結構與cpSSR分析比較 88
4.6.2利用全葉綠體基因組描繪樟屬植物與相近樹種的親源關係圖 102
4.6.3牛樟、冇樟全葉綠體基因組序列多樣性分析 104
4.6.4 牛樟微衛星體分子標誌與牛樟族群遺傳分析 108
5.結論 111
6.參考文獻 113
7.附錄 125
dc.language.isozh-TW
dc.subject雜交鑑定zh_TW
dc.subject牛樟zh_TW
dc.subject分子標誌zh_TW
dc.subject插入缺失序列zh_TW
dc.subject微衛星體序列zh_TW
dc.subject單一核苷酸多型性zh_TW
dc.subject樹種鑑定zh_TW
dc.subjectmolecular markeren
dc.subjectsingle nucleotide polymorphism (SNP)en
dc.subjectmicrosatellite (SSR)en
dc.subjectinsertion/deletion (InDel)en
dc.subjectCinnamomum kanehiraeen
dc.subjecthybridization identificationen
dc.subjectspecies identificationen
dc.title開發分子標誌以鑑定牛樟、樟樹、冇樟與種間雜交評估zh_TW
dc.titleMolecular Marker Development for Species Identification and Hybrid Evaluation of Cinnamomum kanehirae , Cinnamomum camphora and Cinnamomum micranthumen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree博士
dc.contributor.oralexamcommittee董致韡(Chih-Wei Tung),何政坤(Cheng-Kuen Ho),王升陽(Sheng-Yang Wang),孫英玄(Ying-Hsuan Sun),張淑華(Shu-Hwa Chang)
dc.subject.keyword牛樟,分子標誌,插入缺失序列,微衛星體序列,單一核苷酸多型性,樹種鑑定,雜交鑑定,zh_TW
dc.subject.keywordCinnamomum kanehirae,molecular marker,insertion/deletion (InDel),microsatellite (SSR),single nucleotide polymorphism (SNP),species identification,hybridization identification,en
dc.relation.page161
dc.identifier.doi10.6342/NTU202004049
dc.rights.note未授權
dc.date.accepted2020-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
U0001-1908202000345900.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved