請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20850完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Wei-Yi Tsai | en |
| dc.contributor.author | 蔡瑋義 | zh_TW |
| dc.date.accessioned | 2021-06-08T03:06:46Z | - |
| dc.date.copyright | 2017-07-07 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-06-30 | |
| dc.identifier.citation | Chapter 1
1. R.W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' in Philosophical Magazine 4, p. 396-402(1902). 2. H.A. Atwater,' The promise of plasmonics,' Scientific American, 2007. 296(4): p. 56-63. 3. S. A. Maier, Plasmonics: Fundamentals and applcations, Springer Science & Business Media, 2007. 4. 吳民耀、劉威志, 物理雙月刊 2 期 28 卷, p. 486 (2006). 5. Veselago, V. G., ELECTRODYNAMICS OF SUBSTANCES WITH SIMULTANEOUSLY NEGATIVE VALUES OF SIGMA AND MU. Soviet Physics Uspekhi-Ussr 1968, 10 (4), 509-&. 6. Pendry, J. B., Negative refraction makes a perfect lens. Physical Review Letters 2000, 85 (18), 3966-3969. 7. Fang, N.; Lee, H.; Sun, C.; Zhang, X., Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308 (5721), 534-537. 8. Franken, P. A.; Weinreich, G.; Peters, C. W.; Hill, A. E., GENERATION OF OPTICAL HARMONICS. Physical Review Letters 1961, 7 (4), 118-&. 9. Klein, M. W.; Enkrich, C.; Wegener, M.; Linden, S., Second-harmonic generation from magnetic metamaterials. Science 2006, 313 (5786), 502-504. 10. Shen, Y. R., Surface contribution versus bulk contribution in surface nonlinear optical spectroscopy. Appl. Phys. B-Lasers Opt. 1999, 68 (3), 295-300. 11. Wang, F. X.; Rodriguez, F. J.; Albers, W. M.; Ahorinta, R.; Sipe, J. E.; Kauranen, M., Surface and bulk contributions to the second-order nonlinear optical response of a gold film. Physical Review B 2009, 80 (23), 4. 12. Linden, S.; Enkrich, C.; Wegener, M.; Zhou, J. F.; Koschny, T.; Soukoulis, C. M., Magnetic response of metamaterials at 100 terahertz. Science 2004, 306 (5700), 1351-1353. 13. Linden, S.; Niesler, F. B. P.; Forstner, J.; Grynko, Y.; Meier, T.; Wegener, M., Collective Effects in Second-Harmonic Generation from Split-Ring-Resonator Arrays. Physical Review Letters 2012, 109 (1), 5. 14. O'Brien, K.; Suchowski, H.; Rho, J.; Salandrino, A.; Kante, B.; Yin, X. B.; Zhang, X., Predicting nonlinear properties of metamaterials from the linear response. Nature Materials 2015, 14 (4), 379-383. 15. Klein, M. W.; Wegener, M.; Feth, N.; Linden, S., Experiments on second- and third-harmonic generation from magnetic metamaterials: erratum. Optics Express 2008, 16 (11), 8055-8055. 16. Niesler, F. B. P.; Feth, N.; Linden, S.; Wegener, M., Second-harmonic optical spectroscopy on split-ring-resonator arrays. Opt. Lett. 2011, 36 (9), 1533-1535. 17. Feth, N.; Linden, S.; Klein, M. W.; Decker, M.; Niesler, F. B. P.; Zeng, Y.; Hoyer, W.; Liu, J.; Koch, S. W.; Moloney, J. V.; Wagener, M., Second-harmonic generation from complementary split-ring resonators. Opt. Lett. 2008, 33 (17), 1975-1977. 18. Chandrasekar, R.; Emani, N. K.; Lagutchev, A.; Shalaev, V. M.; Ciraci, C.; Smith, D. R.; Kildishev, A. V., Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances. Opt. Mater. Express 2015, 5 (11), 2682-2691. 19. Kruk, S.; Weismann, M.; Bykov, A. Y.; Mamonov, E. A.; Kolmychek, I. A.; Murzina, T.; Panoiu, N. C.; Neshev, D. N.; Kivshar, Y. S., Enhanced Magnetic Second-Harmonic Generation from Resonant Metasurfaces. Acs Photonics 2015, 2 (8), 1007-1012. 20. Metzger, B.; Gui, L. L.; Fuchs, J.; Floess, D.; Hentschel, M.; Giessen, H., Strong Enhancement of Second Harmonic Emission by Plasmonic Resonances at the Second Harmonic Wavelength. Nano Letters 2015, 15 (6), 3917-3922. 21. Husu, H.; Makitalo, J.; Siikanen, R.; Genty, G.; Pietarinen, H.; Lehtolahti, J.; Laukkanen, J.; Kuittinen, M.; Kauranen, M., Spectral control in anisotropic resonance-domain metamaterials. Opt. Lett. 2011, 36 (12), 2375-2377. 22. Metzger, B.; Schumacher, T.; Hentschel, M.; Lippitz, M.; Giessen, H., Third Harmonic Mechanism in Complex Plasmonic Fano Structures. Acs Photonics 2014, 1 (6), 471-476. 23. Ding, F.; Wang, Z. X.; He, S. L.; Shalaev, V. M.; Kildishev, A. V., Broadband High-Efficiency Half-Wave Plate: A Supercell-Based Plasmonic Metasurface Approach. Acs Nano 2015, 9 (4), 4111-4119. 24. Yu, N. F.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F., A Broadband, Background-Free Quarter-Wave Plate Based on Plasmonic Metasurfaces. Nano Letters 2012, 12 (12), 6328-6333. 25. Chen, W. T.; Torok, P.; Foreman, M. R.; Liao, C. Y.; Tsai, W. Y.; Wu, P. R.; Tsai, D. P., Integrated plasmonic metasurfaces for spectropolarimetry. Nanotechnology 2016, 27 (22), 7. 26. Wu, P. C.; Tsai, W. Y.; Chen, W. T.; Huang, Y. W.; Chen, T. Y.; Chen, J. W.; Liao, C. Y.; Chu, C. H.; Sun, G.; Tsai, D. P., Versatile Polarization Generation with an Aluminum Plasmonic Metasurface. Nano Letters 2017, 17 (1), 445-452. 27. Khorasaninejad, M.; Shi, Z.; Zhu, A. Y.; Chen, W. T.; Sanjeev, V.; Zaidi, A.; Capasso, F., Achromatic Metalens over 60 nm Bandwidth in the Visible and Metalens with Reverse Chromatic Dispersion. Nano Letters 2017, 17 (3), 1819-1824. 28. Khorasaninejad, M.; Chen, W. T.; Devlin, R. C.; Oh, J.; Zhu, A. Y.; Capasso, F., Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352 (6290), 1190-1194. 29. Khorasaninejad, M.; Chen, W. T.; Zhu, A. Y.; Oh, J.; Devlin, R. C.; Rousso, D.; Capasso, F., Multispectral Chiral Imaging with a Metalens. Nano Letters 2016, 16 (7), 4595-4600. 30. Lassiter, J. B.; Chen, X. S.; Liu, X. J.; Ciraci, C.; Hoang, T. B.; Larouche, S.; Oh, S. H.; Mikkelsen, M. H.; Smith, D. R., Third-Harmonic Generation Enhancement by Film-Coupled Plasmonic Stripe Resonators. Acs Photonics 2014, 1 (11), 1212-1217. 31. Camacho-Morales, R.; Rahmani, M.; Kruk, S.; Wang, L.; Xu, L.; Smirnova, D. A.; Solntsev, A. S.; Miroshnichenko, A.; Tan, H. H.; Karouta, F.; Naureen, S.; Vora, K.; Carletti, L.; De Angelis, C.; Jagadish, C.; Kivshar, Y. S.; Neshev, D. N., Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas. Nano Letters 2016, 16 (11), 7191-7197. 32. Smirnova, D. A.; Khanikaev, A. B.; Smirnov, L. A.; Kivshar, Y. S., Multipolar Third-Harmonic Generation Driven by Optically Induced Magnetic Resonances. Acs Photonics 2016, 3 (8), 1468-1476. 33. Shcherbakov, M. R.; Neshev, D. N.; Hopkins, B.; Shorokhov, A. S.; Staude, I.; Melik-Gaykazyan, E. V.; Decker, M.; Ezhov, A. A.; Miroshnichenko, A. E.; Brener, I.; Fedyanin, A. A.; Kivshar, Y. S., Enhanced Third-Harmonic Generation in Silicon Nanoparticles Driven by Magnetic Response. Nano Letters 2014, 14 (11), 6488-6492. 34. Smirnova, D.; Kivshar, Y. S., Multipolar nonlinear nanophotonics. Optica 2016, 3 (11), 1241-1255. 35. Savinov, V.; Fedotov, V. A.; Zheludev, N. I., Toroidal dipolar excitation and macroscopic electromagnetic properties of metamaterials. Physical Review B 2014, 89 (20), 12. 36. Miroshnichenko, A. E.; Evlyukhin, A. B.; Yu, Y. F.; Bakker, R. M.; Chipouline, A.; Kuznetsov, A. I.; Luk'yanchuk, B.; Chichkov, B. N.; Kivshar, Y. S., Nonradiating anapole modes in dielectric nanoparticles. Nature Communications 2015, 6, 8. 37. Grinblat, G.; Li, Y.; Nielsen, M. P.; Oulton, R. F.; Maier, S. A., Enhanced Third Harmonic Generation in Single Germanium Nanodisks Excited at the Anapole Mode. Nano Letters 2016, 16 (7), 4635-4640. 38. Sun, S. L.; Yang, K. Y.; Wang, C. M.; Juan, T. K.; Chen, W. T.; Liao, C. Y.; He, Q.; Xiao, S. Y.; Kung, W. T.; Guo, G. Y.; Zhou, L.; Tsai, D. P., High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Letters 2012, 12 (12), 6223-6229. 39. Sun, S. L.; He, Q.; Xiao, S. Y.; Xu, Q.; Li, X.; Zhou, L., Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nature Materials 2012, 11 (5), 426-431. 40. Chen, W. T.; Yang, K. Y.; Wang, C. M.; Huang, Y. W.; Sun, G.; Chiang, I. D.; Liao, C. Y.; Hsu, W. L.; Lin, H. T.; Sun, S.; Zhou, L.; Liu, A. Q.; Tsai, D. P., High-Efficiency Broadband Meta-Hologram with Polarization-Controlled Dual Images. Nano Letters 2014, 14 (1), 225-230. 41. Huang, Y. W.; Chen, W. T.; Tsai, W. Y.; Wu, P. C.; Wang, C. M.; Sun, G.; Tsai, D. P., Aluminum Plasmonic Multicolor Meta-Hologram. Nano Letters 2015, 15 (5), 3122-3127. 42. Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z., Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction. Science 2011, 334 (6054), 333-337. 43. Li, G. X.; Chen, S. M.; Pholchai, N.; Reineke, B.; Wong, P. W. H.; Pun, E. Y. B.; Cheah, K. W.; Zentgraf, T.; Zhang, S., Continuous control of the nonlinearity phase for harmonic generations. Nature Materials 2015, 14 (6), 607-612. 44. Tymchenko, M.; Gomez-Diaz, J. S.; Lee, J.; Nookala, N.; Belkin, M. A.; Alu, A., Gradient Nonlinear Pancharatnam-Berry Metasurfaces. Physical Review Letters 2015, 115 (20), 5. 45. Ye, W. M.; Zeuner, F.; Li, X.; Reineke, B.; He, S.; Qiu, C. W.; Liu, J.; Wang, Y. T.; Zhang, S.; Zentgraf, T., Spin and wavelength multiplexed nonlinear metasurface holography. Nature Communications 2016, 7, 7. 46. Zhang, Y.; Grady, N. K.; Ayala-Orozco, C.; Halas, N. J., Three-Dimensional Nanostructures as Highly Efficient Generators of Second Harmonic Light. Nano Letters 2011, 11 (12), 5519-5523. Chapter 2 1. O.C Zienkiewicz and K. Morgan, Finite Elements Approximation, John Wiley and Sons, Inc., 1983 2. J.jin, The Finite Element Method in Electromagnetrics, 2nd Ed., John Wiely and Sons, Inc., 2002 3. 有限元素法在電機工程的應用,黃昌圳,全華科技圖書公司。 4. Ginzburg, P.; Krasavin, A. V.; Wurtz, G. A.; Zayats, A. V., Nonperturbative Hydrodynamic Model for Multiple Harmonics Generation in Metallic Nanostructures. Acs Photonics 2015, 2 (1), 8-13. 5. Ciraci, C.; Poutrina, E.; Scalora, M.; Smith, D. R., Origin of second-harmonic generation enhancement in optical split-ring resonators. Physical Review B 2012, 85, 5. 6. I. Maller, M. Hazakis, and R. Srinivasan, 'High resolution positive resists for electron beam exposure,' Journal of Research and Development 12, 251 (1968). 7. http://www.zeon.co.jp/ Chapter 3 1. Ciraci, C.; Poutrina, E.; Scalora, M.; Smith, D. R., Origin of second-harmonic generation enhancement in optical split-ring resonators. Physical Review B 2012, 85, 5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20850 | - |
| dc.description.abstract | 這幾十年來在非線性光學發展中,人們致力於了解在強場激發下電子所產生的非線性效應。已經有許多實際的非線性效應應用在不同領域之中,例如超快脈衝波、可調式非線性光源(光參振盪器)以及超解析成像技術等。在表面電漿共振現象中,光場會被侷域在次波長尺寸下並展現卓越光場增強的特性,這兩種特性可被應用在發展非線性奈米裝置上。在本論文中我們分別在時域和頻率域上探討直立式裂環共振器的非線性響應。藉由模擬分析證明了直立式裂環共振器可以在正向入射激發下產生兩種不同的非線性偏振態,並且可以被用來操縱非線性光的輻射方向。在本論文中我們也比較了裂環共振器以及直立式裂環共振器的非線性特性。為了更進一步瞭解直立式裂環共振器的非線性產生機制,多極模態分析也被用來檢驗各模態對非線性的貢獻。 | zh_TW |
| dc.description.abstract | In the past several decades, researches have devoted to understanding the responses of interaction between electrons under strong light excitation in nonlinear optics. There are a number of practical applications based on the concept of nonlinear optics, such as ultrafast pulse, tunable light source (Optical parametric oscillator), and super resolution imaging. Photonics plasmons with the characteristics of tight light confinement and significant light enhancement exhibit great potential for developing the practical nonlinear devices. In this dissertation, the nonlinearity of novel three-dimension structure, vertical split ring resonator (VSRR), is subsequently investigated both in time and frequency domain(time-averaged). We have demonstrated the additional access of VSRR provides significant enhancement to improve second harmonic generation (SHG) signal, generate dual nonlinear polarization states, as well as guide the nonlinear signal achieving nonlinear light manipulation. Comparisons of the nonlinear conversion efficiency between planer split ring resonator (SRR) and VSRR are discussed. The contribution of multipoles is also investigated for directly getting insight into underlying nonlinear conversion mechanism of VSRR. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T03:06:46Z (GMT). No. of bitstreams: 1 ntu-106-D03245001-1.pdf: 8906013 bytes, checksum: bea160ebe629f5b3fba7fcfdd648865c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 中文摘要 IV ABSTRACT V 目錄 VI 圖表目錄 VIII 第一章 緒論 1 1.1前言 1 1.2表面電漿子波在單一介面的行為表現 1 1.3局域性表面電漿子 5 1.4電漿子超穎物質 8 1.5非線性光學(Nonlinear optics) 8 1.6電漿子超穎物質對於非線性的應用 12 1.7中心對稱物質上設計超穎材料來產生二倍頻 13 1.8探討表面電漿模態對非線性訊號的貢獻 15 1.9利用表面電漿模態來增強非線性轉換效率: 16 1.10利用廣義斯涅耳定律來操控非線性光 19 參考文獻 23 第二章、實驗製程與數值模擬計算 30 2.1 前言 30 2.2 數值模擬計算 30 2.2.1 杜德-羅倫茲模型(Drude-Lorentz Model) 30 2.2.2 有限元素法(Finite element method, FEM) 33 2.2.3基於有限元素法的非線性響應 38 2.2.4 非線性流體力學模型與有效非線性係數的討論 40 2.3 實驗製程技術 41 2.3.1電子束曝光直寫系統 41 2.3.2 光阻的使用種類與介紹 43 2.3.3 實驗樣品製備流程 44 參考文獻 47 第三章、非線性三維直立式裂環共振器 49 3.1 研究動機 49 3.2 直立式裂環共振器時域下的非線性特性 50 3.3 直立式裂環共振器頻域下的非線性特性 58 3.4 樣品製作與量測結果與討論 68 參考文獻 71 第四章、結論 72 附錄:個人著作 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 裂環共振器 | zh_TW |
| dc.subject | 非線性超穎表面 | zh_TW |
| dc.subject | 三維結構 | zh_TW |
| dc.subject | 非線性光操縱 | zh_TW |
| dc.subject | 非線性表面電漿子 | zh_TW |
| dc.subject | split ring resonator | en |
| dc.subject | nonlinear metasurface | en |
| dc.subject | three-dimensional structure | en |
| dc.subject | Nonlinear plasmon | en |
| dc.subject | nonlinear light manipulation | en |
| dc.title | 非線性表面電漿超穎結構 | zh_TW |
| dc.title | Nonlinear Plasmonics Metasurface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 孫剛(Greg Sun),王智明(Chih-Ming Wang),李柏璁(Po-Tsung Lee),黃承彬(Chen-Bin Huang) | |
| dc.subject.keyword | 非線性表面電漿子,非線性光操縱,裂環共振器,三維結構,非線性超穎表面, | zh_TW |
| dc.subject.keyword | Nonlinear plasmon,nonlinear light manipulation,split ring resonator,three-dimensional structure,nonlinear metasurface, | en |
| dc.relation.page | 73 | |
| dc.identifier.doi | 10.6342/NTU201701192 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-06-30 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 應用物理研究所 | zh_TW |
| 顯示於系所單位: | 應用物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 8.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
