Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20824
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義(Leeyih Wang)
dc.contributor.authorYen-Ju Hsiehen
dc.contributor.author謝炎儒zh_TW
dc.date.accessioned2021-06-08T03:05:25Z-
dc.date.copyright2017-07-20
dc.date.issued2017
dc.date.submitted2017-07-06
dc.identifier.citation1.5 參考文獻
[1] 蔡富豐,日本311福島核災事件週年省思與感言,臺電核能月刊,2012,351,16。
[2] D.M. Chapin, C.S. Fuller, G.L. Pearson, J. Appl. Phys. 1954, 25, 676.
[3] https://www.ise.fraunhofer.de/en/press-media/press-releases/2014/new-world-record-for-solar-cell-efficiency-at-46-percent.html
[4] M. Manceau, D. Angmo, M. Jørgensen, F.C. Krebs, Org. Electron. 2011, 12, 566.
[5] C.J. Brabec, J.R. Durrant, MRS Bull. 2008, 33, 670.
[6] R. Søndergaard, M. Hösel, D. Angmo, T.T. Larsen-Olsen, F.C. Krebs, Materials Today 2012, 15, 1.
[7] (a) Jingbo Zhao, Yunke Li, Guofang Yang, Kui Jiang, Haoran Lin, Harald Ade, Wei Ma, He Yan, Nat. Energy 2016, 1, 15027. (b) W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, J. Hou, J. Am. Chem. Soc. 2017, 139, 7148.
[8] https://commons.wikimedia.org/wiki/File:Best_Research-Cell_Efficiencies.png
[9] H. Kang, W. Lee, J. Oh, T. Kim, C. Lee, B. J. Kim, Acc. Chem. Res. 2016, 49, 2424.
[10] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
[11] L. J. A. Koster, V. D. Mihailetchi, P. W. M. Blom, Appl. Phys. Lett. 2006, 88, 93511.
[12] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Chem. Rev. 2009, 109, 5868.
[13] M. A. Green, Solar Cells: Operating Principles, Technology and Systems Applications, The University of New South Wales, Kensington, Australia, 1998.
2.3 參考文獻
[1] K. M. Coakley, M. D. McGehee, Chem. Mater. 2004, 16, 4533.
[2] D. Kearns, M. Calvin, The Journal of Chemical Physics 1958, 29, 950.
[3] A. K. Ghosh, T. Feng, J. Appl. Phys. 1978, 49, 5982.
[4] S. N. Chen, A. J. Heeger, Z. Kiss, A. G. MacDiarmid, S. C. Gau, D. L. Peebles, Appl. Phys. Lett. 1980, 36, 96.
[5] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[6] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, Science 1992, 258, 1474.
[7] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
[8] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
[9] S.-S. Sun, Sol. Energy Mater. Sol. Cells 2003, 79, 257.
[10] H. Spanggaard, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2004, 83, 125.
[11] J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H. Park, J. K. Kim, K. Cho, Adv. Funct. Mater. 2010, 20, 540.
[12] M. C. Quiles, T. Ferenczi, T. Agostinelli, P. G. Etchegoin, Y. Kim, T. D. Anthopoulos, P. N. Stavrinou, D. C. Bradley, J. Nelson, Nat Mater. 2008, 7, 158.
[13] Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Adv. Funct. Mater. 2009, 19, 1227.
[14] S. K. Hau, H. L. Yip, N. S. Baek, J. Zou, K. O'Malley, A. K. Y. Jen, Appl. Phys. Lett. 2008, 92, 253301.
[15] M. Hiramoto, H. Fujiwara, M. Yokoyama, Appl. Phys. Lett. 1991, 58, 1062.
[16] S. K. Hau, H. L. Yip, O. Acton, N. S. Baek, H. Ma, A. K. Y. Jen, J. Mater. Chem. 2008, 18, 5113.
[17] S. K. Hau, H. L. Yip, H. Ma, A. K. Y. Jen, Appl. Phys. Lett. 2008, 93, 233304.
[18] Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636.
[19] Z. He, C. Zhong, S. Su, M. Xu, H. Wu, Y. Cao, Nat Photonics 2012, 6, 591.
[20] C.-Y. Chang, C.-E. Wu, S.-Y. Chen, C. Cui, Y.-J. Cheng, C.-S. Hsu, Y.-L. Wang, Y. Li, Angew. Chem. Int. Ed. 2011, 50, 9386.
[21] G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, C. J. Brabec, Adv. Mater. 2008, 20, 579.
[22] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, Nat Commun. 2013, 4, 1446.
[23] Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, Y. Cao, Nat. Photonics 2015, 9, 174.
[24] J.-D. Chen, C. Cui, Y.-Q. Li, L. Zhou, Q.-D. Ou, C. Li, Y. Li, J.-X. Tang, Adv. Mater. 2015, 27, 1035.
[25] T. Heumueller, W. R. Mateker, A. Distler, U. F. Fritze, R. Cheacharoen, W. H. Nguyen, M. Biele, M. Salvador, M. Delius, H.-J. Egelhaaf, M. D. McGehee, C. J. Brabec, Energy Environ. Sci. 2016, 9, 247.
[26] N. Zhou, H. Lin, S. J. Lou, X. Yu, P. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang, M. R. Wasielewski, L. X. Chen, R. P. H. Chang, A. Facchetti, T. J. Marks, Adv. Energy Mater. 2014, 4, 1300785.
[27] C. Lee, H. Kang, W. Lee, T. Kim, K.-H. Kim, H. Y. Woo, C. Wang, B. J. Kim, Adv. Mater. 2015, 27, 2466.
[28] Y.-J. Hwang, T. Earmme, B. A. E. Courtright, F. N. Eberle, S. A. Jenekhe, J. Am. Chem. Soc. 2015, 137, 4424.
[29] X. Yang, J. Loos, S.C. Veenstra, W.J.H. Verhees, M.M. Wienk, J.M. Kroon, M.A.J. Michels, R.A.J. Janssen, Nano Lett. 2005, 5, 579.
[30] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[31] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat Mater. 2005, 4, 864.
[32] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, G. C. Bazan, Nat Mater. 2007, 6, 497.
[33] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, A. J. Heeger, J. Am. Chem. Soc. 2008, 130, 3619.
[34] A. J. Moulé, K. Meerholz, Adv. Mater. 2008, 20, 240.
[35] F.-C. Chen, H.-C. Tseng, C.-J. Ko, Appl. Phys. Lett. 2008, 92, 103316.
[36] X. Guo, C. Cui, M. Zhang, L. Huo, Y. Huang, J. Hou, Y. Li, Energy Environ Sci. 2012, 5, 7943.
[37] J. M. Lobez, T. L. Andrew, V. Bulović, T. M. Swager, ACS Nano 2012, 6, 3044.
[38] B. C. Thompson, J. M. J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 57.
[39] C. N. Hoth, P. Schilinsky, S. A. Choulis, C. J. Brabec, Nano Lett. 2008, 8, 2806.
[40] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
[41] J. Liu, Y. Shi, Y. Yang, Adv. Funct. Mater. 2001, 11, 420.
[42] Y. Yao, C. Shi, G. Li, V. Shrotriya, Q. Pei, Y. Yang, Appl. Phys. Lett. 2006, 89, 153507.
[43] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[44] G. Li, V. Shrotriya, Y. Yao, Y. Yang, J. Appl. Phys. 2005, 98, 43704.
[45] Q. Wei, T. Nishizawa, K. Tajima, K. Hashimoto, Adv. Mater. 2008, 20, 2211.
3.4 參考文獻
[1] Y. Sun, J. H. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, Adv. Mater. 2011, 23, 1679.
[2] N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals, edition 1; Oxford University Press, New York, 1940.
4.6 參考文獻
[1] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, F. Wudl, Appl. Phys. Lett. 1993, 62, 585.
[2] J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao, C. L. Wilkins, The Journal of Organic Chemistry 1995, 60, 532.
[3] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
[4] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat Mater. 2005, 4, 864.
[5] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[6] L. Zheng, Q. Zhou, X. Deng, M. Yuan, G. Yu, Y. Cao, The Journal of Physical Chemistry B 2004, 108, 11921.
[7] H. Zhao, X. Guo, H. Tian, C. Li, Z. Xie, Y. Geng, F. Wang, Journal of Materials Chemistry 2010, 20, 3092.
[8] P. Troshin, H. Hoppe, J. Renz, M. Egginger, J. Mayorova, A. Goryachev, A. Peregudov, R. Lyubovskaya, G. Gobsch, N. Sariciftci, V. Razumov, Adv. Funct. Mater. 2009, 19, 779.
[9] G. Zhao, Y. He, Z. Xu, J. Hou, M. Zhang, J. Min, H. Y. Chen, M. Ye, Z. Hong, Y. Yang, Y. Li, Adv. Funct. Mater. 2010, 20, 1480.
[10] C.-P. Chen, C. Luo, C. Ting, S.-C. Chuang, Chem. Commun. 2011, 47, 1845.
[11] M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 1993, 115 , 9798.
[12] IUPAC, Compendium of Chemical Terminology, 2nd ed., 1997.
[13] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 2007, 6th ed., 336.
[14] I. Burgués-Ceballos, F. Machui, J. Min, T. Ameri, M. Voigt, Y. N. Luponosov, S. A. Ponomarenko, P. D. Lacharmoise, M. Campoy-Quiles, C. J. Brabec, Adv. Funct. Mater. 2014, 24, 1449.
[15] M. Prato, M. Maggini, Acc. Chem. Res. 1998, 31, 519.
[16] S.-G. Liu, L. Shu, J. Rivera, H. Liu, J.-M. Raimundo, J. Roncali, A. Gorgues, L. Echegoyen, The Journal of Organic Chemistry 1999, 64, 4884.
[17] J. Wang, X. Ren, S. Shi, C. Leung, P. Chan, Org. Electron. 2011, 12, 880.
[18] W. Tress, K. Leo, M. Riede, Adv. Funct. Mater. 2011, 21, 2140.
[19] H. Jin, M. Tuomikoski, J. Hiltunen, P. L. Kopola, A. Maaninen, F. Pino, The Journal of Physical Chemistry C 2009, 113, 16807.
[20](a) W. Tress, A. Petrich, M. Hummert, M. Hein, K. Leo, M. Riede, Appl. Phys. Lett. 2011, 98, 63301. (b) N. Cho, H. Yip, S. Hau, K. Chen, T. Kim, J. Davies, D. Zeigler, A. Jen, J. Mater. Chem. 2011, 21, 6956.
[21] T. Chen, X. Wu, R. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[22] A. Kumar, S. Sista, Y. Yang, J. Appl. Phys. 2009, 105, 94512.
[23] Z. Xu, L. Chen, G. Yang, C. Huang, J. Hou, Y. Wu, G. Li, C. Hsu, Y. Yang, Adv. Funct. Mater. 2009, 19, 1227.
[24] V. Shrotriya, J. Ouyang, R. Tseng, G. Li, Y. Yang, Chem. Phys. Lett. 2005, 411, 138.
[25] Y. Sun, J. Seo, C. Takacs, J. Seifter, A. Heeger, Adv. Mater. 2011, 23, 1679.
[26] C. Liang, W. Su, L. Wang, Appl. Phys. Lett. 2009, 95, 133303.
[27] J. Peet, J. Kim, N. Coates, W. Ma, D. Moses, A. Heeger, G. Bazan, Nat Mater. 2007, 6, 497.
[28] M. Karakawa, T. Nagai, K. Adachi, Y. Iea, Y. Aso, J. Mater. Chem. A 2014, 2, 20889.
[29] K. Yoshimura, K. Matsumoto, Y. Uetani, S. Sakumichi, S. Hayase, M. Kawatsura, T. Itoh, Tetrahedron 2012, 68, 3605.
[30] C. Duan, W. Cai, B. Hsu, C. Zhong, K. Zhang, C. Liu, Z. Hu, F. Huang, G. Bazan, A. J. Heeger, Y. Cao, Energy Environ. Sci. 2013, 6, 3022.
5.5 參考文獻
[1] J. Hummelen, B. Knight, F. Peq, F. Wudl, J. Yao, C. Wilkins, The Journal of Organic Chemistry 1995, 60, 532.
[2] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
[3] W. Ma, C. Yang, X. Gong, K. Lee, A. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[4] C. Brabec, A. Cravino, D. Meissner, N. Sariciftci, T. Fromherz, M. Rispens, L. Sanchez, J. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
[5] Y. He, H. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 2010, 1377.
[6] F. Kooistra, J. Knol, F. Kastenberg, L. Popescu, W. H. Verhees, J. Kroon, J. Hummelen, Org. Lett. 2007, 9, 551.
[7] R. Ross, C. Cardona, D. Guldi, S. Sankaranarayanan, M. Reese, N. Kopidakis, J. Peet, B. Walker, G. Bazan, E. Keuren, B. Holloway, M. Drees, Nat. Mater. 2009, 8, 208.
[8] M. Lenes, G. Wetzelaer, F. Kooistra, S. Veenstra, J. Hummelen, P. Blom, Adv. Mater. 2008, 20, 2116.
[9] M. Lenes, S. W. Shelton, A. Sieval, D. Kronholm, J. Hummelen, P. Blom, Adv. Mater. 2009, 19, 3002.
[10] Y. He, H. Chen, J. Hou, Y. Li, J. Am. Chem. Soc. 2010, 132, 1377.
[11] Y. He, G Zhao, B. Peng and Y. Li, Adv. Funct. Mater. 2010, 20, 3383.
[12] Y. Cheng, M. Liao, C. Chang, W. Kao, C. Wu, C. Hsu, Chem. Mater. 2011, 23, 4056.
[13] I. Riedel, E. Hauff, J. Parisi, N. Martín, F. Giacalone, V. Dyakonov, Adv. Funct. Mater. 2005, 15, 1979.
[14] H. Bolink, E. Coronado, A. Forment-Aliaga, M. Lenes, A. Rosa, S. Filippone, N. Martín, J. Mater. Chem. 2011, 21, 1382.
[15] D. Fernandez, A. Viterisi, J. W. Ryan, F. G. Guirado, S. Vidal, S. Filippone, N. Martin, E. Palomares, Nanoscale, 2014, 6, 5871.
[16] J. Otera, Esterification: Methods, Reactions, And Applications, Wiley-VCH,2003.
[17] T. Suzuki, Q. Li, K. C. Khemani, F. Wudl, Ö. Almarsson, Science 1991, 254, 1186.
[18] L. Isaacs, A. Wehrsig, F. Diederieh, Helv. Chim. Acta. 1993, 76, 1231.
[19] F. Diederich, L. Isaacs, D. Philp, Chem. Soc. Rev. 1994, 23, 243.
[20] J. Hummelen, B. Knight, F. LePeq, F. Wudl, J. Org. Chem. 1995, 60, 532.
[21] F. Carey, Chapter 12: Reactions of Arenes. Electrophilic Aromatic Substitution, Organic Chemistry, 4/e, The McGraw-Hill Companies, United States, 2000.
[22] M. Prato, M. Maggini, Acc. Chem. Res. 1998, 31, 519.
[23] S. Liu, L. Shu, J. Rivera, H. Liu, J. Raimundo, J. Roncali, A. Gorgues, L. Echegoyan, The Journal of Organic Chemistry 1999, 64, 4884.
[24] T. Chen, X. Wu, R. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
6.4 參考文獻
[1] Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.
[2] V. Shrotriya, J. Ouyang, R. Tseng, G. Li, Y. Tang, Chem. Phys. Lett. 2005, 411,138.
[3] S. Cook, R. Katoh, A. Furube, J. Phys. Chem. C 2009, 113, 2547.
[4] H. Son, F. He, B. Carsten, L. Yu, J. Mater. Chem. 2011, 21, 18934.
[5] C. Brabec, N. Sariciftci, J. Hummelen, Adv. Funct. Mater. 2001, 11, 15.
[6] W. Ma, C. Yang, X. Gong, K. Lee, A. Heeger, Adv. Funct. Mater. 2005, 15, 1617.
[7] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, Nature Materials 2005, 4, 864.
[8] C. Brabec, A. Cravino, D. Meissner, N. Sariciftic, T. Fromherz, M. Rispens, L. Sanchez, J. Hummelen, Adv. Funct. Mater. 2001, 11, 374.
[9] K. Mutolo, E. Mayo, B. Rand, S. Forrest, M. Thompson, J. Am. Chem. Soc. 2006, 128, 8108.
[10] E. Bittner, J. Ramon, S. Karabunarliev, J. Chem. Phys. 2005, 122, 214719.
[11] C. Brabec, C. Winder, N. Sariciftic, J. Hummelen, A. Dhanabalan, P. Hal, R. Janssen, Adv. Funct. Mater. 2002, 12, 709.
[12] Y. Liang, D. Feng, Y. Wu, S. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc. 2009, 131, 7792.
[13] H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nature Photonics 2009, 3, 649.
[14] Y. Liang, Z. Xu, J. Xia, S. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, 135.
[15] L. Huo, S. Zhang, X. Guo, F. Xu, Y. Li, J. Hou, Angew. Chem. Int. Ed. 2011, 50, 9697.
[16] X. Li, W. Choy, L. Huo, F. Xie, W. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Adv. Mater. 2012, 24, 3046.
[17] Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, Y. Li, Adv. Funct. Mater. 2016, 26, 6635.
[18] M. Jørgensen, K. Norrman, F. Krebs, Sol. Energy Mater. Sol. Cells 2008, 92, 686.
[19] J. Bartelt, Z. Beiley, E. Hoke, W. Mateker, J. Douglas, B. Collins, J. Tumbleston, K. Graham, A. Amassian, H. Ade, J. Fréchet, M. Toney, M. McGehee, Adv. Energy Mater. 2013, 3, 364.
[20] M. Liao, C. Tsai, Y. Lai, F. Cao, J. Wu, C. Wang, C. Hsu, I. Liau, Y. Cheng, Adv. Funct. Mater. 2014, 24, 1418.
[21] H. Wong, Z. Li, C. Tan, H. Zhong, Z. Huang, H. Bronstein, I. McCulloch, J. Cabral, J. Durrant, ACS Nano 2014, 8, 1297.
[22] M. Jørgensen, K. Norrman, S. Gevorgyan, T. Tromholt, B. Andreasen, F. Krebs, Adv. Mater. 2012, 24, 580.
[23] H. Liu, D. Chang, W. Chiu, S. Rwei, L. Wang, J. Mater. Chem. 2012, 22, 15586.
[24] M. Steiner, J. Geisz, D. Friedman, W. Olavarria, A. Duda, T. Moriarty, Proceedings of 37th IEEE Photovoltaic Specialists Conference, Seattle, Jun 19-24, 2011.
[25] L. Lu, L. Yu, Adv. Mater. 2014, 26, 4413.
[26] W. Chen, T. Xu, F. He, W. Wang, C. Wang, J. Strzalka, Y. Liu, J. Wen, D. Miller, J. Chen, K. Hong, L. Yu, S. Darling, Nano Lett. 2011, 11, 3707.
[27] F. Liu, W. Zhao, J. Tumbleston, C. Wang, Y. Gu, D. Wang, A. Briseno, H. Ade, T. Russell, Adv. Energy Mater. 2014, 4, 1301377.
[28] C. Chen, C. Tsao, Y. Huang, H. Liu, W. Chiu, C. Chuang, U. Jeng, C. Su, W. Wu, W. Su, L. Wang, Nanoscale 2013, 5, 7629.
7.4 參考文獻
[1] L. Huo, J. Hou, Polym. Chem. 2011, 2, 2453.
[2] P. Sista, M. Biewer, M. Stefan, Macromol. Rapid Commun. 2012, 33, 9.
[3] Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, Y. Li, Adv. Funct. Mater. 2016, 26, 6635.
[4] H. Pan, Y. Li, Y. Wu, P. Liu, B. Ong, S. Zhu, G. Xu, J. Am. Chem. Soc. 2007, 129, 4112.
[5] J. Hou, M. Park, S. Zhang, Y. Yao, L. Chen, J. Li, Y. Yang, Macromolecules 2008, 41, 6012.
[6] Y. Zou, A. Najari, P. Berrouard, S. Beaupre´, B. Aı¨ch, Y. Tao, M. Leclerc, J. Am. Chem. Soc. 2010, 132, 5330.
[7] C. Piliego, T. Holcombe, J. Douglas, C. Woo, P. Beaujuge, J. Fre´chet, J. Am. Chem. Soc. 2010, 132, 7595.
[8] C. Cabanetos, A. Labban, J. Bartelt, J. Douglas, W. Mateker, J. Fre´chet, M. McGehee, P. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656.
[9] K. Lu, J. Fang, H. Yan, X. Zhu,Y. Yi, Z. Wei, Organic Electronics 2013, 14, 2652.
[10] L. Huo, J. Hou, S. Zhang, H. Chen, Y. Yang, Angew. Chem. Int. Ed. 2010, 49, 1500.
[11] Z. Gu, P. Shen, S. Tsang, Y. Tao, B. Zhao, P. Tang, Y. Nie, Y. Fang, S. Tan, Chem. Commun. 2011, 47, 9381.
[12] D. Ding, J. Wang, W. Chen, M. Qiu, J. Ren, H. Zheng, D. Liu, M. Sun, R. Yang, RSC Adv. 2016, 6, 51419.
[13] V. Tamilavan, K. H. Roh, R. Agneeswari, D. Y. Lee, S. Cho, Y. Jin, S. H. Park, M. H. Hyun, J. Mater. Chem. A 2014, 2, 20126.
[14] Y. Liu, M. Liu, A. Jen, Acta Polymerica 1999, 50, 105.
8.6 參考文獻
[1] Z. Bao, A. Dodabalapur, A. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.
[2] H. Son, F. He, B. Carsten, L. Yu, J. Mater. Chem. 2011, 21, 18934.
[3] C. Brabec, C. Winder, N. Sariciftci, J. Hummelen, A. Dhanabalan, P. Hal, R. Janssen, Adv Funct. Mater. 2002, 12, 709.
[4] L. Koster, V. Mihailetchi, P. Blom, Appl. phys. lett. 2006, 88, 93511.
[5] Y. He, Y. Li, Phys Chem Chem Phys. 2011, 13, 1970.
[6] M. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. Heeger, C. Bracec, Adv. Mater. 2006, 18, 789.
[7] H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonic. 2009, 3, 649.
[8] J. Brdas, J. Norton, J. Cornil, V. Coropceanu, Acc. Chem. Res. 2009, 42, 1691.
[9] J. Hou, L. Huo, C. He, C. Yang, Y. Li, Macromolecules 2006, 39, 594.
[10] J. Hou, C. Yang, C. He, Y. Li, Chem. Commun. 2006, 8, 871.
[11] J. Hou, Z. Tan, Y. Yan, Y. He, C. Yang, Y. Li, J. Am. Chem. Soc. 2006, 128, 4911.
[12] E. Zhou, Z. Tan, L. Huo, Y. He, C. Yang, Y. Li, The Journal of Physical Chemistry B 2006, 110, 26062.
[13] Z. Zhang, S. Zhang, J. Min, C. Chui, J. Zhang, M. Zhang, Y. Li, Macromolecules 2011, 45, 113.
[14] M. Wan, G. Sang, Y. Zou, S. Tan, Y. Li, J. Appl. polym. Sci. 2009, 113, 1415.
[15] F. Huang, K. Chen, H. Yip, S. Hau, O. Acton, Y. Zhang, J. Luo, A. Jen, J. Am. Chem. Soc. 2009, 131, 13886.
[16] C. Kuo, Y. Huang, C. Hsiow, Y. Yang, C. Huang, S. Rwei, H. Wang, L. Wang, Macromolecules 2013, 46, 5985.
[17] C.-Y. Hsiow, R. Raja, C.-Y. Wang, Y.-H. Lin, Y.-W. Yang, Y.-J. Hsieh, S.-P. Rwei, W.-Y. Chiu,C.-I. Huang, L. Wang, Phys. Chem. Chem. Phys. 2014, 16, 25111.
[18] Y. Zhang, Q. Wan, X. Guo, W. Li, B. Guo, M. Zhang, Y. Li, J. Mater. Chem. A 2015, 3, 18442.
[19] K. Wang, B. Guo, W. Su, X. Guo, M. Zhang, Y. Li, RSC Adv. 2016, 6, 14229.
[20] C. Cui, Z. He, Y. Wu, X. Cheng, H. Wu, Y. Li, Y. Cao, W.-Y. Wong, Energy Environ. Sci. 2016, 9, 885.
[21] M.-H. Choi, T. H. Lee, Y. W. Han, D. K. Moon, J Polym Sci A Polym Chem. 2016, 54, 2746.
[22] Y. Liang, Y. Wu, D. Feng, S. Tsai, H. Son, G. Li, L. Yu, J. Am. Chem. Soc. 2009, 131, 56.
[23] I. Osaka, T. Kakara, N. Takemura, T. Koganezawa, K. Takimiya, J. Am. Chem. Soc. 2012, 135, 8834.
[24] C. Cabanetos, A. Labban, J. Bartelt, J. Douglas, W. Mateker, J. Fréchet, M. McGehee, P. Beaujuge, J. Am. Chem. Soc. 2013, 135, 4656.
[25] P. Brown, D. Thomas, A. Köhler, J. Wilson, J. Kim, C. Ramsdale, H. Sirringhaus, R. Friend, Physical Review B 2003, 67, 64203.
[26] T. Chen, X. Wu, R. Rieke, J. Am. Chem. Soc. 1995, 117, 233.
[27] B. Thompson, J. Fréchet, Angew. Chem. Int. Ed. 2008, 47, 58.
[28] J. Hou, T. Chen, S. Zhang, L. Huo, S. Sista, Y. Yang, Macromolecules 2009, 42, 9217.
[29] Y. Kim, S. Cook, S. Tuladhar, S. Choulis, J. Nelson, J. Durrant, D. Bradley, M. Giles, I. Mcculloch, C. Ha, M. Ree, Nat Mater. 2006, 5, 197.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20824-
dc.description.abstract目前在異質接面型高分子太陽能電池中,主動層的組成通常是以共軛高分子作為電子予體(donor)、富勒烯衍生物作為電子受體(acceptor),其中又以聚(3-己烷基噻吩)(poly(3-hexylthiophene), P3HT):[6,6]-苯基-C61-丁酸甲酯([6,6]-phenyl-C61-butyric acid methyl ester, PC61BM)的系統最被廣泛地研究。本論文分為五個研究主題,內容含主動層donor與acceptor材料的研究開發與提升電池效率與長時間熱穩定性的元件結構設計。
在第一部份的研究主題研究為富勒烯吡咯烷衍生物(fulleropyrrolidines)在吡咯啶(pyrrolidine)氮上接有不同長度的烷基鏈段,混摻後的形態對於電池的光伏特性有很大的影響,NMC、NHC、NMPC分別與P3HT 混摻所製備成的順式結構元件發現皆有S-kinks的光伏特性產生,經載子傳遞速率的量測,發現三元件之電洞遷移率皆比電子遷移率慢了許多,造成遷移率嚴重不平衡產生S-shape的光伏特性,研究亦藉由混摻後薄膜的TEM、UV及PL圖譜影像,發現P3HT在主動層中仍有足夠的空間自組裝排列堆疊形成結晶,為了找出電洞遷移率過慢的主因,元件設計使用陽極緩衝層與添加劑應用於此章的實驗系統,皆能有效地改善元件S-shape的光伏特性,證實電洞遷移率過慢的原因為主動層垂直方向碳六十衍生物沉降行為使得組成分布不均所致,為了再進一步了解產生沉降的原因,亦合成了另外兩個碳六十衍生物NDPC與NPC,分別帶有強推電子基與電中性官能基,同樣與P3HT混摻組成元件後發現NPC沒有S-shape I-V curve產生,而NDPC元件依然產生了S-shape的光伏特性,而造成碳六十衍生物沉降的原因可能與富勒烯吡咯烷衍生物結構中吡咯啶的三級胺鹼值與PEDOT:PSS強酸特性的PSS (pH < 2)產生作用,促使富勒烯吡咯烷衍生物沉降形成一薄層於PEDOT:PSS表面,造成電洞傳遞路徑受阻,結果使電洞遷移率相對慢了許多,研究亦使用V2O5取代原先使用的電洞傳輸層PEDOT:PSS,使得S-kinks現象全部消失也順著碳六十衍生物沉降的本質行為,製備反式結構太陽能電池,不僅解決了S-shape的光伏特性,更使元件能量轉換效率(PCE)明顯提升。這個研究結果提供一個完整明確且有意義的的研究資訊於設計開發碳六十衍生物與高分子太陽能電池元件。
在第二部分的研究主題,主要探討二苯基環丙烷富勒烯衍生物(diphenylmethanofullerenes, DPMs)結構具推拉電子基對於高分子太陽能電池之開環電壓(Voc)的影響。由於最高可獲得的Voc係取決於donor的HOMO能階與acceptor的LUMO能階差值,為了使元件獲得較大Voc,acceptor需具有較高的LUMO能階。有鑑於此,成功地合成了三個碳六十衍生物,其結構內接有不同推拉電子性質的官能基,分別將其縮寫命名為DPM-O、DPM-OCO及DPM-COO,相當令人覺得有趣的是發現CV測得三者的LUMO能階皆與PC61BM相同,但與P3HT混摻組成的太陽能電池,其Voc卻有相當明顯的不同,實驗結果顯示Voc大小與固態薄膜DPMs分子間through space電荷轉移(charge transfer)行為有密切的關係,其中P3HT/DPM-O的Voc達0.69 V比P3HT/PC61BM高了0.1 V,這個發現,提供了一個嶄新的策略應用於開發高能量轉換效率(PCE)高分子太陽能電池的研究。
在第三部分的研究主題為深入探討當今極具代表性的低能隙的共軛高分子PTB7-Th與PC61BM混摻形成異質接面形態的不穩定性。實驗結果發現PTB7-Th:PC61BM主動層於100 ℃經熱退火處理900分鐘後,主動層會出現大規模的PC61BM聚集,使D/A之間接觸面積大幅地減少,亦降低電洞遷移率,因而使元件PCE由最初未經熱退火處理時候的6.65% 大幅衰減至2.83%,降幅近六成,顯示其熱穩定性不佳。研究提出一個簡單有效的方法,在主動層裡添加少量非晶的bis-PC61BM作為相分離抑制劑,發現不僅可以有效地抑制PC61BM於長時間熱處理後所產生的聚集行為,維持異質接面形態的樣貌,同樣在100 ℃熱退火處理900分鐘後,元件PCE仍可維持於初始狀態之90%,電流值(Jsc)更可穩定相似於初始態。此外更藉由GIWAXS/GISAXS來分析觀察形態的微結構變化,藉由散射圖譜說明PTB7-Th:PC61BM主動層隨著熱退火處理的時間增加,會誘使純PC61BM持續聚集並與中型尺度(meso-scale)的PC61BM-rich區域連結形成大型尺度(macro-scale)的相分離,影響了PTB7-Th規整的排列與結晶生長;倘若以部分bis-PC61BM取代PC61BM作為相分離抑制劑,可以有效地防止純PC61BM擴散到PC61BM-rich區域,藉此維持主動層形態,進而能夠使元件穩定。此研究對高效能高分子太陽能電池於未來商業化提供了一相當值得參考的報告。
在第四部份的研究為開發一系列噻吩作為共軛側鏈之benzodithiophene (BDT)分子分別與thieno[3,4-c]pyrrole-4,6-dione (TPD)、dithienyl thieno[3,4-c]pyrrole-4,6-dione (DTTPD)、dithieno-[3’,2’:3,4;2”,3”:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT) 和 dithienyl-2,1,3-benzothiadiazole (DTBT),以Stille polycondensation進行共聚,合成一系列新穎的D-A二維共軛高分子,依序分別將其命名為NAP01、NAP02、NAP03及NAP04。BDT單元為一良好的電子予體(donor),其具有良好之結構平面性、高電洞遷移率與較低的HOMO能階,四種電子受體(acceptor)為TPD、BT、π共軛單元及併環(fused)所組成。BDT-based copolymers的設計可藉由拉電子單元的強弱調整光學吸收性質與HOMO能階。再之藉由XRD實驗分析,NAP02結構含π共軛單元之設計能夠有效地使高分子主鏈不受到龐大側鏈影響,使之能於主鏈及側鏈皆能夠形成結晶,進一步地將其與PC61BM混摻(10:8 w/w)製備組成的元件,最佳PCEmax= 5.54% (PCEave= 5.17%),Voc高達938 mV,Jsc 為8.28 mA/cm2,FF達66.6%,頗具潛力。此研究替donor材料的開發設計提供了另一全新概念,續往高效率太陽能電池的目標邁進。
於第五部分的研究,使用了一種較低能隙(low bandgap)的新型二維共軛高分子KBP07,以拉電子行為之2,1,3-Benzothiadiazole連結三噻吩共軛側鏈平行於高分子主鏈,使光學吸收能夠更為紅移且寬廣。由實驗結果得知,當主鏈含有龐大的側鏈基團,主鏈結構含π共軛單元spacer,對於高分子堆疊排列越有幫助,結晶行為與電洞遷移率之表現亦越佳;另外於UV-Vis觀察發現KBP07保有二維共軛高分子的特性即側鏈與主鏈擁有各自的吸收特徵峰,吸收範圍寬廣(300 nm-800 nm),HOMO能階比一維線性高分子P3HT來得低,將之混摻製備組成高分子太陽能電池元件,於最佳化的實驗條件KBP07:PC71BM(1:2 w/w)元件PCEmax達4.90% (PCEave= 4.60%)。上述實驗結果,吾認為還有空間將此類型之共軛高分子做更進一步地優化,使PCE提升。這項研究對於二維共軛高分子的開發與元件性能的優化製程參數有相當助益的實驗報告,藉由主鏈與側鏈雙向搭配,使二維共軛高分子的應用更為彈性與多樣化。
zh_TW
dc.description.abstractIn bulk-heterojunction (BHJ) polymer solar cells (PSCs), conjugated polymer and fullerene derivative are commonly utilized as an electron donor and an electron acceptor, respectively, to form the active layer. Searching potential polymer donor and fullerene acceptor plays an important role in advancing the power conversion efficiency (PCE) and operational lifetime of such solar devices.
In the first part, a series of N-substituted fulleropyrrolidines were employed as electron acceptors blending with P3HT as electron donor to fabricate polymer solar cells. It was found that the type of substituent significantly influences the photovoltaic behavior of the solar devices. As the substituent is an alkyl group, such as N-methyl, N-hexyl, N-ethylhexyl, abnormal S-shape current-voltage (I-V) curves are resulted. The analysis of the P3HT/N-alkyl fulleropyrrolidine blends by TEM, UV-vis, and PL shows no obvious difference between these films. This abnormal I-V curve can be ascribed to the formation of a N-alkyl fulleropyrrolidine interlayer at the bottom of the photoactive film in the course of spin-dying that blocks the transport of holes to the anode. To verify this speculation, the para position of phenyl substituent in fulleropyrrolidine was functionalized with an electron-donating group. (NN-dimethyl, methoxyl), or hydrogen atom. As expected, the cell using N,N-dimethylphenyl or methoxylphenyl fulleropyrrolidine as acceptor has an S-shaped I-V curve but the one based on phenyl fulleropyrrolidine behaves a normal photovoltaic performance. Interestingly, as an inverted cell structure is adopted to reverse the transport routes of carriers inside the photoactive blend, the problem of S-shape kink associated with all fulleropyrrolidine are totally solved, suggesting these new fullerene acceptors can be applied as effective acceptor in inverted PSCs.
In the second part, we investigated the effect of electron donating and withdrawing group of C60 derivatives on the open-circuit voltage (Voc) of polymer solar cell. Herein, we functionalized C60 with DPM-O, DPM-OCO or DPM-COO groups, which have various electron donating and withdrawing ability. Very interestingly, the cyclic voltamograms showed the LUMO energy levels of these three fullerene derivatives are comparable with that of PCBM, but combination of AC-2 measurements and UV-Vis absorption spectra demonstrated that the LUMO of DPM-O and DPM-OCO films is 0.04-0.08 eV higher than that of PCBM film. This is probably because the electron donated moieties and neighbor C60 cores form charge transfer complexes in the solid film. Their Voc decreased in the trend, DPM-O > DPM-OCO > DPM-COO. This result opens a new approach to develop high-Voc polymer solar cells.
In the third part, we observed that thermally annealing the PTB7-Th:PC61BM blends at 100℃ for 900 minutes leads to large-scale PC61BM aggregation with PTB7-Th matrix that decreases the interface area between the donor and the accepter as well as hole mobility, significantly lowering the PCE from 6.65% to 2.83%. The multilength-scale evolution of the morphology of PTB7-Th/PC61BM film from the scattering profiles of grazing incidence small-angle and wide-angle X-ray scattering indicates the PC61BM molecules spatially confine the self-organization of polymer chains into large domains during cast drying and upon thermal activation. However, the addition of bis-PC61BM into the PTB7-Th:PC61BM blends as phase separation inhibitors effectively inhibits the formation of PC61BM clusters during high-temperature aging. As a result, the PCE of the device with bis-PC61BM retains ~90% of its initial value after 900 minutes annealing at 100 oC.
In the fourth part, we explored a new class of conjugated polymers, namely NAP01, NAP02, NAP03 AND NAP04 which were synthesized by Stille polycondensation. These polymers have good solubility in common organic solvents due to the presence of 2,3-didecylthiopheneg groups. Their crystallization behavior and optical, electrochemical and electronic properties were measured and discussed. The BHJ PSCs based on the polymer with thiophene spacer show much better performance than the polymers without spacers. These findings indicate that the optoelectronical properties of polymers can be easily control by inserting thiophene spacers and fused rings into the polymer backbone. This study provides an important rout for designing new materials to obtain higher Voc, short-circuit current (Jsc), fill factors (FF) and PCE of BHJ solar devices.
In last part, a novel two-dimensional (2-D) conjugated polymer with tertrthiophene-vinylene (TTV) as conjugated side chain, KBP07, containing of 2,1,3-benzothiadiazole (BTD) was synesized by Stille polymerization. The optical and electrochemical properties of KBP07 shows not only a broader absorption wavelength from 300 nm up to 800 nm (λonset~780 nm;Egopt = 1.59 eV) but low-lying HOMO energy level. In addition, as shown as the X-ray diffraction spectrum, the high crystallinity can be observed. Under AM1.5G illumination at 100 mWcm-2, the BHJ PSC fabricated from KBP07/PC71BM exhibits the best PCE of 4.90% (PCEave= 4.60%). These findings indicate that introducing an electron-withdrawing acceptor to build a D-A 2-D conjugated polymer is a simple but effective strategy to broaden the absorption and achieve high photovoltaic performances.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T03:05:25Z (GMT). No. of bitstreams: 1
ntu-106-D99549004-1.pdf: 7520532 bytes, checksum: f99c881d188e0e95b3fda2f18440ff6f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝………………………………………………………………………………………I
摘要……………………………………………………………………………………... II
ABSTRACT…………………………………………………………………………….V
目錄 …………………………………………………………………………………VIII
圖目錄………………………………………………………………………………..XIV
表目錄…………………………………..…………………………………………...XXII
第一章 緒論 …………………………………………………………………………….1
1.1 前言 ……………………………………………………………………………1
1.2 太陽能電池的種類 ……………………………………………………………1
1.3 高分子太陽能電池的工作原理 ………………………………………………3
1.4 太陽能電池之特性參數 ……………………………………………………....5
1.4.1太陽能電池的輸出特性…………………..…………………………….5
1.4.2等效電路圖 ……………………………………………………………..6
1.5 參考文獻 ……………………………………………………...……………….9
第二章 高分子太陽能電池之文獻回顧 ……………………………………………...10
2.1 高分子太陽能電池之結構發展 ……………………………………………..10
2.1.1 單層結構 ……………………………………………………………...10
2.1.2 雙層異質接面結構 …………………………………………………...11
2.1.3 混摻異質接面結構 …………………………………………………...12
2.1.4 有序異質接面結構 …………………………………………………12
2.1.5 反置混摻異質接面結構 13
2.1.6 混摻異質接面加入界面層結構 …………………………………….15
2.1.7 反置有序混摻異質接面結構…………………………………… 17
2.1.8 疊加式混摻異質接面結構…………………………………………. 18
2.2 混摻異質接面之形態控制 ………………………………………………18
2.2.1 退火效應 ……………………………………………………………19
2.2.2 添加劑效應 …………………………………………………………...21
2.2.3 溶劑效應……………………………………………………………... 24
2.2.4 異質接面縱深分佈控制……………………………………………. 25
2.3 參考文獻 …………………………………………………………………...28
第三章 元件製備、儀器設備與藥品 ………………………………………………...31
3.1 高分子太陽能電池之製作方法與流程……………………………………..31
3.2 量測樣品與實驗儀器測量方法 ……………………………………………..36
3.3 實驗藥品……………………………………………………………………..41
3.4 參考文獻……………………………………………………………………..45
第四章 富勒烯吡咯烷衍生物之分子結構對於聚(3-己基噻吩)太陽能電池之
光伏特性影響探討………………………………..………………………….46
4.1 前言與研究目的……………………………………………………………..46
4.2 新型碳六十衍生物之合成…………………………………………………..50
4.2.1 新型碳六十衍生物之合成路徑……………………………………...50
4.2.2 2-(hexylamino)acetic acid之合成………………….………………….51
4.2.3 2-(2-ethylhexylamino)acetic acid之合成……………………………...51
4.2.4 N-methyl-2-(4-methoxyphenyl) fulleropyrrolidine (NMC)之合成……52
4.2.5 N-hexyl-2-(4-methoxyphenyl) fulleropyrrolidine (NHC)之合成……...52
4.2.6 N-(2-ethylhexyl)-2-(4-methoxyphenyl) fulleropyrrolidine
(NMPC)之合成……………………..……………………………….....53
4.2.7 N-(2-ethylhexyl)-2-[4-(dimethylaminophenyl)]fulleropyrrolidine
(NDPC)之合成………………………………………………………..54
4.2.8 N-(2-ethylhexyl)-2-phenylfulleropyrrolidine(NPC)之合成………..….54
4.3 結果與討論……………………………………………………………...….55
4.3.1 新型碳六十衍生物之合成分析………………………………...……55
4.3.1.1 Prato reaction………………………………………….………55
4.3.2 不同烷基鏈段對碳六十衍生物之性質影響探討…………………...56
4.3.3 碳六十衍生物之光學分析…………………………………………...57
4.3.4 碳六十衍生物之電化學分析………………………………………...58
4.3.5 P3HT:碳六十衍生物順式太陽能電池之光伏特性分析……………..60
4.3.6 S-shape I-V curve之文獻回顧………………………....…….………..63
4.3.7 P3HT:FPs-based devices之載子遷移率……..………………..………68
4.3.8 P3HT:FPs之光學性質…………………………………………..……..70
4.3.9 P3HT:FPs之混摻異質接面形態分析…………………………………72
4.3.10 緩衝層對P3HT:碳六十衍生物順式太陽能電池之光伏特性分析..73
4.3.11 添加劑對P3HT:碳六十衍生物順式太陽能電池之光伏特性分析..75
4.3.12 P3HT:FPs反式太陽能電池之光伏特性分析………………..………78
4.3.13 P3HT:FPs反式太陽能電池之光致電子轉換效率分析……………..80
4.4 碳六十衍生物上之推拉電子基團的影響探討…………………...…...…..81
4.4.1 前言與研究動機…………………………………………….……......81
4.4.2 碳六十衍生物之特性分析……………………………………….…..81
4.4.3 碳六十衍生物之光學分析…………………………………..……….83
4.4.4 碳六十衍生物之電化學分析……………………………………...…84
4.4.5 P3HT:碳六十衍生物順式太陽能電池之光伏特性分析…………......86
4.4.6 P3HT:FPs之混摻異質接面形態分析…………………………………87
4.4.7 P3HT:FPs-based devices之載子遷移率………………..……………..88
4.4.8 V2O5取代電洞傳導層PEDOT:PSS之順式結構太陽能電池應用…..90
4.4.9 以V2O5取代PEDOT:PSS之P3HT:FPs-based devices電洞遷移率…92
4.4.10 P3HT:碳六十衍生物反式太陽能電池之光伏特性分析………...….93
4.4.11 P3HT:FPs-based devices之光致電子轉換效率………………......…94
4.5 結論…………………………………………………………………………96
4.6 參考文獻……………………………………………………………………97
第五章 二苯基環丙烷富勒烯衍生物之分子結構對於
高分子太陽能電池之光伏特性影響探討………..………………………...100
5.1 前言與研究目的…………………………………………………………..100
5.2 新型碳六十衍生物之合成………..………………………………..……..107
5.2.1 DPM-O, DPM-OCO and DPM-OCO之合成路徑...............................107
5.2.2 bis(4-(hexyloxy)phenyl)methanone之合成………………………….108
5.2.3 4,4-Dihexyloxybenzophenone-p-tosylhydrazone之合成…………….108
5.2.4 4,4-dihexyloxydiphenylmethano[60]fullerene(DPM-O)之合成…….109
5.2.5 4,4'-carbonylbis(4,1-phenylene) diheptanoate之合成………..………110
5.2.6 ((2-tosylhydrazono)methylene)bis(4,1-phenylene)diheptanoate
之合成………………………………………………………………...110
5.2.7 [6,6]Diphenylmethanofullerene methoxycarbonyl derivative
(DPM-OCO)之合成………………………………….........................111
5.2.8 dihexyl 4,4'-carbonyldibenzoate之合成………………………..…….112
5.2.9 dihexyl-4,4'-((2-tosylhydrazono)methylene)dibenzoate之合成…......112
5.2.10 4,4-dihexylcarbonydiphenylmethano[60]fullerene
(DPM-COO)之合成………………………………………….......…113
5.3 結果與討論………………………………………………………………..113
5.3.1 二苯基環丙烷富勒烯衍生物之合成分析…………….………....…114
5.3.1.1 Steglich esterification………………………………….…...….114
5.3.1.2 [3+2] 環加成反應–重氮化合物
([3+2]cycloadditions reactions of diazocompounds)………....116
5.3.2 二苯基環丙烷富勒烯衍生物之特性……………………….………118
5.3.3 二苯基環丙烷富勒烯衍生物之光學分析…………………...……..119
5.3.4 碳六十衍生物之電化學特性分析…………………………....…….120
5.3.5 碳六十衍生物之光電特性分析………………………………….…122
5.3.6 P3HT:二苯基環丙烷富勒烯衍生物太陽能電池之光伏特性分析....123
5.3.7 二苯基環丙烷富勒烯衍生物薄膜之光電子能譜分析...…………..126
5.3.8 P3HT:二苯基環丙烷富勒烯衍生物異質接面之形態分析…………129
5.3.9 P3HT:二苯基環丙烷富勒烯衍生物異質接面之載子遷移率………130
5.3.10 P3HT:二苯基環丙烷富勒烯衍生物混摻異質接面之結晶性質…..131
5.3.11 P3HT:二苯基環丙烷富勒烯衍生物太陽能電池之光致電子效率..132
5.4 結論……………………………………………………………………......134
5.5 參考文獻……………………………………………………………...…...135
第六章 PTB7-Th/PCBM高分子太陽能電池之穩定性探討……………..………...137
6.1 前言與研究目的…………………………………………………………..137
6.2 結果與討論………………………………………………………………..140
6.2.1 PTB7-Th/PC61BM:bis-PC61BM-based devices光伏特性分析……....140
6.2.2 PTB7-Th/PC61BM:bis-PC61BM-based devices熱穩定性測試………142
6.2.3 PTB7-Th/PC61BM:bis-PC61BM高分子太陽能電池光致電流
轉換效率分析………………………………………………………...148
6.2.4 PTB7-Th/PC61BM:bis-PC61BM異質接面形態分析…………..…….151
6.2.5 PTB7-Th/PC61BM:bis-PC61BM元件之載子遷移率分析………...…153
6.2.6 PTB7-Th/PC61BM:bis-PC61BM薄膜之
低掠角度小角度/廣角X光散射(GIWAXS/GISAXS)分析…………157
6.3 結論……………………………………………………….…………….…164
6.4 參考文獻…………………………………………………………………..165
第七章 含benzo[1,2-b:4,5-b′]-dithiophene(BDT)之二維共軛高分子的
太陽能電池光伏特性研究.............................................................................167
7.1 前言與研究目的…………………………………………………………167
7.2 結果與討論………………………………………………………………174
7.2.1 共軛高分子之合成………………………………………….……..174
7.2.2 共軛高分子之基本性質…………………………………………...175
7.2.3 共軛高分子之光學性質分析…………………………………...…175
7.2.4 共軛高分子之電化學性質分析…………………………………...178
7.2.5 共軛高分子X光繞射圖譜分析………………………………...…180
7.2.6 BDT-based太陽能電池之光伏特性分析………………….….……184
7.2.7 共軛高分子/PCBM元件之載子遷移率分析...…..…..……………185
7.3 結論………………………………………………………………………188
7.4 參考文獻…………………………………………………………………189
第八章 含三噻吩側鏈之苯併噻二唑的高分子太陽能電池之光伏特性探討…….190
8.1 前言…………………………………………………....………………....190
8.2 two-dimensional polythiophenes文獻回顧.…..……………………..…....192
8.3 研究目的…………………………………………………………….…...196
8.4 結果與討論………………………………………………………….…...197
8.4.1 KBP07之合成………………………………………………….…...197
8.4.2 KBP07之基本性質………………………………….……………...198
8.4.3 KBP07之光學性質分析………………………………….………...199
8.4.4 KBP07之電化學特性分析…………………………………….…...202
8.4.5 KBP07之X光繞射圖譜分析……………………………………....203
8.4.6 KBP07之電洞遷移率…………………………………………........204
8.4.7 KBP07:PCBM-based devices之光伏特性分析……………….…....206
8.4.8 KBP07:PCBM-based devices之載子遷移率…………………….....207
8.4.9 KBP07:PCBM混摻異質接面形態分析……………...………….…209
8.5 結論………………………………………………………………………211
8.6 參考文獻…………………………………………………………………212
第九章 結論與未來展望…………………………………………………………….214
第十章 附錄………………………………………………………………..………...217
10.1 第四章之Supporting Information…………………………….……..….217
10.1.1 核磁共振光譜圖………………………………………………...217
10.1.2 質譜圖……………………………………………………..…….224
10.1.3 元件效率數目統計圖……………………………………….......229
10.2 第五章之Supporting Information……………………………………..230
10.2.1 元件之相關數據………………………………………………...230
10.2.2 核磁共振光譜圖………………………………………………...236
10.2.3 質譜圖……………………………………………………….......245
10.3 第六章之Supporting Information……………………………………248
10.3.1 元件效率數目統計圖…………………………………………...248
10.4 第七章之Supporting Information……………………………………249
10.4.1 NAP01、NAP02元件之相關數據………………………………..249
10.4.2 NAP03、NAP04元件之相關數據………………………………252
10.5 第八章之Supporting Information……………………………………256
10.5.1 元件之相關數據….…………………………………….……….256
謝炎儒簡介與學術發表….……………………………………..……………………261
dc.language.isozh-TW
dc.subject二維共軛高分子zh_TW
dc.subject高分子太陽能電池zh_TW
dc.subject富勒烯?咯烷衍生物zh_TW
dc.subjectS型電壓電流特性曲線zh_TW
dc.subject二苯基環丙烷富勒烯衍生物zh_TW
dc.subject熱穩定性zh_TW
dc.subject低掠角小角/廣角X光散射技術zh_TW
dc.subjectS-shape I-V curvesen
dc.subjecttwo-dimensional conjugated polymeren
dc.subjectX-ray scatteringen
dc.subjectthermal stabilityen
dc.subjectdiphenylmethanofullereneen
dc.subjectpolymer solar cellsen
dc.subjectfulleropyrrolidineen
dc.title新型共軛高分子/富勒烯衍生物異質接面型高分子太陽能電池之光伏特性與熱穩定性探討zh_TW
dc.titlePhotovoltaic Behavior and Thermal Stability of Bulk Heterojunction Solar Cells Based on Novel Conjugated Polymers and Fullerene Derivativesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee林唯芳(Wei-Fang Su),陳錦地(Chin-Ti Chen),曹正熙(Cheng-Si Tsao),華沐怡(Mu-Yi Hua),鄭如忠(Ru-Jong Jeng)
dc.subject.keyword高分子太陽能電池,富勒烯?咯烷衍生物,S型電壓電流特性曲線,二苯基環丙烷富勒烯衍生物,熱穩定性,低掠角小角/廣角X光散射技術,二維共軛高分子,zh_TW
dc.subject.keywordpolymer solar cells,fulleropyrrolidine,S-shape I-V curves,diphenylmethanofullerene,thermal stability,X-ray scattering,two-dimensional conjugated polymer,en
dc.relation.page264
dc.identifier.doi10.6342/NTU201701321
dc.rights.note未授權
dc.date.accepted2017-07-06
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved