請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20751
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
dc.contributor.author | Yu-Ying Liu | en |
dc.contributor.author | 劉育瑛 | zh_TW |
dc.date.accessioned | 2021-06-08T03:01:44Z | - |
dc.date.copyright | 2017-07-27 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-20 | |
dc.identifier.citation | [1] Feng, L., S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, Super-Hydrophobic Surfaces: From Natural to Artificial. Advanced Materials, 2002. 14(24): pp. 1857-1860.
[2] Feng, L., Y. Zhang, J. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang, Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir, 2008. 24(8): pp. 4114-4119. [3] Bhushan, B. and M. Nosonovsky, The Rose Petal Effect and the Modes of Superhydrophobicity. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2010. 368(1929): pp. 4713-4728. [4] Gao, A., Y. Zhao, Q. Yang, Y. Fu, and L. Xue, Facile Preparation of Patterned Petal-like PLA Surfaces with Tunable Water Micro-droplet Adhesion Properties Based on Stereo-complex Co-crystallization from Non-solvent Induced Phase Separation Processes. Journal of Materials Chemistry A, 2016. 4(31): pp. 12058-12064. [5] Ennaceri, H., L. Wang, D. Erfurt, W. Riedel, G. Mangalgiri, A. Khaldoun, A. El Kenz, A. Benyoussef, and A. Ennaoui, Water-resistant Surfaces Using Zinc Oxide Structured Nanorod Arrays with Switchable Wetting Property. Surface and Coatings Technology, 2016. 299: pp. 169-176. [6] Winkleman, A., G. Gotesman, A. Yoffe, and R. Naaman, Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets. Nano Letters, 2008. 8(4): pp. 1241-1245. [7] Tornøe, C.W., C. Christensen, and M. Meldal, Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 2002. 67(9): pp. 3057-3064. [8] Owens, D.K. and R.C. Wendt, Estimation of the Surface Free Energy of Polymers. Journal of Applied Polymer Science, 1969. 13(8): pp. 1741-1747. [9] Wang, C.F., Y.C. Su, S.W. Kuo, C.F. Huang, Y.C. Sheen, and F.C. Chang, Low-Surface-free-energy Materials Based on Polybenzoxazines. Angewandte Chemie-International Edition, 2006. 45(14): pp. 2248-2251. [10] Pyta, K., M. Blecha, A. Janas, K. Klich, P. Pecyna, M. Gajecka, and P. Przybylski, Synthesis, Structure and Antimicrobial Evaluation of a New Gossypol Triazole Conjugates Functionalized with Aliphatic Chains and Benzyloxy Groups. Bioorganic and Medicinal Chemistry Letters, 2016. 26(17): pp. 4322-4326. [11] Vijai Kumar Reddy, T., A. Jyotsna, B.L.A. Prabhavathi Devi, R.B.N. Prasad, Y. Poornachandra, and C. Ganesh Kumar, Design, Synthesis and in Vitro Biological Evaluation of Short-chain C12-sphinganine and Its 1,2,3-triazole Analogs as Potential Antimicrobial and Anti-biofilm agents. European Journal of Medicinal Chemistry, 2016. 118: pp. 98-106. [12] Floros, M.C., J.F. Bortolatto, O.B. Oliveira, S.L. Salvador, and S.S. Narine, Antimicrobial Activity of Amphiphilic Triazole-Linked Polymers Derived from Renewable Sources. American Chemical Society Biomaterials Science and Engineering, 2016. 2(3): pp. 336-343. [13] Shyma, P.C., B. Kalluraya, S.K. Peethambar, and A.M. Vijesh, Regioselective One Pot Synthesis of 1,2,3-triazole Derivatives Bearing Phthalazine Moiety and Their Pharmacological Activity. Medicinal Chemistry Research, 2016. 25(11): pp. 2680-2690. [14] Young, T., An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 1805. 95: pp. 65-87. [15] Fowkes, F.M., Attractive Forces at Interfaces. Industrial & Engineering Chemistry, 1964. 56(12): pp. 40-52. [16] Hejda, F., P. Solar, and J. Kousal. Surface Free Energy Determination by Contact Angle Measurements–A Comparison of Various Approaches. in Women's Dermatologic Society. 2010. [17] Kolb, H.C., M.G. Finn, and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie-International Edition, 2001. 40(11): pp. 2004-+. [18] Kitamura, Y., R. Sakamoto, T. Shiraishi, H. Oguri, S. Ohno, and Y. Kitade, Practical Modification of Peptides Using Ligand-free Copper-catalyzed Azide–alkyne Cycloaddition. Tetrahedron, 2016. 72(27–28): pp. 4016-4021. [19] Fu, C., A. Bongers, K. Wang, B. Yang, Y. Zhao, H. Wu, Y. Wei, H.T.T. Duong, Z. Wang, and L. Tao, Facile Synthesis of a Multifunctional Copolymer Via a Concurrent RAFT-enzymatic System for Theranostic Applications. Polymer Chemistry, 2016. 7(3): pp. 546-552. [20] Zou, L., W. Zhu, Y.M. Chen, and F. Xi, Modification of Side Chain Terminals of PEGylated Molecular Bottle Brushes-A Toolbar of Molecular Nanoobjects. Polymer, 2013. 54(2): pp. 481-484. [21] Clavadetscher, J., S. Hoffmann, A. Lilienkampf, L. Mackay, R.M. Yusop, S.A. Rider, J.J. Mullins, and M. Bradley, Copper Catalysis in Living Systems and In Situ Drug Synthesis. Angewandte Chemie-International Edition, 2016. 55(50): pp. 15662-15666. [22] Fredy, J.W., J. Scelle, G. Ramniceanu, B.-T. Doan, C.S. Bonnet, É. Tóth, M. Ménand, M. Sollogoub, G. Vives, and B. Hasenknopf, Mechanostereoselective One-Pot Synthesis of Functionalized Head-to-Head Cyclodextrin [3]Rotaxanes and Their Application as Magnetic Resonance Imaging Contrast Agents. Organic Letters, 2017. 19(5): pp. 1136-1139. [23] Lühmann, T., M. Schmidt, M.N. Leiske, V. Spieler, T.C. Majdanski, M. Grube, M. Hartlieb, I. Nischang, S. Schubert, U.S. Schubert, and L. Meinel, Site-Specific POxylation of Interleukin-4. American Chemical Society Biomaterials Science & Engineering, 2017. 3(3): pp. 304-312. [24] Tabisz, B., W. Schmitz, M. Schmitz, T. Luehmann, E. Heusler, J.-C. Rybak, L. Meinel, J.E. Fiebig, T.D. Mueller, and J. Nickel, Site-Directed Immobilization of BMP-2: Two Approaches for the Production of Innovative Osteoinductive Scaffolds. Biomacromolecules, 2017. 18(3): pp. 695-708. [25] Willersinn, J., A. Bogomolova, M.B. Cabre, and B.V.K.J. Schmidt, Vesicles of Double Hydrophilic Pullulan and Poly(acrylamide) Block Copolymers: a Combination of Synthetic- and Bio-derived Blocks. Polymer Chemistry, 2017. 8(7): pp. 1244-1254. [26] Konetski, D., T. Gong, and C.N. Bowman, Photoinduced Vesicle Formation via the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction. Langmuir, 2016. 32(32): pp. 8195-8201. [27] Wright, K., P. Quinodoz, B. Drouillat, and F. Couty, A One Carbon Staple for Orthogonal Copper-catalyzed Azide-alkyne Cycloadditions. Chemical Communications, 2017. 53(2): pp. 321-323. [28] Kota, A.K., G. Kwon, and A. Tuteja, The Design and Applications of Superomniphobic Surfaces. Nature Publishing Group Asia Materials, 2014. 6: pp. 16. [29] Soumya, S., S.N. Kumar, A.P. Mohamed, and S. Ananthakumar, Silanated Nano ZnO Hybrid Embedded PMMA Polymer Coatings on Cotton Fabrics for Near-IR Reflective, Antifungal Cool-textiles. New Journal of Chemistry, 2016. 40(8): pp. 7210-7221. [30] Sun, T., L. Feng, X. Gao, and L. Jiang, Bioinspired Surfaces with Special Wettability. Accounts of Chemical Research, 2005. 38(8): pp. 644-652. [31] Genzer, J. and K. Efimenko, Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: a Review. Biofouling, 2006. 22(5): pp. 339-360. [32] Leng, B., Z. Shao, G. de With, and W. Ming, Superoleophobic Cotton Textiles. Langmuir, 2009. 25(4): pp. 2456-2460. [33] Thevenot, P., W. Hu, and L. Tang, Surface Chemistry Influences Implant Biocompatibility. Current topics in medicinal chemistry, 2008. 8(4): pp. 270-280. [34] Berret, J.-F., D. Calvet, A. Collet, and M. Viguier, Fluorocarbon Associative Polymers. Current Opinion in Colloid and Interface Science, 2003. 8(3): pp. 296-306. [35] Wang, S. and R.E. Marchant, Fluorocarbon Surfactant Polymers: Effect of Perfluorocarbon Branch Density on Surface Active Properties. Macromolecules, 2004. 37(9): pp. 3353-3359. [36] Zisman, W.A., Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution, in Contact Angle, Wettability, and Adhesion. 1964, American Chemical Society. pp. 1-51. [37] Hare, E.F., E.G. Shafrin, and W.A. Zisman, Properties of Films of Adsorbed Fluorinated Acids. The Journal of Physical Chemistry, 1954. 58(3): pp. 236-239. [38] Tokuda, K., T. Ogino, M. Kotera, and T. Nishino, Simple Method for Lowering Poly(methyl methacrylate) Surface Energy with Fluorination. Polymer Journal, 2015. 47(1): pp. 66-70. [39] Boo, C., J. Lee, and M. Elimelech, Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation. Environmental Science and Technology, 2016. 50(22): pp. 12275-12282. [40] Wang, D., K. Li, and W.K. Teo, Preparation and Characterization of Polyvinylidene Fluoride (PVDF) Hollow Fiber Membranes. Journal of Membrane Science, 1999. 163(2): pp. 211-220. [41] Qu, L. and Z. Xin, Preparation and Surface Properties of Novel Low Surface Free Energy Fluorinated Silane-Functional Polybenzoxazine Films. Langmuir, 2011. 27(13): pp. 8365-8370. [42] You, J., H. Fu, W. Dong, L. Zhao, X. Cao, and Y. Li, Shape Memory Performance of Thermoplastic Polyvinylidene Fluoride/Acrylic Copolymer Blends Physically Cross-Linked by Tiny Crystals. American Chemical Society Applied Materials and Interfaces, 2012. 4(9): pp. 4825-4831. [43] Xie, Q., J. Xu, L. Feng, L. Jiang, W. Tang, X. Luo, and C.C. Han, Facile Creation of a Super‐amphiphobic Coating Surface with Bionic Microstructure. Advanced Materials, 2004. 16(4): pp. 302-305. [44] Danielli, J.F., M.D. Rosenberg, and D.A. Cadenhead, Progress in Surface and Membrane Science. 2013: Elsevier Science. [45] Eral, H.B., D.J.C.M. ’t Mannetje, and J.M. Oh, Contact Angle Hysteresis: a Review of Fundamentals and Applications. Colloid and Polymer Science, 2013. 291(2): pp. 247-260. [46] Yuan, Y., T.R. Lee, G. Bracco and B. Holst, Contact Angle and Wetting Properties, in Surface Science Techniques 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. pp. 3-34. [47] Gao, L. and T.J. McCarthy, Contact Angle Hysteresis Explained. Langmuir, 2006. 22(14): pp. 6234-6237. [48] Ren, W. and W. E, Contact Line Dynamics on Heterogeneous Surfaces. Physics of Fluids, 2011. 23(7): pp. 072103. [49] Ebert, D. and B. Bhushan, Wear-resistant Rose Petal-effect Surfaces with Superhydrophobicity and High Droplet Adhesion Using Hydrophobic and Hydrophilic Nanoparticles. Journal of Colloid and Interface Science, 2012. 384(1): pp. 182-188. [50] Guo, Z.-G. and W.-M. Liu, Sticky Superhydrophobic Surface. Applied Physics Letters, 2007. 90(22): pp. 223111. [51] Paxson, A.T. and K.K. Varanasi, Self-similarity of Contact Line Depinning from Textured Surfaces. Nature Communications, 2013. 4: pp. 1492. [52] Li, H.-J., W.-Z. Fan, H.-H. Pan, C.-W. Wang, J. Qian, and Q.-Z. Zhao, Fabrication of “Petal Effect” Surfaces by Femtosecond Laser-induced Forward Transfer. Chemical Physics Letters, 2017. 667: pp. 20-24. [53] Wenzel, R.N., Resistance of Solid Surfaces to Wetting by Water. Industrial and Engineering Chemistry, 1936. 28(8): pp. 988-994. [54] Cassie, A.B.D. and S. Baxter, Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944. 40(0): pp. 546-551. [55] Puliyalil, H., G. Filipič, and U. Cvelbar, Recent Advances in the Methods for Designing Superhydrophobic Surfaces, in Surface Energy. 2015, InTech: Rijeka. Ch. 11. [56] Yoshimitsu, Z., A. Nakajima, T. Watanabe, and K. Hashimoto, Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir, 2002. 18(15): pp. 5818-5822. [57] Kuan-Yu, Y., C. Kuan-Hung, Y. Yu-Hao, P. Arwut, H. Chung-Hsuan, H. Cheng-Che, and C. Li-Jen, Observation of the Rose Petal Effect over Single- and Dual-scale Roughness Surfaces. Nanotechnology, 2014. 25(34): p. 345303. [58] Cheng, Z., M. Du, H. Lai, N. Zhang, and K. Sun, From Petal Effect to Lotus Effect: a Facile Solution Immersion Process for the Fabrication of Super-hydrophobic Surfaces with Controlled Adhesion. Nanoscale, 2013. 5(7): pp. 2776-2783. [59] Cho, K.-H., Study of Superhydrophobic Surfaces with Hierarchical Structures, in Department of Chemical Engineering. 2012, National Taiwan University. pp. 1-202. [60] Yeh, K.-Y., L.-J. Chen, and J.-Y. Chang, Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces. Langmuir, 2008. 24(1): pp. 245-251. [61] Wallström, S., K. Dowling, and S. Karlsson, Development and Comparison of Test Methods for Evaluating Formation of Biofilms on Silicones. Polymer Degradation and Stability, 2002. 78(2): pp. 257-262. [62] Bae, M.H., J.K. Kim, and S.C. Ryu, Analyzing Antibacterial and Antifungal Properties of Polypropylene/hydroxyapatite Composites. Journal of Ceramic Processing Research, 2016. 17(5): pp. 518-522. [63] Craig, M., R. Flemming, G. Osinski, E. Cloutis, M. Izawa, H. Sapers, and C. Marion. XRD Patterns of Glassy Impactites: Amorphous Curve Fitting and Composition Determination with Implications for Mars. in Lunar and Planetary Science Conference. 2013. [64] Sibilia, J.P., A Guide to Materials Characterization and Chemical Analysis. 1996: Wiley. [65] Likhtman, A.E. and M. Ponmurugan, Microscopic Definition of Polymer Entanglements. Macromolecules, 2014. 47(4): pp. 1470-1481. [66] Wool, R.P., Polymer Entanglements. Macromolecules, 1993. 26(7): pp. 1564-1569. [67] Huang, H.-M., S.-k. Ma, and Y.M. Shih, The Entropy of Entangled Polymer. Solid State Communications, 1984. 51(3): pp. 147-149. [68] López-Barrón, C.R., P. Brant, A.P.R. Eberle, and D.J. Crowther, Linear Rheology and Structure of Molecular Bottlebrushes with Short Side Chains. Journal of Rheology, 2015. 59(3): pp. 865-883. [69] Yang, V.W. and C.A. Clausen, Antifungal Effect of Essential Oils on Southern Yellow Pine. International Biodeterioration and Biodegradation, 2007. 59(4): pp. 302-306. [70] Chen, F., X. Yang, and Q. Wu, Antifungal Capability of TiO2 Coated Film on Moist Wood. Building and Environment, 2009. 44(5): pp. 1088-1093. [71] Park, S.-I.L., S.D. Stan, M.A. Daeschel, and Y. Zhao, Antifungal Coatings on Fresh Strawberries (Fragaria × ananassa) to Control Mold Growth During Cold Storage. Journal of Food Science, 2005. 70(4): pp. M202-M207. [72] Lee, S.M., Handbook of Composite Reinforcements. 1992: Wiley. [73] Gengenbach, T.R., R.C. Chatelier, and H.J. Griesser, Correlation of the Nitrogen 1s and Oxygen 1s XPS Binding Energies with Compositional Changes During Oxidation of Ethylene Diamine Plasma Polymers. Surface and Interface Analysis, 1996. 24(9): pp. 611-619. [74] Ahmed, M.N., K.A. Yasin, K. Ayub, T. Mahmood, M.N. Tahir, B.A. Khan, M. Hafeez, M. Ahmed, and I. ul-Haq, Click One Pot Synthesis, Spectral Analyses, Crystal Structures, DFT Studies and Brine Shrimp Cytotoxicity Assay of Two Newly Synthesized 1,4,5-trisubstituted 1,2,3-triazoles. Journal of Molecular Structure, 2016. 1106: pp. 430-439. [75] Bhagyasree, J.B., H.T. Varghese, C.Y. Panicker, C. Van Alsenoy, A.A. Al-Saadi, M. Dolezal, and J. Samuel, Spectroscopic (FT-IR, FT-Raman), First Order Hyperpolarizability, NBO Analysis, HOMO and LUMO Analysis of 5-tert-Butyl-6-chloro-N-[(4-(trifluoromethyl)phenyl]pyrazine-2-carboxamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 137: pp. 193-206. [76] Popescu, C.-M., M.-C. Popescu, G. Singurel, C. Vasile, D.S. Argyropoulos, and S. Willfor, Spectral Characterization of Eucalyptus Wood. Applied Spectroscopy, 2007. 61(11): pp. 1168-1177. [77] Marchessault, R.H., Application of Infra-red Spectroscopy to Cellulose and Wood Polysaccharides, in Pure and Applied Chemistry. 1962. pp. 107. [78] Al-Ajely1, M.S., Synthesis of Some Substituted 1,2,3-Triazole Derivatives via 1,3-Cycloaddition Reaction of Phenacylazides and Some Substituted Propargyl Compounds. Tikrit Journal of Pure Science 2008. 13(3): pp. 100-106. [79] Sivakumar, R., K. Akila, and S. Anandan, New Type of Inorganic–organic Hybrid (heteropolytungsticacid–polyepichlorohydrin) Polymer Electrolyte with TiO2 Nanofiller for Solid State Dye Sensitized Solar Cells. Current Applied Physics, 2010. 10(5): pp. 1255-1260. [80] Ahmad, M., M. Sirajuddin, Z. Akther, and W. Ahmad, Stannic Chloride-para Toluene Sulfonic Acid as a Novel Catalyst-co-catalyst System for the Designing of Hydroxyl Terminated Polyepichlorohydrin Polymer: Synthesis and Characterizatiothe Cassie Impregnating Wetting Staten. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. pp. 164-173. [81] Coates, J., Interpretation of Infrared Spectra, a Practical Approach. Encyclopedia of analytical chemistry, 2000. [82] Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 2004: Wiley. [83] Boyd, S.G. and K.J. Boyd, A Computational Analysis of the Interaction of Lattice and Intramolecular Vibrational Modes in Crystalline α-RDX. The Journal of Chemical Physics, 2008. 129(13): pp. 134502. [84] Atifi, S., C. Miao, and W.Y. Hamad, Surface Modification of Lignin for Applications in Polypropylene Blends. Journal of Applied Polymer Science, 2017. 134(29). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20751 | - |
dc.description.abstract | 近年來具有低表面能特性但同時對水滴有高物附著力的材料逐漸受到矚目,科學家稱之為「花瓣效應」。擁有花瓣效應的材料在不同領域中具有值得發展的潛力,例如:應用在液體輸送、單分子光譜學或印刷工業中。然而,用於製造這些獨特低表面能材料大多數是熱塑性的,其加工成本很高,此外,現今已有的低表面自由能材料分子中大多數皆含有鹵素類元素,可能會對環境造成危害。在本研究中,設計出一種沒有上述缺點的新型高分子聚合物。此研究中成功運用簡單、快速且易達到高產率的點擊化學反應來調控現今已廣泛使用的商業品,並且發現了一種含有三唑官能基的新型聚合物擁有花瓣效應的特點,其合成是運用銅催化點擊化學法使疊氮和炔類反應轉換成三唑製備而成,反應完成後前驅物聚環氧樹脂側鏈上的氯會被三唑取代。此實驗中透過膠體滲透層析儀(GPC),紅外光譜儀(IR),核磁共振氫譜(1H NMR)和X射線繞射(XRD)研究並證實了該產物的結構。在表面特性方面,由靜態和動態接觸角的結果表明了此新型高分子的表面能只有21.7 mN/m,而且遲滯角高達111.1˚,證明了此高分子擁有高水滴吸附力的特性,由上述兩點證明本實驗合成的高分子符合花瓣效應的特質。而且,實驗中由能量色散X射線光譜(EDS)和X射線光電子能譜學(XPS)得知該產品僅含有碳,氧和氮原子,這些是可生物降解的,使本實驗產物與其他低表面能物質相較下更加環保。由掃描電子顯微鏡(SEM)和原子力顯微鏡(AFM)的結果發現產物高分子表面會形成特殊的結構,這種結構造成細小孔洞在表面生成同時使表面粗糙度大幅上升,很可能就是形成花瓣效應特質的主要成因。實驗中從穿透式的IR和XPS的結果證明了本產物的高分子鏈之間有特殊相互作用力,這些吸引力是由側鏈上三唑環中的氮和主鏈上的氧產生的,而這種強吸引力很可能是造成結構和表面能量下降的主因。此外,由ASTM G21-15防黴試驗的結果顯示,混合孢子液在本實驗的產物上的生長等級為0級,表示具有抗黴效果,未來可以應用在醫療材料上。本研究提出了環氧樹脂-三唑環高分子的製備及其特性。 | zh_TW |
dc.description.abstract | Materials possess ‘Petal Effect’ property that has been investigated for many years since 2008. Petal effect materials have potentials in liquid transportations, single molecule spectroscopy, or printing industries. However, most materials for making these unique materials are thermoplastic which cost a lot for processing, and most of them consist of halogen groups, which might do harm to the environment. Thus, in this work a new polymer without the above flaws is constructed. A new polymer containing triazole functional groups is produced by an azide-alkyne huisgen cycloaddition to replace the chlorines on the polyepichlorohydrin (PECH) by the triazoles. The structure of the product is investigated and confirmed by Gel Permeation Chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance Spectroscopy (NMR), and X-ray Diffraction (XRD). Nonetheless, the results of the static and dynamic contact angles indicated the product possesses petal effect property, for the surface free energy of the polymer is 21.7 mN/m, and the contact angle hysteresis is up to 111.1˚. The Energy Dispersive Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS) showed that there were only C, O, and N atoms inside the product, which is more environment-friendly compared to other low-surface-free-energy materials. To know the formation of the petal effect property, the surface-morphologies are measured by Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM), and both of them show special structures with high roughness of the product. The unique structures might result from the interactions between oxygen atoms and hydrogen atoms on the triazoles, and the interactions are proved by Transmitted Infrared Spectroscopy (Transmitted IR) and XPS. Moreover, the anti-fungal test, ASTM G21-15, reveals that there is no fungi that could grow on the product, making the surface suitable for medical uses. Preparation and the characteristics of the product, denoted by PECH-Triazole, are presented in this work. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:01:44Z (GMT). No. of bitstreams: 1 ntu-106-R04524001-1.pdf: 6820225 bytes, checksum: 7adf68ca95b80fe3baa428efac9004f8 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Contents
Chapter 1 Introduction 1 Chapter 2 Literature review 5 2.1 Surface free energy (SFE) 5 2.2 Polyepichlorohydrin 7 2.3 Azide-alkyne huisgen cycloaddition (Click reaction) 8 2.4 Low-surface-free-energy surfaces 8 2.4.1 Applications of low surface-free-energy surfaces 9 2.4.2 Existed low-surface-free-energy materials 10 2.5 Contact angle hysteresis 11 2.6 Petal effect 13 2.7 Comparison of “Petal” to “Lotus” effect. 15 Chapter 3 Materials and experimental details 19 3.1 Materials 19 3.2 Experiment 20 3.2.1 Preparation of PECH-Azide 20 3.2.2 Synthesis of PECH-Triazole 21 3.2.3 Purification of PECH-Triazole 22 3.3 Characterization and instrumentation 23 3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 23 3.3.2 Nuclear Magnetic Resonance (NMR) 23 3.3.3 Gel Permeation Chromatography (GPC) 24 3.3.4 Spin coater 24 3.3.5 Scanning Electron Microscopy (SEM) 25 3.3.6 Video-based Optical Contact Angle Meter 25 3.3.7 Self-assembled device for measuring dynamic contact angles 25 3.3.8 Raman Spectroscopy 27 3.3.9 Thermogravimetric Analysis (TGA) 28 3.3.10 Differential Scanning Calorimetry (DSC) 28 3.3.11 X-ray Photoelectron Spectroscopy (XPS) 29 3.3.12 X-ray Diffraction (XRD) 29 3.3.13 Atomic Force Microscopy (AFM) 30 3.3.14 Antifungal Test (ASTM G21-15) 30 Chapter 4 Results and discussion 31 4.1 The characteristic of the polymers 31 4.1.1 Synthesis of PECH-Triazole 31 4.1.2 Structures of the polymers 32 4.1.4 Molecular weights of the polymers 42 4.1.5 X-ray Diffraction (XRD) 46 4.2 Surface properties of the samples 48 4.2.1 Static contact angles for the polymer thin films 48 4.2.2 Surface free energies for the polymer thin films 51 4.2.3 Dynamic contact angles for the polymer thin films 53 4.2.4 The surface morphologies of the polymers 63 4.2.5 Anti-fungal test 73 4.3 The interactions inside the polymers 74 4.3.1 X-ray Photoelectron Spectroscopy (XPS) 74 4.3.2 Raman Spectroscopy 78 4.3.3 Transmitted Infrared Spectroscopy (Transmitted IR) 79 Chapter 5 Conclusions and future work 89 Chapter 6 Reference 93 | |
dc.language.iso | en | |
dc.title | 合成一種新的含有三唑官能基具有花瓣效應特質的高分子材料 | zh_TW |
dc.title | Synthesis of ‘Petal Effect’ materials containing triazole functional groups | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭智嘉(Chih-Chia Cheng),Christopher Whiteley(Christopher Whiteley),黃志彬(Chih-pin Huang) | |
dc.subject.keyword | 花瓣效應,環氧樹脂,末端炔與疊氮化物的環化加成反應,銅催化,水滴吸附,三唑,低表面能, | zh_TW |
dc.subject.keyword | Petal effect,Polyepichlorohydrin,Azide-alkyne huisgen cycloaddition,Copper catalyst,High water adhesion,Triazole,Low surface free energy, | en |
dc.relation.page | 107 | |
dc.identifier.doi | 10.6342/NTU201701772 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-21 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 6.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。