請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20723
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林江珍 | |
dc.contributor.author | Cheng-Wei Li | en |
dc.contributor.author | 李政韋 | zh_TW |
dc.date.accessioned | 2021-06-08T03:00:24Z | - |
dc.date.copyright | 2017-08-01 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-26 | |
dc.identifier.citation | 1. Sinha Ray, S.; Okamoto, M., Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science 2003, 28 (11), 1539-1641.
2. Olad, A., Polymer/Clay Nanocomposites Advances in diverse industrial applications of nanocomposites. InTech 2011. 3. Lai, Y.-H.; Chiu, C.-W.; Chen, J.-G.; Wang, C.-C.; Lin, J.-J.; Lin, K.-F.; Ho, K.-C., Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte. Solar Energy Materials and Solar Cells 2009, 93 (10), 1860-1864. 4. Mittal, V., Polymer Layered Silicate Nanocomposites: A Review. Materials 2009, 2 (3), 992-1057. 5. Ajjou, A. N.; Harouna, D.; Detellier, C.; Alper, H., Cation-exchanged montmorillonite catalyzed hydration of styrene derivatives. Catalysis A: Chemical 1997, 126 (1), 50-60. 6. Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, T. M.; Buglass, J. G., Delaminated zeolite precursors as selective acidic catalysts. . Nature 1998, 396 (6709), 353-356. 7. Cseri, T.; Békássy, S.; Figueras, F.; Rizner, S., Benzylation of aromatics on ion exchanged clays. Journal of Molecular Catalysis A: Chemical 1995, 98 (2), 101-107. 8. LASZLO, P., Chemical Reactions on Clays. Science 1987,, 235 (4795), 1473-1477. 9. Pinnavaia, T. J., Intercalated Clay Catalysts. Science 1983, 220 (4595), 365-371. 10. Celis, R.; Hermosín, M. C.; Carrizosa, M. J.; Cornejo, J., Inorganic and Organic Clays as Carriers for Controlled Release of the Herbicide Hexazinone. Journal of Agricultural and Food Chemistry 2002, 50 (8), 2324-2330. 11. Rawajfih, Z.; Nsour, N., Characteristics of phenol and chlorinated phenols sorption onto surfactant-modified bentonite. J Colloid Interface Sci 2006, 298 (1), 39-49. 12. Király, Z.; Veisz, B.; Mastalir, Á.; Köfaragó, G., Preparation of Ultrafine Palladium Particles on Cationic and Anionic Clays, Mediated by Oppositely Charged Surfactants: Catalytic Probes in Hydrogenations. . Langmuir 2001, 17 (17), 5381-5387. 13. Chiu, C.-W.; Lin, J.-J., Self-assembly behavior of polymer-assisted clays. Progress in Polymer Science 2012, 37 (3), 406-444. 14. Giannelis, E. P., Polymer-layered silicate nanocomposites: Synthesis, properties and applications. . Applied Organometallic Chemistry 1998, 12 (10-11), 675-680. 15. Chiu, C.-W.; Huang, T.-K.; Wang, Y.-C.; Alamani, B. G.; Lin, J.-J., Intercalation strategies in clay/polymer hybrids. Progress in Polymer Science 2014, 39 (3), 443-485. 16. Pavlidou, S.; Papaspyrides, C. D., A review on polymer–layered silicate nanocomposites. Progress in Polymer Science 2008, 33 (12), 1119-1198. 17. Chu, C.-C.; Chiang, M.-L.; Tsai, C.-M.; Lin, J.-J., Exfoliation of Montmorillonite Clay by Mannich Polyamines with Multiple Quaternary Salts. . Macromolecules 2005, 38 (15), 6240-6243. 18. Lin, J. J.; Chu, C. C.; Chou, C. C.; Shieu, F. S., Self-Assembled Nanofibers from Random Silicate Platelets. Advanced Materials 2005, 17 (3), 301-304. 19. Jauhari, J.; Liao, C.-Y.; Chiou, J.-Y.; Chang, S.-J.; Tsai, Y.-T.; Lin, J.-J., Functionalizing and molecular bonding nanoscale silicate-polymer composites of epoxies and Polyacrylates. Journal of Polymer Research 2016, 24 (1). 20. Vo, C.-D.; Schmid, A.; Armes, S. P., Surface ATRP of Hydrophilic Monomers from Ultrafine Aqueous Silica Sols Using Anionic Polyelectrolytic Macroinitiators. Langmuir 2007, 23 (2), 408-413 21. Zhao, H.; Shipp, D. A., Preparation of Poly(styrene-block-butyl acrylate) Block Copolymer-Silicate Nanocomposites. Chem. Mater 2003, 15 (14), 2693-2695. 22. Liu, S.; Hermanson, K. D.; Kaler, E. W., Reversible Addition-Fragmentation Chain Transfer Polymerization in Microemulsion Macromolecules 2006, 39 (13). 23. Hertler, W. R.; Sogah, D. Y.; Boettcher, F. P., Group-Transfer Polymerization on a Polymeric Support. Macromolecules 1990, 23 (5), 1264-1268. 24. Shah, D.; Fytas, G.; Vlassopoulos, D.; Di, J.; Sogah, D.; Giannelis, E. P., Structure and Dynamics of Polymer-Grafted Clay Suspensions. Langmuir 2005, 21 (1), 19-25. 25. Chen, Y.-M.; Lin, H.-C.; Hsu, R.-S.; Hsieh, B.-Z.; Su, Y.-A.; Sheng, Y.-J.; Lin, J.-J., Thermoresponsive Dual-Phase Transition and 3D Self-Assembly of Poly(N-Isopropylacrylamide) Tethered to Silicate Platelets. Chemistry of Materials 2009, 21 (17), 4071-4079. 26. HABAUE, S.; IKESHIMA, O.; AJIRO, H.; OKAMOTO†, Y., Surface Structure Control of Macroporous Silica Gel by Atom Transfer Radical Polymerization. Polymer Journal 2001, 33 (11), 902-905. 27. Nicholas, M. P.; Rao, L.; Gennerich, A., Covalent immobilization of microtubules on glass surfaces for molecular motor force measurements and other single-molecule assays. Methods Mol Biol 2014, 1136, 137-69. 28. Hoffmann, F.; Froba, M., Vitalising porous inorganic silica networks with organic functions--PMOs and related hybrid materials. Chem Soc Rev 2011, 40 (2), 608-20. 29. He, H.; Duchet, J.; Galy, J.; Gerard, J.-F., Grafting of Swelling Clay Materials with 3-aminopropyltriethoxysilane. JOURNAL OF COLLOID AND INTERFACE SCIENCE 2005, 288 (1), 171-176. 30. Norma Negrete Herrera; Letoffe, J.-M.; Putaux, J.-L.; David, L.; Bourgeat-Lami, E., Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites Langmuir 2004, 20 (5), 1564-1571. 31. Piscitelli, F.; Posocco, P.; Toth, R.; Fermeglia, M.; Pricl, S.; Mensitieri, G.; Lavorgna, M., Sodium montmorillonite silylation: unexpected effect of the aminosilane chain length. J Colloid Interface Sci 2010, 351 (1), 108-15. 32. Shanmugharaj, A. M.; Rhee, K. Y.; Ryu, S. H., Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials. J Colloid Interface Sci 2006, 298 (2), 854-9. 33. Paul, D. R.; Robeson, L. M., Polymer nanotechnology: Nanocomposites. Polymer 2008, 49 (15), 3187-3204. 34. Peterson, J. D.; Vyazovkin, S.; Wight, C. A., Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene). Macromol. Chem. Phys. 2001, 202 (6), 775–784. 35. MESSERSMITH, P. B.; GIANNELISt, E. P., Synthesis and Barrier Properties of Poly(e-Capro1actone)Layered Silicate Nanocomposites. Journal of Polymer Science 1995, 33 (7), 1047-1057 36. Giannelis, E. P., Polymer-Layered Silicate Nanocomposites: Synthesis, Properties and Applications. APPLIED ORGANOMETALLIC CHEMISTRY 1998, 12, 675–680. 37. Haraguchi, K.; Li, H.-J., Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content Macromolecules 2006, 39 (5), 1898-1905. 38. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Richard Harris, J., Flammability Properties of Polymer-Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites Chem. Mater. 2000, 12, 2000, 12 (7), 1866-1873. 39. Sinha Ray, S.; Yamada, K.; Okamoto, M.; Ueda, K., Polylactide-Layered Silicate Nanocomposite: A Novel Biodegradable Material. Nano Letters 2002, 2 (10), 1093-1096. 40. Li, Y.; Zhao, B.; Xie, S.; Zhang, S., Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites. Polymer International 2003, 52 (6), 892-898. 41. Paul A. Wheeler, J. W., and Lon J. Mathias*, Poly(methyl methacrylate)/Laponite Nanocomposites: Exploring Covalent and Ionic Clay Modifications. Chem. Mater. 2006, 18 (17), 3937-3945. 42. Al-Turaif, H. A., Relationship between tensile properties and film formation kinetics of epoxy resin reinforced with nanofibrillated cellulose. Progress in Organic Coatings 2013, 76 (2-3), 477-481. 43. Hong, I.-K.; Yoon, Y. S.; Lee, S.-B., Selection of thinner for epoxy type resins for neon transformer housing. Journal of Industrial and Engineering Chemistry 2012, 18 (6), 1997-2003. 44. Mohammed, I. A.; Ali, M. F.; Wan Daud, W. R., New class of liquid crystalline epoxy resins: Synthesis and properties. Journal of Industrial and Engineering Chemistry 2012, 18 (1), 364-372. 45. Jin, F.-L.; Li, X.; Park, S.-J., Synthesis and application of epoxy resins: A review. Journal of Industrial and Engineering Chemistry 2015, 29, 1-11. 46. All, K. M. I.; UDDIN, M. K.; BHUIYAN, M. I. U.; KHAN, M. A., Improvement of Jute Fiber Through Ultraviolet-Cured Films of Urethane Acrylate. Journal of Applied Polymer Science 1994, 54 (3), 303-308. 47. Lee, J. M.; Kim, D. S., Effect of clay content on the ultraviolet-curing and physical properties of urethane-acrylate/clay nanocomposites. Polymer Composites 2007, 28 (3), 325-330. 48. All, M. A.; KHAN, M. A.; All*, K. M. I., Comparative Study of Electron-Beam- and Ultraviolet-Cured Films of Urethane Acrylate. Journal of Applied Polymer Science 1996, 60 (6), 879-885. 49. Keller, L.; Decker, C.; Zahouily, K.; Benfarhi, S.; Le Meins, J. M.; Miehe-Brendle, J., Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer 2004, 45 (22), 7437-7447. 50. Roffey; G, C., Photopolymerization of Surface Coatings. 1982. 51. Moszner, N.; Salz, U., New developments of polymeric dental composites. Prog. Polym. Sci. 26 (2001) 535±576 2001, 26 (4), 535±576. 52. Lin, J.-J.; Wei, J.-C.; Juang, T.-Y.; Tsai, W.-C., Preparation of Protein-Silicate Hybrids from Polyamine Intercalation of Layered Montmorillonite. Langmuir 2007, 23 (4), 1995-1999. 53. Liao, C. Y.; Chiou, J. Y.; Lin, J. J., Temperature-dependent oil absorption of poly(oxypropylene)amine-intercalated clays for environmental remediation. RSC Adv. 2015, 5 (122), 100702-100708. 54. Lin, H. C.; Su, Y. A.; Liu, T. Y.; Sheng, Y. J.; Lin, J. J., Thermo-responsive nanoarrays of silver nanoparticle, silicate nanoplatelet and PNiPAAm for the antimicrobial applications. Colloids Surf B Biointerfaces 2017, 152, 459-466. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20723 | - |
dc.description.abstract | 奈米矽片(NSP)是由層狀蒙托土(Na+-MMT)脫層而得。本實驗室已開發透過奈米矽片邊緣之矽醇基 (≡Si—OH) 與有機分子連接形成共價鍵,形成帶胺基、壓克力官能基及高分子如溫度敏感型聚N-異丙基丙烯醯胺(PNIPAAm)的有機-無機的複合材料。本研究旨在開發更簡要之製程來合成由共價鍵連結之NSP 奈米複合材料及其應用,由一步驟的方式,我們可將壓克力官能基透過酯交換反應接上NSP形成NSP-acrylate,再由自由基聚合反應來合成NSP-acrylate-PMMA。
導入NSP-acrylate與NSP-acrylate-PMMA進入壓克力樹酯製備成光學膜。透過NSP上的官能基與壓克力樹酯進行交聯,發現僅添加0.3wt%的NSP-acrylate-PMMA可大幅將光學膜之硬度由4H提升到9H。將NSP-acrylate-PMMA透過混摻導入PMMA,發現添加1wt%即可將PMMA的玻璃轉移溫度(Tg)由112 ºC提升到123ºC。 於另一系統中,我們開發一簡要的製程將具有溫敏性的PNIPAAm透過共價鍵接在NSP上。壓克力官能基透過醯胺鍵鍵結上NSP-amine形成NSP-a-acrylate再以自由基反應合成 NSP-a-acrylate-PNIPAAm,經由新製程所形成的產物僅於低溫分散在水中,高溫下則會聚集沉澱,為一具有最低臨界聚集溫度(LCAT)的複合材。 | zh_TW |
dc.description.abstract | Nanoscale silicate platelets (NSP) were previously prepared from the newly developed exfoliation of sodium silicate clays (Na+-MMT) by ionic exchange reaction.
Due to the silanol groups (≡Si-OH) on the edges of NSP, the organic group such as amine group, acrylic group and polymers such as poly(N-isopropylacrylamide) (PNIPAAm) was covalently tethered to NSP to generate a new class of organic-inorganic hybrid. The object of this research is to develop a convenient method for synthesizing covalently functionalized NSP and applying in NSP nanocomposites. With one-step procedure, acrylic group was grafted onto NSP via transesterification to produce NSP-acrylate, further PMMA tethered to NSP-acrylate through free radical polymerization to afford NSP-acrylate-PMMA. The synthesized NSP-acrylate and NSP-acrylate-PMMA were added to acrylic resins for UV-curing to yield NSP-nanocomposite films. The hardness of molecular composite films was dramatically increased from 4H to 9H by loading of only 0.3 wt% NSP-acrylate-PMMA while maintaining high transparency (91%) of the film. Moreover, NSP-acrylate-PMMA was blended with PMMA to have the glass transition temperature (Tg) chages from 112ºC to 123ºC with only 1 wt% loading of NSP-acrylate-PMMA. In another system, we developed a facile method for tethering PNIPAAm onto NSP, the acrylic group grafted onto NSP-amine with amide bond to fabricate NSP-a-acrylate then tethered PNIPAAm by free radical polymerization. In short, we present a practical method for functionalized NSP for the purposes of increasing hardness of the films and Tg for PMMA. In addition, the covalent tethering of PNiPAAm onto NSP generated the property of lower critical aggregation temperature (LCAT). | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T03:00:24Z (GMT). No. of bitstreams: 1 ntu-106-R04549034-1.pdf: 3079005 bytes, checksum: 579bdd89e30961ad3c82d6cc613e652f (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 III Abstract IV Content VI Table captions IX Figure captions X Chapter 1 Introduction 1 1.1 Structure of clays 1 1.2 Nano silicate Platelets (NSP) 6 1.3 Covalent Bonding between Clay and monomers 9 1.3.1 Sol gel reaction 10 1.3.2 Atomic transfer radical polymerization (ATRP). 12 1.4 Polymer/Clay nanocomposites 15 1.4.1 Thermal stability 16 1.4.2 Barrier properties 17 1.4.3 Clay-reinforced epoxy nanocomposites 18 1.4.4 Clay-reinforced UV-curing resins nanocomposites 20 1.4.5 Lower critical aggregation temperature (LCAT) for Clay nanocomposites 22 1.5 Outline of Thesis 25 Chapter 2 Experimental Section 28 2.1 Materials 28 2.2 Synthesis of NSP-acrylate 30 2.3 Synthesis of NSP-acrylate-PMMA 31 2.4 Preparation of Resins/NSP-monomers films by UV-curing 32 2.5 Preparation of PMMA/NSP-acrylate-PMMA films 34 2.6 Synthesis of NSP-acrylate-PNIPAAm 34 2.7 Synthesis of NSP-a-acrylate-PNIPAAm 35 2.7.1 Synthesis of NSP-amine 35 2.7.2 Synthesis of NSP-a-acrylate 36 2.7.3 Synthesis of NSP-a-acrylat-PNIPAAm 36 2.8 Characterization 38 Chapter 3 Results and Discussion 39 3.1 Tethering Acrylic group onto NSP Edge 39 3.2 Tethering PMMA onto NSP-acrylate 42 3.3 Hardness of NSP-molecular-composite films (UV-curing) 47 3.4 Tg of Different Materials/PMMA Nanocomposite 50 3.5 Tethering PNIPAAm onto NSP 56 3.5.1 Tethering PNIPAAm onto NSP-acrylate 56 3.5.2 Tethering APTES onto NSP 58 3.5.3 Tethering Acrylic group onto NSP-amine 60 3.5.4 Tethering PNIPAAm onto NSP-a-acrylate 60 3.6 Phase Transition of NSP-a-acrylate-PNIPAAm 61 Chapter 4 Conclusion 63 Referance 64 | |
dc.language.iso | en | |
dc.title | 功能化接枝奈米矽片及分子接枝PMMA/PNIPAAm 與複合材料應用 | zh_TW |
dc.title | Functionalization of Nano Silicate Platelets for Molecular-Level PMMA/PNIPAAm Nanocomposites | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 何永盛,王逸萍,賴育英,李宗銘 | |
dc.subject.keyword | 奈米矽片,有機無機複合材,共價鍵,硬度,玻璃轉移溫度,最低臨界聚集溫度, | zh_TW |
dc.subject.keyword | NSP,organic-inorganic nanocomposites,covalent bond,hardness,Tg,LCAT, | en |
dc.relation.page | 71 | |
dc.identifier.doi | 10.6342/NTU201701936 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
顯示於系所單位: | 高分子科學與工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。