請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20683
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林敏聰(Minn-Tsong Lin) | |
dc.contributor.author | Kuan-Chia Chiu | en |
dc.contributor.author | 邱冠嘉 | zh_TW |
dc.date.accessioned | 2021-06-08T02:58:29Z | - |
dc.date.copyright | 2017-08-03 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-28 | |
dc.identifier.citation | [1] C. H. Bajorek, C. Coker, L. T. Romankiw and D. A. Thompson, IBM J. Res. Dev. 18, 541-6 (1974).
[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Phys.Rev. Lett. 61, 2472 (1988). [3] J. Barnas, A. Fuss, R. E. Camley, P. Grunberg, and W. Zinn, Phys. Rev. B 42, 8110 (1990). [4] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012). [5] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74, 3273 (1995). [6] T. Moriyama, R. Cao, X. Fan, G. Xuan, B. K. Nikoli, Y. Tserkovnyak, J. Kolodzey, and J. Q. Xiao, Phys. Rev. Lett. 100, 067602 (2008). [7] O. Mosendz, J. E. Pearson, F. Y. Fradin, S. D. Bader, and A. Ho mann, Appl. Phys. Lett. 96, 022502 (2010). [8] M. Weiler, M. Althammer, M. Schreier, J. Lotze, M. Pernpeintner, S. Meyer, H. Huebl, R. Gross, A. Kamra, J. Xiao, Y. T. Chen, H. Jiao, G. E. W. Bauer, and S. T. B. Goennenwein, Phys. Rev. Lett. 111 17, (2013). [9] P. Deorani and H. Yang, Appl. Phys. Lett. 103, 23 (2013). [10] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B 10 (2002). [11] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Nature 455, 778 (2008). [12] Spectral line shape. (2017, March 26). In Wikipedia, The Free Encyclopedia. Retrieved 18:25, May 14, 2017 [13] S. Maekawa, S. O. Valenzuela, E. Saitoh, T. Kimura, Spin Current (Oxford University Press, first edition, 2012). [14] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara, H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa, M. Matsuo, S. Maekawa, and E. Saitoh, J. Appl. Phys. 109, 103913 (2011). [15] T. Yoshino, K. Ando, K. Harii, H. Nakayama, Y. Kajiwara, and E. Saitoh, J. Phys. Conf. Ser. 266, 12115 (2011). [16] J. E. Hirsch, Phys. Rev. Lett. 83, 1834 (1999). [17] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, Phys. Rev. Lett. 98, 1 (2007). [18] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, Rev. Mod. Phys. 87, 1213 (2015). [19] A. Hoffmann, IEEE Trans. Magn. 49, 5172 (2013). [20] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 1 (2006). [21] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Nat. Mater. 9, 894 (2010). [22] M. I. Dyakonov and V. I. Perel, Phys. Lett. A 35, 459 (1971). [23] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Science (80-.). 306, 1910 (2004). [24] R. Karplus and J. M. Luttinger, Phys. Rev. 95, 1154 (1954). [25] J. Smit, Physica 24, 39 (1958). [26] L. Berger, Phys. Rev. B 2, 4559 (1970). [27] G. Y. Guo, S. Maekawa, and N. Nagaosa, Phys. Rev. Lett. 102, 1 (2009). [28] M. I. Dyakonov and V. I. Perel, Sov. Phys. Solid State, 13, 3023 (1972). [29] R. J. Elliott, Phys. Rev. , 96, 2, 266 (1954). [30] Y. Yafet, Solid State Physics, 14, 1-98 (F. Seitz and D. Turnbull, Eds. New York: Academic, 1963) [31] K. Ando and E. Saitoh, J. Appl. Phys. 108 113925, (2010). [32] Quartz crystal microbalance. (2017, March 22). In Wikipedia, The Free Encyclopedia. [33] EPR Resonators, User Service Training Course, Bruker (http://www.cif.iastate.edu/sites/default/ les/uploads/EPR/Resonators.pdf) [34] Levenberg-Marquardt algorithm. (2017, March 24). In Wikipedia, The Free Encyclopedia. [35] E. Sagasta, Y. Omori, M. Isasa, M. Gradhand, L. E. Hueso, Y. Niimi, Y. Otani, and F. Casanova, Phys. Rev. B 94, 060412(R) (2016). [36] S. Mizukami, Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 40, 580 (2001). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20683 | - |
dc.description.abstract | 在鉑/氧化鋁/鎳鐵三層結構中,可利用逆自旋霍爾產生之電壓來偵測來自鐵磁共振的純自旋流。本論文實驗中發現逆自旋霍爾電壓明顯隨著氧化鋁厚度增加而遞減。此外,當改變外加磁場與樣品垂直方向之夾角,鐵磁共振的吸收與逆自旋霍爾效應都會隨之改變。從鈷鐵/鎳鐵/氧化鋁/鎳鐵的磁性穿隧接面量測到非線性的電流-電壓關係以及其中有磁阻的表現,確定本實驗中鎳鐵磁性表現以及氧化鋁的完全氧化參數。結合以上的結果,可以確定純自旋流在鉑/氧化鋁/鎳鐵系統中傳輸機制:從鎳鐵穿隧經過氧化層,最後流至鉑並產生逆自旋霍爾電壓。其中,我們發現逆自旋霍爾電壓與氧化層厚度呈指數遞減關係。 | zh_TW |
dc.description.abstract | The detection of spin current tunneling is being investigated by a technique of ferromagnetic resonance (FMR) with Inverse Spin Hall voltage (VISHE) measurement in Pt/AlOx/Py trilayer system. It is seen that the value of VISHE is apparently decreasing with the increasing thickness of oxide barrier. Furthermore,FMR and VISHE are also measured with the sample rotating out of plane with respect to the magnetic field direction. From the non-linear characteristic behaviour of I-V measurement in tunnelling magnetoresistance (MR) junction(CoFe/NiFe/AlOx/NiFe), it is confirmed that the quality of AlOx forms tunnelling junction. The combined results of FMR, VISHE and nonlinear I-V characteristic suggests that the spin transport mechanism from Py to Pt in Pt/AlOx/Py system is the tunnelling effect through the oxide barrier. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:58:29Z (GMT). No. of bitstreams: 1 ntu-106-R03245006-1.pdf: 9765508 bytes, checksum: 42869d64d96d9428e8530bb38fe55e2a (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 1 Introduction 1
2 Basic Concepts 3 2.1 Spin Pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Ferromagnetic Resonance (FMR) . . . . . . . . . . . . . . . . 4 2.1.2 Spectral Lineshape of Ferromagnetic Magnetic Resonance . . . 5 2.2 Spin Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Origin of Spin Current [13] . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Spin Mixing Conductance . . . . . . . . . . . . . . . . . . . . 7 2.3 Spin Hall Effect and Anomalous Hall Effect . . . . . . . . . . . . . . 8 2.3.1 Spin Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Anomalous Hall Effect in Spin Pumping . . . . . . . . . . . . 12 2.3.3 Inverse Spin Hall Effect in Spin Pumping . . . . . . . . . . . . 14 3 Experimental Fabrication and Apparatus 16 3.1 UHV Sputtering System . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Direct-Current Magnetron Sputtering . . . . . . . . . . . . . . . . . . 18 3.3 Radio Frequency Magnetron Sputtering . . . . . . . . . . . . . . . . . 19 3.4 Quartz Crystal Microbalance . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Contact Patterned Mask . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 Electron Paramagnetic Resonance System . . . . . . . . . . . . . . . 21 3.7 Four-Probe Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.8 Fitting Formula and Analysis . . . . . . . . . . . . . . . . . . . . . . 23 4 Experimental Results 24 4.1 Sample Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 I-V and Conductivity Measurement . . . . . . . . . . . . . . . . . . . 25 4.2.1 Tunneling Magnetoresistance Junction . . . . . . . . . . . . . 25 4.2.2 I-V measurement in Pt/ AlOx/ Py Tunneling Junction . . . . 27 4.2.3 Conductivities of Pt and Py . . . . . . . . . . . . . . . . . . . 27 4.3 Spin pumping in Pt/Py System . . . . . . . . . . . . . . . . . . . . . 28 4.3.1 Angle Dependence . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3.2 Power Dependence . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3.3 Absorption in FMR Spectrum . . . . . . . . . . . . . . . . . . 31 4.3.4 Estimation of Spin Current . . . . . . . . . . . . . . . . . . . 32 4.4 Spin Pumping in Pt/AlOx/Py System . . . . . . . . . . . . . . . . . 34 4.4.1 Angle Dependence . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.2 Power Dependence . . . . . . . . . . . . . . . . . . . . . . . . 35 4.4.3 Absorption and Resonance Field in FMR Spectrum . . . . . . 36 4.4.4 The Linewidth and Spin Mixing Conductance . . . . . . . . . 37 4.4.5 Thickness Dependence . . . . . . . . . . . . . . . . . . . . . . 38 5 Conclusion 40 6 Appedix 42 6.1 LabTalk script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Bibliography 46 | |
dc.language.iso | en | |
dc.title | 利用氧化鋁厚度變化操控鉑/氧化鋁/鎳鐵系統中自旋流大小之研究 | zh_TW |
dc.title | Manipulation of Spin Current by Controlling the Thickness of AlOx Layer in Pt/AlOx/Py system | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林昭吟(Jauyn Grace Lin),江文中(Wen-Chung Chiang) | |
dc.subject.keyword | 自旋幫浦效應,鐵磁共振,逆自旋霍爾效應, | zh_TW |
dc.subject.keyword | Spin Pumping,Ferromagnetic Resonance,Inverse Spin Hall Effect, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU201702118 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-07-28 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 應用物理研究所 | zh_TW |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 9.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。