Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓(Jui-Hung Yen)
dc.contributor.authorYu-Hsin Hsiungen
dc.contributor.author熊禹昕zh_TW
dc.date.accessioned2021-06-08T02:58:00Z-
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-31
dc.identifier.citation劉建良,2016。異化性金屬還原菌Shewanella spp. 對不同金屬蓄積特性及降解有機汙染物之能力評估。國立臺灣大學農業化學系博士論文。
Ambrosi, D., Kearney, P.C., Macchia, J.A. 1977. Persistence and metabolism of oxadiazon in soils. Journal of Agricultural and Food Chemistry 25(4), 868-872.
BCC Research. 2015. Nanotechnology in Environmental Applications: The Global Market (Report NAN039C).
Bretschger, O., Obraztsova, A., Sturm, C.A., Chang, I.S., Gorby, Y.A., Reed, S.B., Culley, D.E., Reardon, C.L., Barua, S., Romine, M.F., Zhou, J., Beliaev, A.S., Bouhenni, R., Saffarini, D., Mansfeld, F., Kim, B.H., Fredrickson, J.K., Nealson, K.H. 2007. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Applied and Environmental Microbiology 73(21), 7003-7012.
Burns, J.L. & DiChristina, T.J. 2009. Anaerobic respiration of elemental sulfur and thiosulfate by Shewanella oneidensis MR-1 requires psrA, a homolog of the phsA gene of Salmonella enterica Serovar Typhimurium LT2. Applied and Environmental Microbiology 75(16), 5209-5217.
Chakraborty, S.K., Chowdhury, A., Bhattacharyya, A., Ghosh, S., Pan, S., Waters, R., Adityachaudhury, N. 1995. Microbial degradation of oxadiazon by soil fungus Fusarium solani. Journal of Agricultural and Food Chemistry 43(11), 2964-2969.
Chang, Z., Lu, M., Shon, K.J., Park, J.S. 2014. Functional expression of Carassius auratus cytochrome P4501A in a novel Shewanella oneidensis expression system and application for the degradation of benzo[a]pyrene. Journal of Biotechnology 179, 1-7.
Chen, C.H., Chang, C.F., Ho, C.H., Tsai, T.L., Liu, S.M. 2008. Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere 72, 1712-1720.
Chengalroyen, M.D., Dabbs, E.R. 2013. The microbial degradation of azo dyes: minireview. World Journal of Microbiology & Biotechnology 29, 389-399.
Coursolle, D., Baron, D.B., Bond, D.R., Gralnick, J.A. 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology 192(2), 467-474.
De Windt, W., Aelterman, P., Verstraete, W. 2005. Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environmental Microbiology 7(3), 314-325.
El-Naggar, M.Y., Wanger, G., Leung, K.M., Yuzvinsky, T.D., Southam, G., Yang, J., Lau, W.M., Nealson, K.H., Gorby, Y.A. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the United States of America 107, 18127-18131.
Esty, D.C. & Winston, A.S. 2009. Green to gold: how smart companies use environmental strategy to innovate, create value, and build competitive advantage. Hoboken, NJ: John Wiley & Sons Inc.
Giometti, C.S. 2006. Tale of two metal reducers: comparative proteome analysis of Geobacter sulferreducens PCA and Shewanella oneidensis MR-1. Methods of Biochemical Analysis 49, 97-111.
Gorgel, M., Ulstrup, J.J., Boggild, A., Jones, N.C., Hoffmann, S.V., Nissen, P., Boesen, T. 2015. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC Structural Biology 15, 4.
Guang, G.Y. & Williams, B. 1999. The degradation of oxadiazon and oxyfluorfen by photolysis. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 34(4), 549-567.
Huang, J., Ning, G., Li, F., Sheng, G.D. 2015. Biotransformation of 2,4-dinitrotoluene by obligate marine Shewanella marisflavi EP1 under anaerobic conditions. Bioresource Technology 180, 200-206.
Imran, M., Arshad, M., Negm, F., Khalid, A., Shaharoona, B., Hussain, S., Mahmood Nadeem, S., Crowley, D.E. 2015. Yeast extract promotes decolorization of azo dyes by stimulating azoreductase activity in Shewanella sp. strain IFN4. Ecotoxicology and Environmental Safety 124, 42-49.
Lai, H.F., Chen, C.C., Chang, Y.K., Lu, C.S., Wu, R.J. 2014. Efficient photocatalytic degradation of thiobencarb over BiVO4 driven by visible light: parameter and reaction pathway investigations. Separation and Purification Technology 122, 78-86.
Liu, C.L. & Yen, J.H. 2016. Characterization of lead nanoparticles formed by Shewanella sp. KR-12. Journal of Nanoparticle Research 18, 30-40.
Lohner, S.T. & Spormann, A.M. 2013. Identification of a reductive tetrachloroethene dehalogenase in Shewanella sediminis. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 368, 20120326.
Lovley, D.R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. Journal of Industrial Microbiology 14(2), 85-93.
Marshall, M.J., Beliaev, A.S., Dohnalkova, A.C., Kennedy, D.W., Shi, L., Wang, Z., Boyanov, M.I., Lai, B., Kemner, K.M., McLean, J.S., Reed, S.B., Culley, D.E., Bailey, V.L., Simonson, C.J., Saffarini, D.A., Romine, M.F., Zachara, J.M., Fredrickson, J.K. 2006. c-Type cytochrome-dependent formation of U(IV) nanoparticles by Shewanella oneidensis. PLoS Biology 4(8), e268.
Mertens, B., Blothe, C., Windey, K., De Windt, W., Verstraete, W. 2007. Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis. Chemosphere 66, 99-105.
Morris, C.J., Black, A.C., Pealing, S.L., Manson, F.D., Chapman, S.K., Reid, G.A., Gibson, D.M., Ward, F.B. 1994. Purification and properties of a novel cytochrome: flavocytochrome c from Shewanella putrefaciens. Biochemical journal 302(2), 587-593.
Myers, C.R., & Myers, J.M. 2002. MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1. Applied and Environmental Microbiology 68(11), 5585-5594.
Myers, C.R., & Nealson, K.H. 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319-1321.
Myers, C.R., & Nealson, K.H. 1988. Microbial reduction of manganese oxides: Interactions with iron and sulfur. Geochimica et Cosmochimica Acta 52, 2727-2732.
Myers, C.R., Carstens, B.P., Antholine, W.E., Myers, J.M. 2000. Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Applied Microbiology 88(1), 98-106.
Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., Gorby, Y.A., Golbeck, J.H., El-Naggar, M.Y. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America 111, 12883-12888.
Pitts, K.E., Dobbin, P.S., Reyes-Ramirez, F., Thomson, A.J., Richardson, D.J., Seward, H.E. 2003. Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA: expression in Escherichia coli confers the ability to reduce soluble Fe(III) chelates. Journal of Biological Chemistry 278(30), 27758-27765.
Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R. 2005. Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1101.
Roberts, T.R., Huston, D.H., Lee, P.W., Nicholls, P.H., Plimmer, J.R. 1998. Metabolic Pathways of Agrochemicals (Vol. 1, pp. 611-612). Cambridge, UK: The Royal Society of Chemistry.
Rodionov, D.A., Yang, C., Li, X., Rodionova, I.A., Wang, Y., Obraztsova, A.Y., Zagnitko, O.P., Overbeek, R., Romine, M.F., Reed, S., Fredrickson, J.K., Nealson, K.H., Osterman, A.L. 2010. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus. BMC Genomics 11, 494.
Salunke, B.K., Sawant, S.S., Lee, S.I., Kim, B.S. 2016. Microorganisms as efficient biosystem for the synthesis of metal nanoparticles: current scenario and future possibilities. World Journal of Microbiology & Biotechnology 32(5), 88.
Schwalb, C., Chapman, S.K., Reid, G.A. 2003. The tetraheme cytochrome CymA is required for anaerobic respiration with dimethyl sulfoxide and nitrite in Shewanella oneidensis. Biochemistry 42(31), 9491-9497.
Shi, L., Squier, T.C., Zachara, J.M., Fredrickson, J.K. 2007. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes. Molecular Microbiology 65(1), 12-20.
Shirodkar, S., Reed, S., Romine, M., Saffarini, D. 2011. The octahaem SirA catalyses dissimilatory sulfite reduction in Shewanella oneidensis MR-1. Environmental Microbiology 13(1), 108-115.
Simoneaux, B.J. & Gould T.J. 2008. Plant uptake and metabolism of triazine herbicides. In LeBaron, H.M., McFarland J.E., Burnside, O.C., The Triazine Herbicides (pp. 73-99). Oxford, UK: Elsevier Science.
Wang, J., Zhou, Y., Li, P., Lu, H., Jin, R., Liu, G. 2015. Effects of redox mediators on anaerobic degradation of phenol by Shewanella sp. XB. Applied Biochemistry and Biotechnology 175, 3162-3172.
Wang, M.X., Wang, J., Si, Y.B. 2014. As(III) oxidation coupled to Fe(III) reduction by Shewanella oneidensis MR-1. China Environmental Science 34(9), 2368-2373.
Wielinga, B., Mizuba, M.M., Hansel, C.M., Fendorf, S. 2001. Iron promoted reduction of chromate by dissimilatory iron-deducing bacteria. Environmental Science & Technology 35, 522-527.
Wolicka, D., Borkowski, A., Jankiewicz, U., Stępień, W., Kowalczyk, P. 2015. Biologically-induced precipitation of minerals in a medium with zinc under sulfate-reducing conditions. Polish Journal of Microbiology 64(2), 149-55.
World Economic Forum. 2017. The Global Risks Report 2017.
Wu, G., Li, N., Mao, Y., Zhou, G., Gao, H. 2015. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis. Frontiers in Microbiology 6, 374.
Wu, G.F. & Gao, H.C. 2017. Endogenous production and physiological functions of hydrogen sulfide in facultative anaerobic bacteria. Acta Microbiologica Sinica 57(2), 170-178.
Xiao, X., Ma, X.B., Yuan, H., Liu, P.C., Lei, Y.B., Xu, H., Du, D.L., Sun, J.F., Feng, Y.J. 2015. Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium Shewanella oneidensis MR-1. Journal of Hazardous Materials 288, 134-139.
Xiao, X., Xu, C.C., Wu, Y.M., Cai, P.J., Li, W.W., Du, D.L., Yu, H.Q. 2012. Biodecolorization of Naphthol Green B dye by Shewanella oneidensis MR-1 under anaerobic conditions. Bioresource Technology 110, 86-90.
Xu, M., Guo, J., Zeng, G., Zhong, X., Sun, G. 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Applied Microbiology and Biotechnology 71, 246-251.
Ye, J.Y., Zhang, J.B., Gao, J.G., Li, H.T., Liang, D., Liu, R.M. 2016. Isolation and characterization of atrazine-degrading strain Shewanella sp. YJY4 from cornfield soil. Letters in Applied Microbiology 63(1), 45-52.
Zhang, H.K., Lu, H., Wang, J., Liu, G.F., Zhou, J.T. 2014. Accelerating effect of bio-reduced graphene oxide on decolorization of Acid Red 18 by Shewanella algae. Applied Biochemistry and Biotechnology 174, 602-611.
Zhao, J.S., Manno, D., Beaulieu, C., Paquet, L., Hawari, J. 2005. Shewanella sediminis sp. nov., a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. International Journal of Systematic and Evolutionary Microbiology 55, 1511-1520.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20672-
dc.description.abstractShewanella菌屬為異化金屬還原菌中具兼性厭氧特性之一大類,可利用包括含氧鹽類及多種金屬離子等物質作為厭氧呼吸最終電子接受者,特定菌株甚至可以還原金屬形成胞外生物性金屬奈米顆粒,另在厭氧條件下偶氮染劑的脫色或含氯有機汙染物脫氯亦有優良表現,於生物整治領域極具發展潛力與商業價值。其中,結合生物機能開發低耗能、低成本、高催化活性之生物性金屬奈米顆粒,正是目前環境奈米科技產業逐漸走向綠色產業的研究重點之一。
本研究使用本土異化金屬還原菌Shewanella sp. KR12在厭氧條件下,提供甲酸鈉作為電子提供者,利用菌株的硫還原能力與鋅離子反應,合成生物性硫化鋅奈米顆粒,並透過高解析度穿透式電子顯微鏡 (High Resolution-Transmission Electron Microscopy)、能量散射光譜儀 (Energy Dispersive Spectrometer)、冷場發射掃描式電子顯微鏡 (Cold Field Emission Scanning Electron Microscopy)、X光粉末繞射儀 (X-Ray Powder Diffractometer) 等分析奈米顆粒之型態與結構;再以近年台灣河川水體檢出頻度最高的四種除草劑草殺淨 (ametryn)、達有龍 (diuron)、樂滅草 (oxadiazon) 及殺丹 (thiobencarb) 為目標降解物,分別評估Shewanella sp. KR12與生物性硫化鋅奈米顆粒應用於厭氧條件下生物復育或水汙染光催化處理之潛能。
試驗結果顯示,Shewanella sp. KR12可能由降解半胱胺酸產生硫化氫與鋅離子發生沉澱,形成平均直徑約10 nm球形硫化鋅奈米顆粒分布於菌體表面、周質空間和液體培養基中,且無絮聚 (aggregation) 之情形;其最強光吸收峰出現在波長290~300 nm,於水體中達有龍與樂滅草降解展現良好光催化效果。另由生物降解試驗,推測Shewanella sp. KR12可在厭氧條件下以樂滅草和殺丹作為碳源,進而將兩者降解。故本研究結果提供一可同時結合重金屬移除、生物性奈米顆粒合成、水污染光催化處理技術之環境復育潛力材料。
zh_TW
dc.description.abstractThe genus Shewanella is a group of metal reducing facultative anaerobes which are noted for their outstanding ability to utilize a wide range of materials including various metal ions as electron acceptors in anaerobic respiration processes, which allow them to couple the degradation of organic pollutants to the removal of heavy metals in environment. Hence, Shewanella bacteria are considered rising stars in the bioremediation field. In particular, several strains have been found to form metallic bio-nanoparticles extracellularly by bioreduction of metal ions. Recently, the concept of “green chemistry” is becoming more significant to environmental nanotechnology development.
In the present study, a local dissimilatory metal reducing bacterium Shewanella sp. KR12 was used to biosynthesis zinc sulfide (ZnS) nanoparticles, whereby the immobilization of zinc ions from zinc sulfate solution by bacterial sulfur reduction. Characterization of nanoparticles were analyzed using transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), cold field emission scanning electron microscopy (FESEM), X-ray powfer diffractometer (XRD) and ultraviolet-visible spectroscopy (UV-Vis). Furthermore, photocatalytic properties of ZnS nanoparticles and organic compounds biodegrading ability of Shewanella sp. KR12 were both investigated for application as remediation materials for degradation of four most frequently detected herbicides in river water in Taiwan, such as ametryn, diuron, oxadiazon and thiobencarb.
Our findings revealed that the hydrogen sulfide (H2S) possibly produced through cysteine degradation by Shewanella sp. KR12 then dissociated into S2- to form precipitates with Zn2+ as extracellular ZnS nanoparticles. The nanoparticles were observed to have well dispersion in bacterial surface, periplasm and liquid medium, with a spherical shape and an average diameter of 10 nm. UV-Vis spectrum indicated ZnS bio-nanoparticles had a strong absorption between 290 and 300 nm. Further studies demonstrated biogenic ZnS nanoparticles formed by Shewanella sp. KR12 showed good catalytic performance toward the degradation of diuron and oxadiazon in aqueous solution under UV irradiation. In addition, strain KR12 exhibits degrading ability toward oxadiazon and thiobencarb in direct biodegradation test of herbicides under anaerobic condition. Conclusively, this approach of coupling biosynthesis of nanoparticles with heavy metal removal may offer a potential material for photocatalytic water treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:58:00Z (GMT). No. of bitstreams: 1
ntu-106-R04623022-1.pdf: 3766234 bytes, checksum: 7a096931ddc9f7da9adacb3f253130cd (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要……………………………………………………………….….. Ⅰ
英文摘要………………………………………………………………….. Ⅱ
壹、 緒論……………………………………………………………..……1
一、異化性金屬還原………………………………………………… 1
二、Shewanella菌屬文獻回顧……………………………………… 1
三、Shewanella菌屬於環境污染復育之應用……………………… 4
四、水汙染………………………………………………………….. 11
五、Shewanella sp.KR12研究進展……………………………….... 13
六、研究使用農藥簡介…………………………………………… 16
貳、 研究目的…………………………………………………………… 22
參、 材料方法…………………………………………………………… 23
一、試驗流程……………………………………………………….. 23
二、試驗材料……………………………………………………….. 24
三、微生物培養…………………………………………….………. 24
四、合成硫化鋅奈米顆粒能力試驗………………………..……… 28
五、生物降解除草劑試驗………………………………………….. 30
六、光催化降解除草劑試驗……………………………………….. 31
七、除草劑殘量分析……………………………………………….. 31
八、除草劑降解產物分析……………..…………………………… 32
肆、 結果與討論………………………………………………………… 36
一、合成硫化鋅奈米顆粒能力試驗……………………………….. 36
二、生物降解除草劑試驗………………………………………….. 53
三、光催化降解除草劑試驗……………………………………….. 58
伍、 結論與建議………………………………………………………… 69
參考文獻………………………………………………………………… 70
附錄……………………………………………………………………… 77
dc.language.isozh-TW
dc.title利用本土異化金屬還原菌Shewanella sp. KR12降解四種除草劑之研究zh_TW
dc.titleUse of local dissimilatory metal reducing bacteria Shewanella sp. KR12 to degrade four herbicidesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄(Yei-Shung Wang),劉秀美,張碧芬,陳玟瑾(Wen-Ching Chen)
dc.subject.keywordShewanella,異化金屬還原菌,生物性奈米顆粒,光催化,生物整治,zh_TW
dc.subject.keywordShewanella,dissimilatory metal reducing bacteria,bio-nanoparticles,photocatalyst,bioremediation,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201702164
dc.rights.note未授權
dc.date.accepted2017-07-31
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
3.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved