請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20656
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝文陽 | |
dc.contributor.author | Tzu-Yin Chen | en |
dc.contributor.author | 陳姿尹 | zh_TW |
dc.date.accessioned | 2021-06-08T02:57:17Z | - |
dc.date.copyright | 2017-08-03 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-31 | |
dc.identifier.citation | Alonso-Saez, L. & Gasol, J.M. (2007). Seasonal variations in the contributions of different bacterial groups to the uptake of low-molecular-weight compounds in Northwestern Mediterranean coastal waters.Appl Environ Microbiol73, 3528-3535.
Alonso, C. & Pernthaler, J. (2006).Roseobacter and SAR11 dominate microbial glucose uptake in coastal North Sea waters.Environ Microbiol8, 2022-2030. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H.& Ventosa, A. (2002). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207-211. Bahl, H., Andersch, W.& Gottschalk, G. (1982). Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15, 201-205. Bang, S. S., Baumann, P.& Nealson, K. H. (1978). Phenotypic characterization ofPhotobacterium logei (sp. nov.), a species related toP. fischeri. Curr Microbiol 1, 285-288. Baumann, L., Bowditch, R. D.& Baumann, P. (1983). Description of Deleya gen. nov. created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int J Syst Evol Microbiol 33, 793-802. Baumann, P., Bowditch, R. D., Baumann, L.& Beaman, B. (1983). Taxonomy of Marine Pseudomonas Species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Evol Microbiol 33, 857-865. Beaz-Hidalgo, R., Doce, A., Balboa, S., Barja, J. L.& Romalde, J. L. (2010).Aliivibrio finisterrensis sp. nov., isolated from Manila clam, Ruditapes philippinarum and emended description of the genus Aliivibrio. Int J Syst Evol Microbiol 60, 223-228. Benner, R., Pakulski, J. D., McCarthy, M., Hedges, J. I.& Hatcher, P. G. (1992).Bulk chemical characteristics of dissolved organic matter in the ocean. Science255, 1561-1564. Brown, G. R., Sutcliffe, I. C.& Cummings, S. P. (2001). Reclassification of [Pseudomonas] doudoroffii (Baumann et al. 1983) into the genus Oceanomonas gen. nov. asOceanomonas doudoroffii comb. nov., and description of a phenol-degrading bacterium from estuarine water as Oceanomonas baumannii sp. nov. Int J Syst Evol Microbiol 51, 67-72. Choi, A., Kim, K. M., Kang, I., Youn, S. H., Suh, Y. S., Lee, Y.& Cho, J. C. (2012). Grimontia marina sp. nov., a marine bacterium isolated from the Yellow Sea. J Microbiol 50, 170-174. Choi, W. C., Kang, S. J., Jung, Y. T., Oh, T. K.& Yoon, J. H. (2011).Oceanisphaera ostreae sp. nov., isolated from seawater of an oyster farm, and emended description of the genus Oceanisphaera Romanenko et al. 2003. Int J Syst Evol Microbiol 61, 2880-2884. Colwell, R. R., MacDonell, M. T. & De Ley, J. (1986). Proposal to Recognize the Family Aeromonadaceae fam. nov. Int J Syst Evol Microbiol 36, 473-477. Dennis, P. G., Miller, A. J.& Hirsch, P. R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS MicrobiolEcol 72, 313-327. Dien, B. S., Cotta, M. A.& Jeffries, T. W. (2003). Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63, 258-266. Dobson, S. J.& Franzmann, P. (1996). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Evol Microbiol 46, 550-558. Doi, H., Chinen, A., Fukuda, H.& Usuda, Y. (2016).Vibrio algivorus sp. nov., an alginate-and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int J Syst Evol Microbiol 66, 3164-3169. Dorsch, M., Lane, D.& Stackebrandt, E. (1992). Towards a phylogeny of the genus Vibrio based on 16S rRNA sequences. Int J Syst Evol Microbiol 42, 58-63. Drancourt, M., Berger, P.& Raoult, D. (2004). Systematic 16S rRNA gene sequencing of atypical clinical isolates identified 27 new bacterial species associated with humans. J Clin Microbiol 42, 2197-2202. Dunlap, P. V., Kita-Tsukamoto, K., Waterbury, J. B.& Callahan, S. M. (1995). Isolation and characterization of a visibly luminous variant ofVibrio fischeri strain ES114 from the sepiolid squidEuprymna scolopes. ArchMicrobiol 164, 194-202. Entner, N.& Doudoroff, M. (1952).Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J Biol Chem 196, 853-862. Fenical, W. (1993). Chemical studies of marine bacteria: developing a new resource. Chem Rev93, 1673-1683. Frommlet, J., Guimaraes, B., Sousa, L., Serodio, J.& Alves, A. (2015).Neptunomonas phycophila sp. nov. isolated from a culture of Symbiodinium sp., a dinoflagellate symbiont of the sea anemone Aiptasia tagetes. Int J Syst Evol Microbiol 65, 915-919. Garrett, R. H. & Grisham, C. M. (2012).Biochemistry, 5th ed. Brooks/Cole, Belmont. Gottschalk, G. (1986).Bacterial Metabolism, 2nd ed. Springer-Verlag, New York. Farmer, J. J., Janda, J. M., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. (2015).Vibrio. Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons Ltd. Hedlund, B. P., Geiselbrecht, A. D., Bair, T. J.& Staley, J. T. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol 65, 251-259. Hendrie, M. S., Hodgkiss, W.& Shewan, J. M. (1970).The identification, taxonomy and classification of luminous bacteria. J Gen Microbiol 64, 151-169. Hendrie, M. S., Hodgkiss, W.& Shewan, J. M. (1971). Proposal that Vibrio marinus (Russell 1891) Ford 1927 be amalgamated with Vibrio fischeri (Beijerinck 1889) Lehmann and Neumann 1896. Int J Syst Evol Microbiol 21, 217-221. Hickman, F. W., Farmer, J. J., Hollis, D. G., Fanning, G. R., Steigerwalt, A. G., Weaver, R. E.& Brenner, D. J. (1982). Identification of Vibrio hollisae sp. nov. from patients with diarrhea. J Clin Microbiol 15, 395-401. Hickman-Brenner, F. W., Brenner, D. J., Steigerwalt, A. G., Schreiber, M., Holmberg, S. D., Baldy, L. M., Lewis, C. S., Pickens, N. M.& Farmer, J. J. (1984). Vibrio fluvialis and Vibrio furnissii isolated from a stool sample of one patient. J Clin Microbiol 20, 125-127. Igbinosa, E. O.& Okoh, A. I. (2010).Vibrio fluvialis: an unusual enteric pathogen of increasing public health concern. IntJEnviron ResPublic Health 7, 3628-3643. Ikenaga, M., Guevara, R., Dean, A. L., Pisani, C.& Boyer, J. N. (2010). Changes in community structure of sediment bacteria along the Florida coastal everglades marsh–mangrove–seagrass salinity gradient. MicrobEcol 59, 284-295. Ishimaru, K., Akagawa-Matsushita, M.& Muroga, K. (1995).Vibrio penaeicida sp. nov., a pathogen of kuruma prawns (Penaeus japonicus). Int J Syst Evol Microbiol 45, 134-138. Ivanova, E. P., Onyshchenko, O. M., Christen, R., Zhukova, N. V., Lysenko, A. M., Shevchenko, L. S., Buljan, V., Hambly, B.& Kiprianova, E. A. (2005). Oceanimonas smirnovii sp. nov., a novel organism isolated from the Black Sea. Syst ApplMicrobiol 28, 131-136. Jenney, F. E., Verhagen, M. F., Cui, X.& Adams, M. W. (1999). Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286, 306-309. Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 49, 209-224. Kim, M., Oh, H. S., Park, S. C.& Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64, 346-351. Kita-Tsukamoto, K., Oyaizu, H., Nanba, K.& Simidu, U. (1993). Phylogenetic relationships of marine bacteria, mainly members of the family Vibrionaceae, determined on the basis of 16S rRNA sequences. Int J Syst Evol Microbiol 43, 8-19. Klingner, A., Bartsch, A., Dogs, M., Wagner-Dobler, I., Jahn, D., Simon, M., Brinkhoff, T., Becker, J.& Wittmann, C. (2015). Large-scale 13C flux profiling reveals conservation of the Entner-Doudoroff pathway as a glycolytic strategy among marine bacteria that use glucose. Appl EnvironMicrobiol 81, 2408-2422. Kuske, C. R., Ticknor, L. O., Miller, M. E., Dunbar, J. M., Davis, J. A., Barns, S. M.& Belnap, J. (2002). Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68, 1854-1863. Lasa, A., Dieguez, A. L.& Romalde, J. L. (2014).Vibrio cortegadensis sp. nov., isolated from clams. Antonie Van Leeuwenhoek 105, 335-341. Lehmann, K. B.& Neumann, R. (1896). Atlas und Grundriss der Bakteriologie und Lehrbuch der speciellen bacteriologischen Diagnostik. Munchen. Lin, Y. T.& Shieh, W. Y. (2006).Zobellella denitrificans gen. nov., sp. nov. andZobellella taiwanensis sp. nov., denitrifying bacteria capable of fermentative metabolism. Int J Syst Evol Microbiol 56, 1209-1215. Liu, Y. P., Zheng, P., Sun, Z. H., Ni, Y., Dong, J. J.& Wei, P. (2008). Strategies of pH control and glucose‐fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J Chem Technol Biotechnol 83, 722-729. Ljungdhal, L. G. (1986). The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40, 415-450. Lundie, L. L.& Drake, H. L. (1984).Development of a minimally defined medium for the acetogen Clostridium thermoaceticum. J Bacteriol 159, 700-703. Madigan, M. T., Martinko J. M. & Parker J. (2000).Brock Biology of Microorganisms, 9th ed. (Prentice-Hall, Upper Saddle River, NJ). McKinlay, J. B., Shachar-Hill, Y., Zeikus, J. G.& Vieille, C. (2007). Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. MetabEng 9, 177-192. Nair, S., Chandramohan, D.& Bharathi, P. L. (1992).Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics. Water Res 26, 431-434. Park, S. J., Kang, C. H., Nam, Y. D., Bae, J. W., Park, Y. H., Quan, Z. X., Moon, D. S., Kim, H. J., Roh, D. H.& Rhee, S. K. (2006). Oceanisphaera donghaensis sp. nov., a halophilic bacterium from the East Sea, Korea. Int J Syst Evol Microbiol 56, 895-898. Pujalte, M. J., Lucena, T., Rodrigo-Torres, L., La Mura, A., Ruvira, M. A.& Arahal, D. R. (2016).Grimontia celer sp. nov., from sea water. Int J Syst Evol Microbiol 66, 2906-2909. Reller, L. B., Weinstein, M. P.& Petti, C. A. (2007).Detection and identification of microorganisms by gene amplification and sequencing. Clin Infect Dis 44, 1108-1114. Rich, J. H., Ducklow, H. W.& Kirchman, D. L. (1996). Concentrations and uptake of neutral monosaccharides along 140°W in the equatorial Pacific: contribution of glucose to heterotrophic bacterial activity and the DOM flux. Limnol Oceanogr 41, 595-604. Romanenko, L. A., Schumann, P., Zhukova, N. V., Rohde, M., Mikhailov, V. V.& Stackebrandt, E. (2003).Oceanisphaera litoralis gen. nov., sp. nov., a novel halophilic bacterium from marine bottom sediments. Int J Syst Evol Microbiol 53, 1885-1888. Romanenko, L. A., Tanaka, N., Svetashev, V. I.& Falsen, E. (2013). Description of Cobetia amphilecti sp. nov., Cobetia litoralis sp. nov. andCobetia pacifica sp. nov., classification of Halomonas halodurans as a later heterotypic synonym of Cobetia marina and emended descriptions of the genus Cobetia and Cobetia marina. Int J Syst Evol Microbiol 63, 288-297. Sawabe, T., Ogura, Y., Matsumura, Y., Feng, G., Amin, A. R., Mino, S.&Hayashi, T. (2013). Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 4, 414. Schiewe, M. H.& Crosa, J. H. (1981).Vibrio ordalii sp. nov.: a causative agent of vibriosis in fish. Curr Microbiol 6, 343-348. Shaw, A. J., Podkaminer, K. K., Desai, S. G., Bardsley, J. S., Rogers, S. R., Thorne, P. G., Hogsett, D. A. & Lynd, L. R. (2008). Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci 105, 13769-13774. Shieh, W. Y., Chen, A. L.& Chiu, H. H. (2000).Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50, 321-329. Shin, N. R., Whon, T. W., Roh, S. W., Kim, M. S., Kim, Y. O.& Bae, J. W. (2012). Oceanisphaerasediminis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 62, 1552-1557. Simidu, U., Kaneko, E.& Taga, N. (1977). Microbiological studies of Tokyo Bay. MicrobEcol 3, 173-191. Simidu, U., Taga, N., Colwell, R. R.& Schwarz, J. R. (1980).Heterotrophic bacterial flora of the seawater from the Nansei Shoto (Ryukyu Retto) area. Bull Jpn Soc Sci Fish 46, 505-510. Singh, A., Vaidya, B., Khatri, I., Srinivas, T. N. R., Subramanian, S., Korpole, S.& Pinnaka, A. K. (2014).Grimontia indica AK16T, sp. nov., isolated from a seawater sample reports the presence of pathogenic genes similar to Vibrio genus. PLoS One 9, e85590. Singh, R., Mailloux, R. J., Puiseux-Dao, S.& Appanna, V. D. (2007). Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189, 6665-6675. Skoog, A.& Benner, R. (1997). Aldoses in various size fractions of marine organic matter: Implications for carbon cycling. Limnol Oceanogr 42, 1803-1813. Skoog, A., Biddanda, B.& Benner, R. (1999).Bacterial utilization of dissolved glucose in the upper water column of the Gulf of Mexico. Limnol Oceanogr 44, 1625-1633. Srinivas, T. N. R., Reddy, P. V. V., Begum, Z., Manasa, P.& Shivaji, S. (2012). Oceanisphaera arctica sp. nov., isolated from Arctic marine sediment, and emended description of the genus Oceanisphaera. Int J Syst Evol Microbiol 62, 1926-1931. Shewan, J. M. & Veron, M. (1974).Vibrio.Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan, N. E. Gibbons, eds.), pp. 340-345. Baltimore: Williams & Wilkins. Tamura, K., Stecher, G., Peterson, D., Filipski, A.& Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729. Thompson, F. L., Hoste, B., Vandemeulebroecke, K.& Swings, J. (2003). Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int J Syst Evol Microbiol 53, 1615-1617. Thony-Meyer, L. (1997). Biogenesis of respiratory cytochromes in bacteria. Microbiol Mol BiolRev 61, 337-376. Urbanczyk, H., Ast, J. C., Higgins, M. J., Carson, J.& Dunlap, P. V. (2007). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb.nov., Aliivibrio salmonicida comb.nov. andAliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57, 2823-2829. van Maris, A. J., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A., Wisselink, H. W., Scheffers, W. A., van Dijken, J. P.& Pronk, J. T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90, 391-418. Veron, M. (1965). La position taxonomique des Vibrioet de certaines bacteries comparables. C R Acad Sci Paris 261, 5243-5246. Vital, M., Fuchslin, H. P., Hammes, F.& Egli, T. (2007).Growth of Vibrio cholerae O1 Ogawa Eltor in freshwater. Microbiology 153, 1993-2001. Wieringa, K. T. (1939). The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria. Antonie Van Leeuwenhoek 6, 251-262. Xu, Z., Zhang, X. Y., Su, H. N., Yu, Z. C., Liu, C., Li, H., Chen, X. L., Song, X. Y., Xie, B. B.&other authors (2014). Oceanisphaera profunda sp. nov., a marine bacterium isolated from deep-sea sediment, and emended description of the genus Oceanisphaera. Int J Syst Evol Microbiol 64, 1252-1256. Yang, S. H., Seo, H. S., Lee, J. H., Kim, S. J.& Kwon, K. K. (2014). Neptunomonas acidivorans sp. nov., isolated from sediment, and emended description of the genus Neptunomonas. Int J Syst Evol Microbiol 64, 3650-3654. Yi, H., Song, J., Cho, J. C.& Chun, J. (2011).Zobellella aerophila sp. nov., isolated from seashore sand, and emended description of the genus Zobellella. Int J Syst Evol Microbiol 61, 2491-2495. Yumoto, I., Iwata, H., Sawabe, T., Ueno, K., Ichise, N., Matsuyama, H., Okuyama, H.& Kawasaki, K. (1999). Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl EnvironMicrobiol 65, 67-72. Zeikus, J. G., Jain, M. K.& Elankovan, P. (1999).Biotechnology of succinic acid production and markets for derived industrial products. ApplMicrobiol Biotechnol 51, 545-552. Zhang, C., Yang, H., Yang, F.& Ma, Y. (2009).Current progress on butyric acid production by fermentation. CurrMicrobiol 59, 656-663. Zhang, X. Y., Zhang, Y. J., Yu, Y., Li, H. J., Gao, Z. M., Chen, X. L., Chen, B.& Zhang, Y. Z. (2010). Neptunomonas antarctica sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 60, 1958-1961. Zhou, S., Wang, H., Wang, Y., Ma, K., He, M., Chen, X., Kong, D., Guo, X., Ruan, Z.& Zhao, B. (2015).Oceanisphaera psychrotolerans sp. nov., isolated from coastal sediment samples. Int J Syst Evol Microbiol 65, 2797-2802. Zigova, J. &Sturdik, E. (2000).Advances in biotechnological production of butyric acid. J Ind Microbiol Biotechnol 24, 153-160. Zuniga, M., Pardo, I.& Ferrer, S. (1993). An improved medium for distinguishing between homofermentative and heterofermentative lactic acid bacteria. Int JFood Microbiol 18, 37-42. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20656 | - |
dc.description.abstract | 發酵作用是微生物於嫌氣情況下,分解有機物並得到能量的過程。葡萄糖是海洋環境中最豐富的有機物質之一,許多海洋細菌可以透過代謝海水中葡萄糖而參與碳元素循環。本研究目標在於東沙島潟湖具有發酵葡萄糖能力細菌之分離及特性探討,並分析不同種類沉積物細菌的親緣關係,且調查潟湖中兼性嫌氣性發酵細菌之生物多樣性。最大可能計數法 (most-probable-number counts)顯示,潟湖沉積物兼性嫌氣性發酵細菌數量介於2.4 x 105 - 2.4 x 107cells/g wet wt.之間,其中,海草碎屑、珊瑚碎屑、泰來草與圓葉水絲根圈沉積物的菌數最多。從樣本中共分離出42株兼性嫌氣性發酵細菌,皆為革蘭氏陰性、嗜鹽性,且可以生長於25 – 30℃、pH 6-9,與1 - 5%氯化鈉,大部份菌株具有過氧化氫酶與氧化酶活性。16S rRNA基因序列親緣關係分析顯示,這些細菌皆為Gammaproteobacteria綱,並可進一步分類為Halomonadaceae科的Cobetia屬、Oceanospirillaceae科的Neptunomonas屬,與Vibrionaceae科的Grimontia、Aliivibrio、Vibrio屬。其中,83.3% (35/42)的分離株被歸類為Vibrio細菌。菌株A4、A5與其最相似菌種之16S rRNA基因序列相似度僅92.0 %,因此被推測為新屬且新種的細菌。親緣關係分析顯示,這二株新屬細菌屬於Aeromonadaceae科,並暫時將之命名為Dongshaea marina。此外,菌株B1、H2與H5之16S rRNA基因序列相似度與它們最相近Vibrio標準菌株比較,皆低於97.3 %,這三株菌株未來亦可能被發表為Vibrio屬之新種細菌。綜合以上所述,本研究顯示,Vibrio為大部份潟湖沉積物樣本中可培養兼性嫌氣性發酵細菌的優勢菌屬。然而,在無植物生長的一般沉積物樣本發酵菌中,則以Aliivibrio與Neptunomonas為優勢。所有本研究分離之菌株,皆為東沙島潟湖沉積物中發酵作用的潛在參與者。 | zh_TW |
dc.description.abstract | Fermentation is the process that microorganisms decompose organic materials and gain energy under anaerobic conditions. Glucose is one of the most abundant organic matters in the marine environment. Many of the marine bacteria may involve in carbon cycling through metabolizing glucose in the seawater. The objectives of this study were to isolate and characterize the glucose-fermenting bacteria from lagoon of Dongsha Island,to analyze the phylogenetic relationships of bacteria in different types of sediments and to investigate the biodiversity of facultatively anaerobic, fermentative bacteria in the lagoon. Most-probable-number (MPN) counts revealed that the facultatively anaerobic, fermentative bacteria in the lagoon sediments ranged from 2.4 x 105 to 2.4 x 107 cells/g wet wt. Higher counting values were obtained in samples from seagrass debris, coral rubble,and the sediments surrounding the rhizosphere of Thalassia hemprichii and Cymodocea rotundata. Forty-two strains of facultatively anaerobic, fermentative bacteria were isolated from the samples. All strains were Gram-negative, and halophilic. All of them grew in 25-30 ℃, pH 6-9, and 1-5 % NaCl. Majority of these strains showed catalase and oxidase activities. Phylogenetic analysis based on 16S rRNA gene sequences revealed that all isolates belonged to class Gammaproteobacteria, which could be further classified as members of the genusCobetia within family Halomonadaceae, the genusNeptunomonas within family Oceanospirillaceae, and thegenera Grimontia, Aliivibrio, andVibriowithin familyVibrionaceae.Among these isolates, 83.3 % (35/42)were classified to be Vibrio species. Strains A4 and A5might be proposed to represent a novel genus and species in the future since they had16S rRNA gene sequence similarity below 92.0 % compared with their most closely relatedspecies. Phylogenetic analysis revealed the potentially new genus bacteria belonged to family Aeromonadaceaeand were named Dongshaea marina tentatively. Additionally,strain B1, H2, and H5 had 16S rRNA gene sequence similarity below 97.3 % in comparison to the type strains of the closestVibrio species.These three strains also might be proposed to be novel Vibrio species in the future.In summary, this study showed that Vibrio was the dominant genus in culturable facultatively anaerobic, fermentative bacteria within most lagoon sediment samples. However, in bulk sediment sample, Aliivibrio and Neptunomonas were the dominant fermentative bacteria. All strains isolated in the study would bepotential participants in fermentation process in lagoon sediment of Dongsha Island. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:57:17Z (GMT). No. of bitstreams: 1 ntu-106-R04241203-1.pdf: 1536007 bytes, checksum: 8dcc5a3e27d39df3b1989bb7a7d728a7 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………………………………………………………Ⅱ
中文摘要…………………………………………………………………………………………………………………Ⅲ 英文摘要…………………………………………………………………………………………………………………Ⅳ 第一章 前言……………………………………………………………………………………………………………1 第一節 東沙島潟湖環境…………………………………………………………………………………1 第二節 海水中的葡萄糖與醣解作用……………………………………………………………1 第三節 發酵作用……………………………………………………………………………………………3 第四節 發酵產物……………………………………………………………………………………………4 第五節 海水中的發酵細菌……………………………………………………………………………5 第六節 研究動機與研究目的…………………………………………………………………………7 第二章 材料與方法………………………………………………………………………………………………8 第一節 採樣地點與流程…………………………………………………………………………………8 第二節 培養基………………………………………………………………………………………………8 第三節 計數、分離、發酵能力檢測與保存……………………………………………………8 第四節 分離株之一般特性與生理生化測試…………………………………………………9 第五節 16S rRNA基因序列分析與親緣關係之鑑定…………………………………11 第六節 新種細菌A4與A5之化學特性與電子顯微鏡觀察…………………………14 第三章 結果…………………………………………………………………………………………………………16 第一節 MPN計數法……………………………………………………………………………………16 第二節 分離株之分群以及生理生化特性……………………………………………………16 第三節 分群代表株之16S rRNA基因序列分析與親緣關係………………………18 第四節 新種細菌A4與A5之化學特性檢測與電子顯微鏡觀察結果…………20 第四章 討論…………………………………………………………………………………………………………22 第一節 東沙島潟湖沉積物兼性嫌氣性葡萄糖發酵細菌數量……………………22 第二節 分離株之生理生化特性探討……………………………………………………………22 第三節 發酵細菌之菌屬特性分析及親緣關係探討……………………………………23 第四節 新種細菌A4與A5親緣關係鑑定與探討………………………………………29 第五節 新種細菌B1、H2與H5親緣關係鑑定與探討…………………………………30 第六節 東沙島潟湖兼性嫌氣性發酵細菌之菌相探討…………………………………32 第五章 結論…………………………………………………………………………………………………………33 參考文獻…………………………………………………………………………………………………………………34 表目錄 表1. 42株東沙島潟湖沉積物兼性嫌氣性發酵細菌之分群……………………………………43 表2. 12群發酵菌代表株之生理生化特性………………………………………………………………44 表3. 以16S rRNA基因序列鑑定各群代表株與其相似菌種之親緣關係……………46 表4. 分離株A4與A5之脂肪酸組成成份比例與DNA G+C content……………………48 表5. 分離株A4與A5之完整16S rRNA基因序列相似菌種…………………………………48 表6. 菌株A4、A5與Aeromonadaceae科Oceanisphaera、Zobellella、Oceanimonas菌屬細菌之特性比較……………………………………………………………………………………49 表7. 比較菌株A5及其16S rRNA基因序列相似菌種之生理生化特性………………50 表8. 菌株B1與其最相近菌種之特性比較……………………………………………………………51 表9. 菌株H5與其最相近菌種之特性比較……………………………………………………………52 圖目錄 圖1. 東沙島潟湖沉積物兼性嫌氣性葡萄糖發酵細菌之MPN估算……………………53 圖2.以16S rRNA基因序列建構18株代表株之親緣關係樹………………………………54 圖3.菌株A5之穿透式電子顯微鏡觀察………………………………………………………………55 圖4.以16S rRNA基因序列建構A4、A5與其序列相近菌種之親緣關係樹…………55 圖5. 菌株B1與其16S rRNA基因序列相似vibrios之親緣關係樹………………………56 圖6. 菌株H2、H5與其16S rRNA基因序列相似vibrios之親緣關係樹…………………57 圖7. 東沙島潟湖沉積物樣本兼性嫌氣性發酵細菌之菌相組成……………………………58 附錄目錄 附表1. 培養基成份…………………………………………………………………………………………………59 附表2. CM broth成份……………………………………………………………………………………………60 | |
dc.language.iso | zh-TW | |
dc.title | 東沙島潟湖兼性嫌氣性發酵細菌的分離及特性研究 | zh_TW |
dc.title | Isolation and characterization of facultatively anaerobic, fermentative bacteria from lagoon of Dongsha Island | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳卓昇,李宗徽,李重義,魏志潾 | |
dc.subject.keyword | 東沙島,潟湖,醣類,發酵細菌,16S rRNA基因, | zh_TW |
dc.subject.keyword | Dongsha Island,lagoon,carbohydrate,fermentative bacteria,16S rRNA gene, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201702344 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-01 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。