請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20581
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 戴子安(Chi-An Dai) | |
dc.contributor.author | Yu-Ping Lee | en |
dc.contributor.author | 李育凭 | zh_TW |
dc.date.accessioned | 2021-06-08T02:54:04Z | - |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-09 | |
dc.identifier.citation | Reference
1. Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic Solar Cells. Adv. Funct. Mater., 2001. 11: p. 15-26. 2. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells. Chem. Mater., 2004. 16: p. 4533-4542. 3. Brabec, C.J., Organic photovoltaics:technolog y and market. Sol. Energy Mater. Sol. Cells, 2004. 83: p. 273–292. 4. Yu, J., et al., Molecular Design of Interfacial Modifiers for Polymer-Inorganic Hybrid Solar Cells. Adv. Energy Mater., 2012. 2: p. 245–252. 5. Li, G., et al., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater., 2005. 4: p. 864–868. 6. Yang, S.N., et al., Nanoscale Morphology of High-Performance Polymer Solar Cells. Nano Lett., 2005. 5: p. 579–583. 7. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev., 2009. 109: p. 5868–5923. 8. Oh, J.Y., et al., Self-Seeded Growth of Poly(3-hexylthiophene) (P3HT) Nanofibrils by a Cycle of Cooling and Heating in Solutions. Macromolecules, 2012. 45: p. 7504-7513. 9. Venkataraman, D., et al., Role of Molecular Architecture in Organic Photovoltaic Cells. J. Phys. Chem. Lett., 2010. 1: p. 947–958. 10. Brady, M.A., G.M. Su, and M.L. Chabinyc, Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter, 2011. 7: p. 11065–11077. 11. Thompson, B.C. and J.M.J. Fréchet, Polymer–Fullerene Composite Solar Cells. Angew. Chem. Int. Ed., 2008. 47: p. 58–77. 12. Yao, Y., et al., Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells. Adv. Funct. Mater., 2008. 18: p. 1783–1789. 13. Pivrikas, A., et al., Substituting the postproduction treatment for bulk-heterojunction solar cells using chemical additives. Org. Electron., 2008. 9: p. 775–782. 14. Reyes-Reyes, M., K. Kim, and D.L. Carroll, High-efficiency photovoltaic devices based on annealed poly3-hexylthiophene and 1-3-methoxycarbonylpropyl-1- phenyl-6,6 C61 blends. Appl. Phys. Lett., 2005. 87: p. 083506. 15. Nguyen, L.H., et al., Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells. Adv. Funct. Mater., 2007. 17: p. 1071–1078. 16. Miller, S., et al., Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem., 2007. 18: p. 306–312. 17. Tang, H., et al., Precise construction of PCBM aggregates for polymer solar cells via multi-step controlled solvent vapor annealing. J. Mater. Chem., 2010. 20: p. 683–688. 18. Janssen, G., et al., Optimization of morphology of P3HT/PCBM films for organic solar cells: effects of thermal treatments and spin coating solvents. Eur. Phys. J. Appl. Phys., 2007. 37: p. 287–290. 19. Li, G., et al., “Solvent Annealing” Effect in Polymer Solar Cells Based on Poly(3-hexylthiophene) and Methanofullerenes. Adv. Funct. Mater., 2007. 17: p. 1636–1644. 20. Sivula, K., et al., Enhancing the Thermal Stability of Polythiophene: Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity. J. Am. Chem. Soc., 2006. 128: p. 13988–13989. 21. Woo, C.H., et al., The Influence of Poly(3-hexylthiophene) Regioregularity on Fullerene-Composite Solar Cell Performance. J. Am. Chem. Soc., 2008. 130: p. 16324–16329. 22. Ebadian, S., et al., Effects of Annealing and Degradation on Regioregular Polythiophene-Based Bulk Heterojunction Organic Photovoltaic Devices. Sol. Energy Mater. Sol. Cells, 2010. 94: p. 2258–2264. 23. Miyanishi , S., K. Tajima, and K. Hashimoto, Morphological Stabilization of Polymer Photovoltaic Cells by Using Cross-Linkable Poly(3-(5-hexenyl)thiophene). Macromolecules, 2009. 42: p. 1610–1618. 24. Kim, B.J., et al., Photocrosslinkable Polythiophenes for Efficient, Thermally Stable, Organic Photovoltaics. Adv. Funct. Mater., 2009. 19: p. 2273–2281. 25. Dai, C.-A., et al., Facile Synthesis of Well-Defined Block Copolymers Containing Regioregular Poly(3-hexyl thiophene) via Anionic Macroinitiation Method and Their Self-Assembly Behavior J. Am. Chem. Soc. , 2007. 129: p. 11036-11038. 26. Lee, Y.-H., et al., In-Situ Template Synthesis of a Polymer-Semiconductor Nanohybrid Using Amphiphilic Conducting Block Copolymers. Langmuir, 2010. 26: p. 4196-4206. 27. Lee, Y.-H., et al., Self-assembly and phase transformations of p-conjugated block copolymers that bend and twist: from rigid-rod nanowires to highly curvaceous gyroids. Soft Matter, 2011. 7: p. 10429–10442. 28. Lee, Y.-H., et al., Solution self-assembly and phase transformations of form II crystals in nanoconfined poly(3-hexyl thiophene) based rod-coil block copolymers. Nanoscale, 2014. 6: p. 2194-2200. 29. Sary, N., et al., A New Supramolecular Route for Using Rod-Coil Block Copolymers in Photovoltaic Applications. Adv. Mater., 2010. 22: p. 763–768. 30. Gu, Z., et al., Annealing Effect on Performance and Morphology of Photovoltaic Devices Based on Poly(3-hexylthiophene)-b-Poly(ethylene oxide). J. Polym. Sci., Part A: Polym. Chem., 2011. 49: p. 2645–2652. 31. Darling, S.B., Block copolymers for photovoltaics. Energy Environ. Sci., 2009. 2: p. 1266–1273. 32. Botiz, I. and S.B. Darling, Optoelectronics using block copolymers. Materials Today, 2010. 13: p. 42-51. 33. Yang, C., et al., J. Mater. Chem., 2009. 19: p. 5416-5423. 34. Dante, M., et al., Self-Assembly and Charge-Transport Properties of a Polythiophene–Fullerene Triblock Copolymer. Adv. Mater., 2010. 22: p. 1835–1839. 35. Ren, G., P.-T. Wu, and S.A. Jenekhe, Solar Cells Based on Block Copolymer Semiconductor Nanowires: Effects of Nanowire Aspect Ratio. ACS Nano, 2011. 5: p. 376–384. 36. He, M., et al., All-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells with controlled molecular organization and nanoscale morphology. Energy Environ. Sci., 2011. 4: p. 2894–2902. 37. Yao, K., et al., Cooperative Assembly Donor Acceptor System Induced by Intermolecular Hydrogen Bonds Leading to Oriented Nanomorphology for Optimized Photovoltaic Performance. J. Phys. Chem. C, 2012. 116: p. 714–721. 38. Lin, Y., et al., Cooperative Assembly of Hydrogen-Bonded Diblock Copolythiophene/Fullerene Blends for Photovoltaic Devices with Well-Defined Morphologies and Enhanced Stability. Chem. Mater., 2012. 24: p. 622-632. 39. He, M., et al., Annealing effects on the photovoltaic performance of all-conjugated poly(3-alkylthiophene) diblock copolymer-based bulk heterojunction solar cells. Nanoscale, 2011. 3: p. 3159–3163. 40. Suspène, C., et al., Amphiphilic conjugated block copolymers for efficient bulk heterojunction solar cells. J. Mater. Chem., 2012. 22: p. 4511–4518. 41. Ouhib, F., et al., Thermally Stable Bulk Heterojunction Solar Cells Based on Cross-Linkable Acrylate-Functionalized Polythiophene Diblock Copolymers. Macromolecules, 2013. 46: p. 785-795. 42. Verduzco, R., et al., Polythiophene-block-polyfluorene and Polythiophene-blockpoly(fluorene-co-benzothiadiazole): Insights into the Self-Assembly of All-Conjugated Block Copolymers. Macromolecules, 2011. 44: p. 530–539. 43. Botiz, I., et al., Optoelectronic Properties and Charge Transfer in Donor Acceptor All-Conjugated Diblock Copolymers. J. Phys. Chem. C, 2011. 115: p. 9260–9266. 44. Kozycz, L.M., et al., Donor-Donor Block Copolymers for Ternary Organic Solar Cells. Macromolecules, 2012. 45: p. 5823-5832. 45. Gao, D., J. Hollinger, and D.S. Seferos, Selenophene Thiophene Block Copolymer Solar Cells with Thermostable Nanostructures. ACS Nano, 2012. 6: p. 7114–7121. 46. Smith, K.A., et al., Synthesis and Crystallinity of Conjugated Block Copolymers Prepared by Click Chemistry. Macromolecules, 2013. 46: p. 2636-2645. 47. Blencowe, H., et al., Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatric Research, 2013. 74: p. 35-49. 48. Liu, J.H.K., et al., Twenty-four-hour intraocular pressure pattern associated with early glaucomatous changes. Investigative Ophthalmology & Visual Science, 2003. 44(4): p. 1586-1590. 49. Mosaed, S., J.H.K. Liu, and R.N. Weinreb, Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients. American Journal of Ophthalmology, 2005. 139(2): p. 320-324. 50. Hughes, E., P. Spry, and J. Diamond, 24-hour monitoring of intraocular pressure in glaucoma management: A retrospective review. Journal of Glaucoma, 2003. 12(3): p. 232-236. 51. Yung, E., V. Trubnik, and L.J. Katz, An overview of home tonometry and telemetry for intraocular pressure monitoring in humans. Graefes Archive for Clinical and Experimental Ophthalmology, 2014. 252(8): p. 1179-1188. 52. Tonnu, P.A., et al., The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, noncontact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry. British Journal of Ophthalmology, 2005. 89(7): p. 851-854. 53. Wessels, I.F. and Y. Oh, Tonometer Utilization, Accuracy, and Calibration under Field Conditions. Archives of Ophthalmology, 1990. 108(12): p. 1709-1712. 54. Goldmann, H. and T. Schmidt, Über applanation stonometrie. Ophthalmologica 1957. 134(4): p. 221-242. 55. Klont, R.R., et al., Successful treatment of Fusarium keratitis with cornea transplantation and topical and systemic voriconazole. Clin Infect Dis, 2005. 40(12): p. e110-2. 56. Klenkler, B.J., et al., EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials, 2005. 26(35): p. 7286-96. 57. Chirila, T.V., An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application. Biomaterials, 2001. 22(24): p. 3311-7. 58. Hicks, C.R., et al., Keratoprostheses: advancing toward a true artificial cornea. Surv Ophthalmol, 1997. 42(2): p. 175-89. 59. Parke-Houben, R., et al., Interpenetrating polymer network hydrogel scaffolds for artificial cornea periphery. J Mater Sci Mater Med, 2015. 26(2): p. 107. 60. Heindl, L.M., et al., Split cornea transplantation for 2 recipients: a new strategy to reduce corneal tissue cost and shortage. Ophthalmology, 2011. 118(2): p. 294-301. 61. van Essen, T.H., et al., A fish scale-derived collagen matrix as artificial cornea in rats: properties and potential. Invest Ophthalmol Vis Sci, 2013. 54(5): p. 3224-33. 62. Kadakia, A., et al., Hybrid superporous scaffolds: an application for cornea tissue engineering. Crit Rev Biomed Eng, 2008. 36(5-6): p. 441-71. 63. Myung, D., et al., Design and fabrication of an artificial cornea based on a photolithographically patterned hydrogel construct. Biomed Microdevices, 2007. 9(6): p. 911-22. 64. Eguchi, H., et al., Cataract surgery with the AlphaCor artificial cornea. J Cataract Refract Surg, 2004. 30(7): p. 1486-91. 65. Hicks, C.R., et al., Corneal replacement using a synthetic hydrogel cornea, AlphaCor (TM) device, preliminary outcomes and complications. Eye, 2003. 17(3): p. 385-392. 66. Bleckmann, H. and S. Holak, Preliminary results after implantation of four AlphaCor artificial corneas. Graefes Arch Clin Exp Ophthalmol, 2006. 244(4): p. 502-6. 67. MD, A.C., et al., Histopathology of explanted AlphaCor due to keratoprosthesis extrusion. Clin. and Exp. Ophthalmol. , 2006. 68. Crawford, G.J., H. Eguchi, and C.R. Hicks, Two cases of AlphaCor surgery performed using a small incision technique. Clinical and Experimental Ophthalmology, 2005. 33(1): p. 10-15. 69. Jiraskova, N., et al., AlphaCor artificial cornea: clinical outcome. Eye (Lond), 2011. 25(9): p. 1138-46. 70. Holak, S.A., H.M. Holak, and H. Bleckmann, AlphaCor keratoprosthesis: postoperative development of six patients. Graefes Arch Clin Exp Ophthalmol, 2009. 247(4): p. 535-9. 71. Xiang, J., et al., T-style keratoprosthesis based on surface-modified poly (2-hydroxyethyl methacrylate) hydrogel for cornea repairs. Materials Science & Engineering C-Materials for Biological Applications, 2015. 50: p. 274-285. 72. Liu, K.M., et al., Graphite/poly (vinyl alcohol) hydrogel composite as porous ringy skirt for artificial cornea. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009. 29(1): p. 261-266. 73. Xu, F.L., et al., Preparation and in vivo investigation of artificial cornea made of nano-hydroxyapatite/poly (vinyl alcohol) hydrogel composite. Journal of Materials Science-Materials in Medicine, 2007. 18(4): p. 635-640. 74. Colton, T. and F. Ederer, The Distribution of Intraocular Pressures in the General-Population. Survey of Ophthalmology, 1980. 25(3): p. 123-129. 75. Ljubimova, D., Biomechanics of the Human Eye and Intraocular Pressure Measurements. 2009. 76. Gloster, J. and E.S. Perkins, The Validity of the Imbert-Fick Law as Applied to Applanation Tonometry. Experimental Eye Research, 1963. 2(3): p. 274-283. 77. Whitacre, M.M., R.A. Stein, and K. Hassanein, The Effect of Corneal Thickness on Applanation Tonometry. American Journal of Ophthalmology, 1993. 115(5): p. 592-596. 78. Doughty, M.J. and M.L. Zaman, Human corneal thickness and its impact on intraocular pressure measures: A review and meta-analysis approach. Survey of Ophthalmology, 2000. 44(5): p. 367-408. 79. Stodtmeister, R., Applanation tonometry and correction according to corneal thickness. Acta Ophthalmologica Scandinavica, 1998. 76(3): p. 319-324. 80. Whitacre, M.M. and R. Stein, Sources of Error with Use of Goldmann-Type Tonometers. Survey of Ophthalmology, 1993. 38(1): p. 1-30. 81. Johnson, M., et al., Increased Corneal Thickness Simulating Elevated Intraocular-Pressure. Archives of Ophthalmology, 1978. 96(4): p. 664-665. 82. Dekking, H.M. and H.D. Coster, Dynamic Tonometry. Ophthalmologica, 1967. 154(1): p. 59-75. 83. Klyce, S.D. and R.W. Beuerman, Structure and function of the cornea. The cornea, 1987: p. 1-47. 84. Kontiola, A., A new electromechanical method for measuring intraocular pressure. Documenta Ophthalmologica, 1997. 93(3): p. 265-276. 85. Mathur, A.M., S.K. Moorjani, and A.B. Scranton, Methods for synthesis of hydrogel networks: A review. Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics, 1996. C36(2): p. 405-430. 86. Shields, M.B., Non-Contact Tonometer - Its Value and Limitations. Survey of Ophthalmology, 1980. 24(4): p. 211-219. 87. Kopecek, J. and J.Y. Yang, Hydrogels as smart biomaterials. Polymer International, 2007. 56(9): p. 1078-1098. 88. Wichterle, O. and D. Lim, Hydrophilic Gels for Biological Use. Nature, 1960. 185(4706): p. 117-118. 89. S.L., S.C., B. C.H., and T. T., Polymer Biomaterials in Solution, as Interfaces and as Solids. 1995. 90. Sá-Lima, H., et al., Stimuli-responsive chitosan-starch injectable hydrogels combined with encapsulated adipose-derived stromal cells for articular cartilage regeneration. Soft Matter, 2010. 6(20): p. 5184-5195. 91. Guiseppi-Elie, A., Electroconductive hydrogels: Synthesis, characterization and biomedical applications. Biomaterials, 2010. 31(10): p. 2701-2716. 92. Peppas, N.A., et al., Hydrogels in biology and medicine: From molecular principles to bionanotechnology. Advanced Materials, 2006. 18(11): p. 1345-1360. 93. Woerly, S., et al., Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel (TM)). Biomaterials, 2001. 22(10): p. 1095-1111. 94. Bray, J.C. and E.W. Merrill, Poly (Vinyl Alcohol) Hydrogels for Synthetic Articular-Cartilage Material. Journal of Biomedical Materials Research, 1973. 7(5): p. 431-443. 95. Bailey, B.M., et al., Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS). Journal of Materials Chemistry, 2011. 21(46): p. 18776-18782. 96. Arica, M.Y., et al., Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzylpoly(ethylene oxide)) for biomedical applications: Properties and drug release characteristics. Macromolecular Bioscience, 2005. 5(10): p. 983-992. 97. Flynn, L., P.D. Dalton, and M.S. Shoichet, Fiber ternplating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials, 2003. 24(23): p. 4265-4272. 98. Hicks, C.R., et al., Histology of AlphaCor skirts - Evaluation of biointegration. Cornea, 2005. 24(8): p. 933-940. 99. Myung, D., et al., Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnology Progress, 2008. 24(3): p. 735-741. 100. Millar, J.R., Interpenetrating Polymer Networks - Styrene-Divinylbenzene Copolymers with 2 and 3 Interpenetrating Networks, and Their Sulphonates. Journal of the Chemical Society, 1960(Resumed): p. 1311-1317. 101. Myung, D., et al., Progress in the development of interpenetrating polymer network hydrogels. Polymers for Advanced Technologies, 2008. 19(6): p. 647-657. 102. Sperling, L.H., Interpenetrating Polymer Networks. 2004, Copyright © 2002: John Wiley & Sons, Inc. 103. Sperling, L.H. and V. Mishra, The current status of interpenetrating polymer networks. Polymers for Advanced Technologies, 1996. 7(4): p. 197-208. 104. Klempner, D., L.H. Sperling, and L.A. Utracki, Interpenetrating Polymer Networks - Preface. Interpenetrating Polymer Networks, 1994. 239: p. R15-R16. 105. Brandrup, J., et al., POLYMER HANDBOOK Vol. 89. 1999, New York: Wiley. 106. Waters, D.J. and C.W. Frank, Hindered diffusion of oligosaccharides in high strength poly(ethylene glycol)/poly(acrylic acid) interpenetrating network hydrogels: Hydrodynamic vs. obstruction models. Polymer, 2009. 50(26): p. 6331-6339. 107. Myung, D., et al., Biomimetic strain hardening in interpenetrating polymer network hydrogels. Polymer, 2007. 48(18): p. 5376-5387. 108. Myung, D., et al., Characterization of poly(ethylene glycol)-poly(acrylic acid) (PEG-PAA) double networks designed for corneal implant applications. Investigative Ophthalmology & Visual Science, 2005. 46. 109. Johannesson, G., et al., Pascal, ICare and Goldmann applanation tonometry - a comparative study. Acta Ophthalmologica, 2008. 86(6): p. 614-621. 110. Hamilton, K.E. and D.C. Pye, Young's modulus in normal corners and the effect on applanation tonometry. Optometry and Vision Science, 2008. 85(6): p. 445-450. 111. Elsheikh, A., D.F. Wang, and D. Pye, Determination of the modulus of elasticity of the human cornea. Journal of Refractive Surgery, 2007. 23(8): p. 808-818. 112. Liu, Y., et al., Properties of porcine and recombinant human collagen matrices for optically clear tissue engineering applications. Biomacromolecules, 2006. 7(6): p. 1819-1828. 113. Crabb, R.A.B., et al., Biomechanical and microstructural characteristics of a collagen film-based corneal stroma equivalent. Tissue Engineering, 2006. 12(6): p. 1565-1575. 114. Krachmer, J.H., M.J. Mannis, and E.J. Holland, Cornea. 1997, St. Louis: Mosby. 115. Merindano, M.D., et al., A comparative study of Bowman's layer in some mammals: relationships with other constituent corneal structures. European Journal of anatomy, 2002. 6(3): p. 133-139. 116. Klintworth, G.K., Cornea - Structure and Macromolecules in Health and Disease. American Journal of Pathology, 1977. 89(3): p. 718-808. 117. Last, J.A., et al., Compliance profile of the human cornea as measured by atomic force microscopy. Micron, 2012. 43(12): p. 1293-1298. 118. Hou, Y.P., et al., Photo-Cross-Linked PDMSstar-PEG Hydrogels: Synthesis, Characterization, and Potential Application for Tissue Engineering Scaffolds. Biomacromolecules, 2010. 11(3): p. 648-656. 119. Munkwitz, S., et al., Comparison of the iCare rebound tonometer and the Goldmann applanation tonometer over a wide IOP range. Graefes Archive for Clinical and Experimental Ophthalmology, 2008. 246(6): p. 875-879. 120. Hjortdal, J.O. and P.K. Jensen, In-Vitro Measurement of Corneal Strain, Thickness, and Curvature Using Digital Image-Processing. Acta Ophthalmologica Scandinavica, 1995. 73(1): p. 5-11. 121. Merino, S., et al., Nanocomposite Hydrogels: 3D Polymer-Nanoparticle Synergies for On-Demand Drug Delivery. Acs Nano, 2015. 9(5): p. 4686-4697. 122. Duffy, C.V., L. David, and T. Crouzier, Covalently-crosslinked mucin biopolymer hydrogels for sustained drug delivery. Acta Biomater, 2015. 20: p. 51-9. 123. Xavier, J.R., et al., Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano, 2015. 9(3): p. 3109-18. 124. Roman, J., et al., Control of the pore architecture in three-dimensional hydroxyapatite-reinforced hydrogel scaffolds. Science and Technology of Advanced Materials, 2011. 12(4). 125. Hoffman, A.S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 2012. 64: p. 18-23. 126. Yaping Hou, et al., Photo-Cross-Linked PDMSstar-PEG Hydrogels Synthesis,Characterization, and Potential Application for Tissue. Biomacromolecules 2010. 127. Myung, D., et al., Glucose-permeable interpenetrating polymer network hydrogels for corneal implant applications: a pilot study. Curr Eye Res, 2008. 33(1): p. 29-43. 128. Zhang, C.F., et al., Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer. Journal of Membrane Science, 2010. 365(1-2): p. 216-224. 129. Matsuyama, H., et al., Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science, 2003. 223(1-2): p. 119-126. 130. Matsuyama, H., et al., Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. Journal of Membrane Science, 2002. 204(1-2): p. 323-328. 131. Bailey, B.M., et al., Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)(). J Mater Chem, 2011. 21(46): p. 18776-18782. 132. Zhang, X.Z., Y.Y. Yang, and T.S. Chung, Effect of mixed solvents on characteristics of poly(N-isopropylacrylamide) gels. Langmuir, 2002. 18(7): p. 2538-2542. 133. Shibayama, M., M. Morimoto, and S. Nomura, Phase-Separation Induced Mechanical Transition of Poly(N-Isopropylacrylamide) Water Isochore Gels. Macromolecules, 1994. 27(18): p. 5060-5066. 134. Hou, Q., D.W. Grijpma, and J. Feijen, Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003. 24(11): p. 1937-47. 135. Cai, Q., et al., A novel porous cells scaffold made of polylactide-dextran blend by combining phase-separation and particle-leaching techniques. Biomaterials, 2002. 23(23): p. 4483-4492. 136. Ji, C.D., et al., Fabrication of poly-(DL)-lactide/polyethylene glycol scaffolds using the gas foaming technique. Acta Biomaterialia, 2012. 8(2): p. 570-578. 137. Yoon, J.J., et al., Immobilization of cell adhesive RGD peptide onto the surface of highly porous biodegradable polymer scaffolds fabricated by a gas foaming/salt leaching method. Biomaterials, 2004. 25(25): p. 5613-20. 138. Bryant, S.J. and K.S. Anseth, Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res A, 2003. 64(1): p. 70-9. 139. Chapekar, M.S., Tissue engineering: challenges and opportunities. J Biomed Mater Res, 2000. 53(6): p. 617-20. 140. Kim, B.S. and D.J. Mooney, Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998. 16(5): p. 224-30. 141. Tessmar, J.K. and A.M. Gopferich, Customized PEG-derived copolymers for tissue-engineering applications. Macromolecular Bioscience, 2007. 7(1): p. 23-39. 142. Padmavathi, N.C. and P.R. Chatterji, Structural characteristics and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules, 1996. 29(6): p. 1976-1979. 143. Veronese, F.M. and A. Mero, The impact of PEGylation on biological therapies. Biodrugs, 2008. 22(5): p. 315-329. 144. Nemir, S., H.N. Hayenga, and J.L. West, PEGDA hydrogels with patterned elasticity: Novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng, 2010. 105(3): p. 636-44. 145. Dumortier, G., et al., A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm Res, 2006. 23(12): p. 2709-28. 146. Alexandridis, P. and J.F. Holzwarth, Differential Scanning Calorimetry Investigation of the Effect of Salts on Aqueous Solution Properties of an Amphiphilic Block Copolymer (Poloxamer). Langmuir, 1997 147. Cabana, A., A. Ait-Kadi, and J. Juhasz, Study of the Gelation Process of Polyethylene Oxidea -Polypropylene Oxideb -Polyethylene Oxidea Copolymer (Poloxamer 407) Aqueous Solutions. J Colloid Interface Sci, 1997. 190(2): p. 307-12. 148. Mortensen, K. and J.S. Pedersen, Structural Study on the Micelle Formation of Poly(Ethylene Oxide) Poly(Propylene Oxide) Poly(Ethylene Oxide) Triblock Copolymer in Aqueous-Solution. Macromolecules, 1993. 26(4): p. 805-812. 149. Bailey, B.M., et al., PDMS(star)-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds. Acta Biomater, 2012. 8(12): p. 4324-33. 150. Zhang, H., et al., Controllable properties and microstructure of hydrogels based on crosslinked poly(ethylene glycol) diacrylates with different molecular weights. Journal of Applied Polymer Science, 2011. 121(1): p. 531-540. 151. Bryant, S.J. and K.S. Anseth, Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res, 2002. 59(1): p. 63-72. 152. Chace, K.V., et al., Effect of Oxygen Free-Radicals on Corneal Collagen. Free Radical Research Communications, 1991. 12-3: p. 591-594. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20581 | - |
dc.description.abstract | 本論文中包含三部份對不同之高分子聚合物及其應用的相關研究。第一部分是合成設計新穎之poly (2,5-dihexyloxy-p-phenylene) (PPP)和poly (3-butylthiophene) (P3BT)共軛嵌段共聚物,並利用此共軛嵌段共聚物與[6,6] -phenyl C71-butyric acid methyl ester (PC71BM)混合,進行高分子太陽能電池之製作與測量、分析。因為共軛嵌段共聚物不同主鏈部分具有非常強的不混溶性,而且PPP和P3BT嵌段之間的結晶度差異大。所以這種新型材料會自發地自組裝成互穿納米結構,同時迫使PC71BM納米顆粒會優先移動到無定型的PPP結構域中,而比較不會存在於高度結晶的P3BT相。PPP-P3BT/PC71BM太陽能電池的功率轉換效率(PCE)為3.12%而P3BT/PC71BM太陽能電池的效率為3.09%。進一步的研究結果清楚地證明了具有不同主鏈部分的完全共軛嵌段共聚物的優點在於可以產生自組裝結構和可利用其形態控制高分子及PC71BM之相分離行為,從而促進激子解離並改善電荷傳輸的穩定性,可以使高分子太陽能電池具有高性能及高穩定性等優點。
在第二部分,則是利用生物相容性高分子進行仿生人工角膜的開發與應用。Poly (2-hydroxyethyl methacrylate) (PHEMA)、poly (2-hydroxyethyl methacrylate-co-Acrylic acid) (Poly (HEMA-co-AA))以及互穿網絡結構(interpenetrating polymer network,IPN) 的poly (ethylene glycol)/poly (acrylic acid) (PEG / PAA)在本研究中被用來作為人造角膜材料使用。我們進一步建立了一套眼內壓測量系統來觀察使用不同的眼壓計時(Icare Tonometer,Schiøtz眼壓計,非接觸式眼壓計(NCT))不同參數條件的人工角膜所量測到的數據與誤差範圍,目的在可以與真實人眼在量測時的眼壓值進行比較。此外,PEG/PAA水凝膠具有良好的機械性能,水分含量和折射率有望在將來作為臨床用途的生物材料。 在第三部分中,我們利用poly(ethylene glycol) (PEG)以及poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (poloxamer407)合成可交聯的生物相容性大分子單體,以用於開發新穎的多孔性人造角膜裙料。利用 PEGDA 和 P407DA 的前體溶液製備一系列不同比例的P407-PEG水凝膠。同時比較在水中及在二氯甲烷中的solvent induced phase separation (SIPS)之效應。調整P407DA和PEGDA在前體溶液中的比例,可以很容易地改變最後得到的P407-PEG水凝膠的孔隙度和孔徑分佈。高度多孔的角膜襯裙材料可以幫助增加襯裙和角膜基質之間的水、養份和氧氣的交換。我們利用動態力學分析(DMA)和流變儀(rheometer)進行多孔性材料的物理性質分析證實,此研究中所合成之P407-PEG水凝膠的壓縮和剪切儲存模量都符合人眼角膜的強度範圍。進一步將P407-PEG水凝膠植入大鼠大腿8週的結果表明此多孔性材料具有良好的生物相容性。綜合比較各項參數後,我們認為利用二氯甲烷為溶液的P407-PEG水凝膠具有作為人工角膜襯裙材料的高度可行性。 | zh_TW |
dc.description.abstract | In this dissertation, three studies on novel polymers and their applications are reported. The first part is a new design for the rational design of poly (2,5-dihexyloxy-p-phenylene) (PPP) segments and poly (3-butylthiophene) (P3BT) conjugated block copolymer, which is synthesized and further used as a cooperative long distance ordered carrier transport network based on PC71BM bulk heterojunction (BHJ) hybrid system. The strong immiscibility from different backbone moieties and the large difference in crystallinity between the PPP and P3BT blocks allow this novel material spontaneously self-assemble into interpenetrating nanostructures, while forcing the PC71BM nanoparticles to be preferentially located in the amorphous PPP domain, rather than in the highly crystalline P3BT phase. The power conversion efficiency (PCE) of the PPP-P3BT/PC71BM device is 3.12 % and the homopolymer P3BT/PC71BM counterpart is 3.09 %. The further investigating results clearly demonstrate the advantages of fully conjugated block copolymers with different backbone moieties for generating preferential interface energy gradients and morphological sequences, thereby promoting a strong improvement in exciton dissociation and charge transport and enhance thermal stability, resulting in organic solar cell devices with the best performance and excellent long-term stability.
In the second part, several artificial model eyes developed to simulate the biomechanical response of human eyes with different material properties It is important to use IOP measurements to diagnose human eye health such as glaucoma. At present, the main method of estimating intraocular pressure is to apply pressure to the cornea and detect its deformation or force feedback. Poly(2-hydroxyethyl methacrylate) (PHEMA), poly(2-hydroxyethyl methacrylate-co-acrylic acid) (poly(HEMA-co-AA)) and the interpenetrating polymer networks (IPN) of Poly(ethylene glycol)/Poly(acrylic acid) (PEG/PAA) hydrogels were used as artificial corneal materials in this study. At the same time we tested the different corneal parameters for different intraocular pressure measurement instruments (Icare Tonometer, Schiøtz tonometer, Non-contact Tonometer(NCT)) in the measurement of intraocular pressure when the error range. Polyvinylchloride (PVC) thin film was induced to simulate the Bowman’s layer in actual human eye structure of cornea to perform the real situation of the human eye and reflect the IOP using Icare tonometer. In addition, PEG/PAA hydrogels have good mechanical properties, and water content and refractive index have the potential for future use as a biomaterial for clinical use. In the third part, poly(ethylene glycol) (PEG) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (poloxamer407) crosslinked biocompatible macromers are synthesized for developing a novel porous artificial cornea skirt material. A series of P407-PEG hydrogels is produced from poly(ethylene glycol) diacrylate (PEGDA) and poloxamer407 diacrylate (P407DA) precursor solutions. Water and dichloromethane is used to induce polymer/solvent phase separation. The porosity and pore size distribution of P407-PEG hydrogels could be easily changed by tuning the ratio of P407DA and PEGDA in precursor solution. Highly porous cornea skirt materials can assist diffusion of water, nutrition and oxygen between skirt and stroma. Dynamic mechanical analysis and rheometer shows that compressive and shear storage moduli of all P407-PEG hydrogels fulfill in the strength range of human cornea (elastic modulus between 4 kPa and 40 kPa). P407-PEG hydrogels are implanted to Wistar rat thigh for 8 weeks to investigate biocompatibility of this artificial cornea skirt material. All rats have no obvious rejection or infection in whole implantation duration, and several compositions of P407- PEG hydrogels are demonstrate good biocompatibility. The data of swelling ratio, porosity, physical strength and paraffin processing subcutaneous implanted samples indicated that P407-PEG hydrogels are very potentially material of cornea skirt application. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:54:04Z (GMT). No. of bitstreams: 1 ntu-106-D98524020-1.pdf: 12777148 bytes, checksum: 8405929b26b20c7af075a18ced33488b (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 目 錄
中文摘要…………………………………………………………...……..………...........I Abstract…………………………………………………………...……..………...........III Chapter 1 Fabrication and Application of Hybrid Solar Cells.........................................1 1-1 Introduction……….…………………….……………...……...………...........1 1-2 Experimental section……….…………….…..………………...………...........5 1-3 Results and discussion……….…………….………….…..…...……..............10 1-3-1 Synthesis and characterizations……….…………….…...…...............10 1-3-2 Self-assembling Behaviors and Morphology Investigations................13 1-3-3 X-ray Scattering of P3BT and PPP-P3BT with PC71BM films….........16 1-3-4 GISAXS of P3BT and PPP-P3BT with PC71BM films.........................18 1-3-5 Molecular packing of P3BT Segments and PC71BM Molecules...........19 1-3-6 Photophysical Properties of P3BT/PC71BM and PPP-P3BT/PC71BM Hybrids……………………………………………………................20 1-3-7 Performance of BHJ solar cells………………….………...................22 1-3-8 Long-term thermal stability of BHJ solar cells……….........................24 1-3-9 Time-Resolved Photoluminescence of P3BT/PC71BM and PPP-P3BT/PC71BM Hybrids……………………………...........................26 1-4 Conclusion………………………………………………...…………..............28 Chapter 2 Fabrication of Biomimetic Cornea and Its Application for Intraocular Pressure Measurements…………………....…………...…..………...........30 2-1 Introduction……………..……………………………...........…..…...……...30 2-2 Literature review………………..……...……………...........…..…...…….....34 2-2-1 Intraocular Pressure (IOP)……………….………...……………........34 2-2-2 Tonometer Introduction…………………...………............................35 2-2-3 Hydrogels………………..…………..…………..……………...........40 2-2-4 Interpenetrating Polymer Network (IPN)…………...…………..........42 2-2-5 Poly(ethylene glycol)/Poly(acrylic acid) Interpenetrating Polymer Networks (PEG/PAA IPNs)……..……...…………..……...…........... 46 2-2-6 Cornea…………..………………………....…......……………...…...46 2-3 Experiment section…………………………………….......……....…...…....50 2-3-1 Materials and Equipments…..………………..…......…..…………....50 2-3-2 Synthesis of Poly(ethylene glycol) Diacrylate (PEGDA)………….....53 2-3-3 Synthesis of Poly(2-hydroxyethyl methacrylate) (PHEMA)................54 2-3-4 Synthesis of Poly(2-hydroxyethyl methacrylate-co-Acrylic acid) (Poly(HEMA-co-AA))….....................................................................55 2-3-5 Synthesis of Interpenetrating Network Hydrogel from End-linked Poly- (ethylene glycol) (PEG) and Crosslinked Poly(acrylic acid) (PAA).....56 2-3-6 Artificial Eye Fabrication……..……………………….....…..……....60 2-3-7 Model A of Artificial Eye………..………………………...........…....60 2-3-8 Model B of Artificial Eye…..……………………………........……...61 2-3-9 Model C of Artificial Eye……………………..…………...........…....63 2-3-10 Characterization of Macromers and Hydrogels…………...……..…...65 2-3-11 Intraocular Pressure Controlling System………….....…………..…...66 2-3-12 Intraocular Pressure measurement…………....…...……...……..…...67 2-4 Results and Discussion………………..…………......………………..……...69 2-4-1 1H Nuclear Magnetic Resonance (1H NMR) Spectrum of PEGDA......69 2-4-2 Young’s Modulus of Hydrogel…………..………......……......……...71 2-4-3 Equilibrium Swelling of Hydrogels……………………....…….…....80 2-4-4 Models of artificial eye…………………………......…................…...85 2-4-5 Artificial eye and cornea system……………………..................…....85 2-4-6 Schiøtz tonometer measurement of the interpenetrating network PEG/PAA cornea in model A artificial eye system………….......…....86 2-4-7 Icare tonometer measurement of the interpenetrating network PEG/PAA cornea in model A artificial eye system……………………………....88 2-4-8 Icare tonometer measurement of Bowman’s layer (PVC)/stroma (PEG/PAA) biomimic cornea………………………..…………...…..91 2-4-9 Schiøtz tonometer measurement of Bowman’s layer (PVC)/stroma (PEG/PAA) biomimic cornea………………......……………….........97 2-4-10 Non-contact tonometer measurement of Bowman’s layer (PVC)/stroma (PEG/PAA) biomimic cornea……………….......................................98 2-4-11 Performance of Intraocular Pressure (IOP) on Model B of Artificial Eye……………………….......................……………......……...….100 2-4-12 Icare tonometer intraocular pressure measurement of model B artificial eye……………………....……………….................…………….....100 2-4-13 Schiøtz tonometer intraocular pressure measurement of model B artificial eye.............…………………………………………..........101 2-4-14 Non-contact tonometer intraocular pressure measurement of model B artificial eye……………………………….………………….….....102 2-4-15 Influence of corneal thickness on intraocular pressure measurement……………………………………………..................103 2-4-16 Optical properties of hydrogels………....…………...…...……....…106 2-5 Conclusion……………..………………….............……..……….....……...109 Chapter 3 Development of Highly Porous Hydrogels and Its Application for Artificial Cornea Skirt….....…….……..………………….......................................113 3-1 introduction…………..........……………………………..………….……...113 3-2 Experimental Section……............…………...……………………….….....118 3-2-1 Synthesis of Poly (ethylene Glycol) Diacrylate (PEGDA)……….... 118 3-2-2 Synthesis of poloxamer 407 diacrylate (P407DA)……………...….. 118 3-2-3 Poloxamer 407-Poly(ethylene glycol) (P407-PEG) Hydrogels Fabrication……………………...................................................…. 118 3-2-4 Characterization of Macromers and Hydrogels…….…..…...…...….120 3-3 Results and Discussion………...………......……...………...……..………..124 3-3-1 Equilibrium Swelling of Hydrogels……………………….........…..124 3-3-2 Scanning Electron Microscopy (SEM) Images of Hydrogels…….....128 3-3-3 Porosity and Pore Size Distribution…………….......……..……...…135 3-3-4 Dynamic Mechanical Analysis………….........………….............…138 3-3-5 Rheometer………………………..………….…….…...…….......…141 3-3-6 Accelerated Degradation……………................................…........…142 3-3-7 Subcutaneous Implantation…………………..…………........…......144 3-4 Conclusion………...………......……...………...……………...…….……..149 Reference………………....................………………….……..………...……..….......151 | |
dc.language.iso | en | |
dc.title | 仿生人工角膜及高度多孔性人工角膜襯裙與奈米混成太陽能電池元件開發與應用 | zh_TW |
dc.title | Fabrication and Application of Hybrid Solar Cells and Artificial Cornea with Superporous Peripheral Based on Biomimetic Hydrogels | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 王一中(I-Jong Wang),王勝仕(Steven S.-S. Wang),謝之真(Chih-Chen Hsieh),施博仁(Po-Jen Shih),程耀毅(Yao-Yi Cheng) | |
dc.subject.keyword | 導電高分子,共軛高分子,多嵌段共聚高分子,高分子太陽能電池,人工角膜,生物相容性高分子,眼壓,青光眼,多孔性高分子,人工角膜襯裙,溶液誘導相分離, | zh_TW |
dc.subject.keyword | poly(3-butylthiophene),block copolymer,[6,6] -phenyl C71-butyric acid methyl ester,polymer photovoltaic device,artificial eye,artificial cornea,cornea skirt,PEG/PAA interpenetrating polymer network (IPN),intraocular pressure (IOP),tonometry, | en |
dc.relation.page | 161 | |
dc.identifier.doi | 10.6342/NTU201702774 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-09 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 12.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。