Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor藍崇文
dc.contributor.authorHua-Kai Linen
dc.contributor.author林華愷zh_TW
dc.date.accessioned2021-06-08T02:53:30Z-
dc.date.copyright2017-08-11
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citation[1] J. Czochralski, Ein neues Verfahren zur Messung der Kristallisationsgeschwindigheit der Metalle, Zeitschrift für physikalische Chemie, 92 (1918).
[2] H. Fischer, W. Pschunder, Low-Cost Solar-Cells Based on Large-Area Unconventional Silicon, Ieee T Electron Dev, 24 (1977) 438-442.
[3] A. Karma, W.-J. Rappel, Quantitative phase-field modeling of dendritic growth in two and three dimensions, Phys. Rev. E, 57 (1998) 4323-4349.
[4] N. Provatas, N. Goldenfeld, J. Dantzig, Adaptive mesh refinement computation of solidification microstructures using dynamic data structures, J. Comput. Phys., 148 (1999) 265-290.
[5] G. Wulff, On the question of speed of growth and dissolution of crystal surfaces, Z. Kristallogr., 34 (1901) 449-530.
[6] C.A. Johnson, Generalization of Gibbs-Thomson Equation, Surf. Sci., 3 (1965) 429-444.
[7] D.W. Hoffman, J.W. Cahn, Vector Thermodynamics for Anisotropic Surfaces .1. Fundamentals and Application to Plane Surface Junctions, Surf. Sci., 31 (1972) 368-388.
[8] J.J. Eggleston, G.B. McFadden, P.W. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D, 150 (2001) 91-103.
[9] Z. Chen, C.L. Chen, L.M. Hao, Numerical simulation of facet dendrite growth, Trans. Nonferrous Met. Soc. China, 18 (2008) 938-943.
[10] S.G. Kim, W.T. Kim, Phase field modeling of dendritic growth with high anisotropy, J. Cryst. Growth, 275 (2005) e355-e360.
[11] S. Torabi, J. Lowengrub, A. Voigt, S. Wise, A new phase-field model for strongly anisotropic systems, Proc. R. Soc. A., 465 (2009) 1337-1359.
[12] A.A. Wheeler, Phase-field theory of edges in an anisotropic crystal, Proc. R. Soc. A., 462 (2006) 3363-3384.
[13] H.K. Lin, C.C. Chen, C.W. Lan, Adaptive three-dimensional phase-field modeling of dendritic crystal growth with high anisotropy, J. Cryst. Growth, 318 (2011) 51-54.
[14] K.A. Jackson, CRYSTAL-GROWTH KINETICS, Mater. Sci. Eng., 65 (1984) 7-13.
[15] W.W. Mullins, R.F. Sekerka, Morphological Stability of a Particle Growing by Diffusion or Heat Flow, J. Appl. Phys., 34 (1963) 323-329.
[16] W.W. Mullins, R.F. Sekerka, Stability of Planar Interface during Solidification of Dilute Binary Alloy, J. Appl. Phys., 35 (1964) 444-451.
[17] M.W. Geis, H.I. Smith, D.J. Silversmith, R.W. Mountain, C.V. Thompson, Solidification-Front Modulation to Entrain Subboundaries in Zone-Melting Recrystallization of Si on Sio2, J. Electrochem. Soc., 130 (1983) 1178-1183.
[18] L. Pfeiffer, S. Paine, G.H. Gilmer, W. Vansaarloos, K.W. West, Pattern-Formation Resulting from Faceted Growth in Zone-Melted Thin-Films, Phys. Rev. Lett., 54 (1985) 1944-1947.
[19] M. Tokairin, K. Fujiwara, K. Kutsukake, N. Usami, K. Nakajima, Formation mechanism of a faceted interface: In situ observation of the Si(100) crystal-melt interface during crystal growth, Phys. Rev. B: Condens. Matter, 80 (2009) 174108.
[20] M. Tokairin, K. Fujiwara, K. Kutsukake, H. Kodama, N. Usami, K. Nakajima, Pattern formation mechanism of a periodically faceted interface during crystallization of Si, J. Cryst. Growth, 312 (2010) 3670-3674.
[21] K. Fujiwara, R. Gotoh, X.B. Yang, H. Koizumi, J. Nozawa, S. Uda, Morphological transformation of a crystal-melt interface during unidirectional growth of silicon, Acta Mater., 59 (2011) 4700-4708.
[22] D. Buta, M. Asta, J.J. Hoyt, Kinetic coefficient of steps at the Si(111) crystal-melt interface from molecular dynamics simulations, J. Chem. Phys., 127 (2007) 074703.
[23] K.M. Beatty, K.A. Jackson, Monte Carlo modeling of silicon crystal growth, J. Cryst. Growth, 211 (2000) 13-17.
[24] T. Uehara, R.F. Sekerka, Phase field simulations of faceted growth for strong anisotropy of kinetic coefficient, J. Cryst. Growth, 254 (2003) 251-261.
[25] O. Weinstein, S. Brandon, Dynamics of partially faceted melt/crystal interfaces I: computational approach and single step–source calculations, J. Cryst. Growth, 268 (2004) 299-319.
[26] W. Miller, N. Abrosimov, I. Rasin, D. Borissova, Cellular growth of single crystals, J. Cryst. Growth, 310 (2008) 1405-1409.
[27] EPIA, Global Market Outlook for Photovoltaics 2013-2017, (2013).
[28] G.S. Rohrer, Grain boundary energy anisotropy: a review, J. Mater. Sci., 46 (2011) 5881-5895.
[29] W.T. Read, W. Shockley, Dislocation Models of Crystal Grain Boundaries, Phys. Rev., 78 (1950) 275-289.
[30] M.L. Kronberg, F.H. Wilson, secondary recrystallization in copper, Trans. Am. Inst. Min. Metall. Eng., 185 (1949) 501-514.
[31] D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall., 14 (1966) 1479-1484.
[32] M. Kohyama, R. Yamamoto, M. Doyama, Structures and Energies of Symmetrical 〈011〉 Tilt Grain Boundaries in Silicon, Phys. Status Solidi B, 137 (1986) 11-20.
[33] K.G.F. Janssens, D. Olmsted, E.A. Holm, S.M. Foiles, S.J. Plimpton, P.M. Derlet, Computing the mobility of grain boundaries, Nat. Mater., 5 (2006) 124-127.
[34] A.Y. Badmos, H.J. Frost, I. Baker, Simulation of microstructural evolution during directional annealing with variable boundary energy and mobility, Acta Mater., 51 (2003) 2755-2764.
[35] H. Håkan, Influence of anisotropic grain boundary properties on the evolution of grain boundary character distribution during grain growth—a 2D level set study, Modell. Simul. Mater. Sci. Eng., 22 (2014) 085005.
[36] N. Moelans, B. Blanpain, P. Wollants, Quantitative Phase-Field Approach for Simulating Grain Growth in Anisotropic Systems with Arbitrary Inclination and Misorientation Dependence, Phys. Rev. Lett., 101 (2008) 025502.
[37] T. Hirouchi, T. Tsuru, Y. Shibutani, Grain growth prediction with inclination dependence of 〈110〉 tilt grain boundary using multi-phase-field model with penalty for multiple junctions, Computational Mater. Sci., 53 (2012) 474-482.
[38] T. Hirouchi, Y. Shibutani, Explicit Distinctions between 2D MPF Grain Growth Simulations and EBSD Analyses to Determine Driving Mechanism of Grain Growth, Mater. Trans., 54 (2013) 1884-1893.
[39] K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, K. Nakajima, Grain growth behaviors of polycrystalline silicon during melt growth processes, J. Cryst. Growth, 266 (2004) 441-448.
[40] P. Chen, Y.L. Tsai, C.W. Lan, Phase field modeling of growth competition of silicon grains, Acta Mater., 56 (2008) 4114-4122.
[41] T. Duffar, A. Nadri, The grain–grain–liquid triple phase line during solidification of multi-crystalline silicon, C R Phys., 14 (2013) 185-191.
[42] T. Duffar, C.T. Nwosu, I.M. Asuo, J. Muzy, N.D.Q. Chau, Y. Du Terrail-Couvat, F. Robaut, Experimental study of grain boundary orientations in multi-crystalline silicon, J. Cryst. Growth, 401 (2014) 404-408.
[43] M.G. Tsoutsouva, T. Riberi – Béridot, G. Regula, G. Reinhart, J. Baruchel, F. Guittonneau, L. Barrallier, N. Mangelinck-Noël, In situ investigation of the structural defect generation and evolution during the directional solidification of 〈110〉 seeded growth Si, Acta Mater., 115 (2016) 210-223.
[44] Y.M. Yang, A. Yu, B. Hsu, W.C. Hsu, A. Yang, C.W. Lan, Development of high-performance multicrystalline silicon for photovoltaic industry, Progress in Photovoltaics: Research and Applications, 23 (2015) 340-351.
[45] G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel, Study of evolution of dislocation clusters in high performance multicrystalline silicon, Sol. Energy Mater. Sol. Cells, 130 (2014) 679-685.
[46] D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang, Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification, J. Cryst. Growth, 386 (2014) 52-56.
[47] Y.T. Wong, C. Hsu, C.W. Lan, Development of grain structures of multi-crystalline silicon from randomly orientated seeds in directional solidification, J. Cryst. Growth, 387 (2014) 10-15.
[48] R.P. Ronit, J. Karolin, C. Jun, M. Yoshiji, H. Hirofumi, S. Takashi, Grain boundary interactions in multicrystalline silicon grown from small randomly oriented seeds, Appl. Phys. Expr. 8 (2015) 035502.
[49] E. Billig, Growth of Monocrystals of Germanium from an Undercooled Melt, Proc. R. Soc. London, Ser. A, 229 (1955) 346-&.
[50] L. Stockmeier, G. Müller, A. Seidl, T. Lehmann, C. Reimann, J. Friedrich, Preferred grain orientations in silicon ribbons grown by the string ribbon and the edge-defined film-fed growth methods, J. Cryst. Growth, 395 (2014) 74-79.
[51] V. Randle, Twinning-related grain boundary engineering, Acta Mater., 52 (2004) 4067-4081.
[52] B.W. Reed, M. Kumar, Mathematical methods for analyzing highly-twinned grain boundary networks, Scripta Mater., 54 (2006) 1029-1033.
[53] V. Randle, Y. Hu, The role of vicinal Sigma 3 boundaries and Sigma 9 boundaries in grain boundary engineering, J. Mater. Sci., 40 (2005) 3243-3246.
[54] H.K. Lin, M.C. Wu, C.C. Chen, C.W. Lan, Evolution of grain structures during directional solidification of silicon wafers, J. Cryst. Growth, 439 (2016) 40-46.
[55] D. Turnbull, J.C. Fisher, Rate of nucleation in condensed systems, The J. Chem. Phys., 17 (1949) 71-73.
[56] G. Stokkan, Twinning in multicrystalline silicon for solar cells, J. Cryst. Growth, 384 (2013) 107-113.
[57] K. Nagashio, K. Kuribayashi, Growth mechanism of twin-related and twin-free facet Si dendrites, Acta Mater., 53 (2005) 3021-3029.
[58] K. Fujiwara, K. Maeda, N. Usami, G. Sazaki, Y. Nose, K. Nakajima, Formation mechanism of parallel twins related to Si-facetted dendrite growth, Scripta Mater., 57 (2007) 81-84.
[59] J. Pohl, M. Müller, A. Seidl, K. Albe, Formation of parallel (1 1 1) twin boundaries in silicon growth from the melt explained by molecular dynamics simulations, J. Cryst. Growth, 312 (2010) 1411-1415.
[60] T. Duffar, A. Nadri, On the twinning occurrence in bulk semiconductor crystal growth, Scripta Mater., 62 (2010) 955-960.
[61] A. Tandjaoui, N. Mangelinck-Noel, G. Reinhart, B. Billia, X. Guichard, Twinning occurrence and grain competition in multi-crystalline silicon during solidification, C R Phys., 14 (2013) 141-148.
[62] T. Riberi-Béridot, N. Mangelinck-Noël, A. Tandjaoui, G. Reinhart, B. Billia, T. Lafford, J. Baruchel, L. Barrallier, On the impact of twinning on the formation of the grain structure of multi-crystalline silicon for photovoltaic applications during directional solidification, J. Cryst. Growth, 418 (2015) 38-44.
[63] A. Tandjaoui, N. Mangelinck-Noel, G. Reinhart, B. Billia, T. Lafford, J. Baruchel, Investigation of grain boundary grooves at the solid–liquid interface during directional solidification of multi-crystalline silicon: in situ characterization by X-ray imaging, J. Cryst. Growth, 377 (2013) 203-211.
[64] V.V. Voronkov, Processes at the boundary of a crystallization front, Sov. Phys. - Crystallogr. 19 (1975) 573-577.
[65] D.T.J. Hurle, A Mechanism for Twin Formation during Czochralski and Encapsulated Vertical Bridgman Growth of Iii-V Compound Semiconductors, J. Cryst. Growth, 147 (1995) 239-250.
[66] V.A. Oliveira, B. Marie, C. Cayron, M. Marinova, M.G. Tsoutsouva, H.C. Sio, T.A. Lafford, J. Baruchel, G. Audoit, A. Grenier, T.N. Tran Thi, D. Camel, Formation mechanism and properties of twinned structures in (111) seeded directionally solidified solar grade silicon, Acta Mater., 121 (2016) 24-36.
[67] A. Nadri, Y. Duterrail-Couvat, T. Duffar, Two-dimensional numerical modeling of grain structure in multi-crystalline silicon ingot, J. Cryst. Growth, 385 (2014) 16-21.
[68] J. Glimm, J. Grove, B. Lindquist, O.A. McBryan, G. Tryggvason, The Bifurcation of Tracked Scalar Waves, Siam J Sci Stat Comp, 9 (1988) 61-79.
[69] S.O. Unverdi, G. Tryggvason, A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100 (1992) 25-37.
[70] D. Juric, G. Tryggvason, A front-tracking method for dendritic solidification, J. Comput. Phys., 123 (1996) 127-148.
[71] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed:
Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988) 12-49.
[72] S. Osher, R.P. Fedkiw, Level Set Methods: An Overview and Some Recent Results, J. Comput. Phys., 169 (2001) 463-502.
[73] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput Fluids., 27 (1998) 663-680.
[74] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, M.L. Welcome, An Adaptive Level Set Approach for Incompressible Two-Phase Flows, J. Comput. Phys., 148 (1999) 81-124.
[75] M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162 (2000) 301-337.
[76] G.J. Fix, Free Boundary Problems:Theory and Applications, 2 (1983) 580.
[77] J.S. Langer, Directions in Condensed Matter Physics, (1986) 165.
[78] J.B. Collins, H. Levine, Diffuse interface model of diffusion-limited crystal growth, Phys Rev B, 31 (1985) 6119-6122.
[79] G. Caginalp, J.T. Lin, A numerical-analysis of an anisotropic phase field model, IMA J. Appl. Math., 39 (1987) 51-66.
[80] R. Kobayashi, Modeling and Numerical Simulations of Dendritic Crystal-Growth, Physica D, 63 (1993) 410-423.
[81] R. Kobayashi, A Numerical Approach to Three-Dimensional Dendritic Solidification, Exp. Math., 3 (1994) 59-81.
[82] R.J. Braun, G.B. McFadden, S.R. Coriell, Morphological instability in phase-field models of solidification, Phys. Rev. E, 49 (1994) 4336-4352.
[83] S.L. Wang, R.F. Sekerka, Computation of the dendritic operating state at large supercoolings by the phase field model, Phys. Rev. E, 53 (1996) 3760-3776.
[84] G. Caginalp, An analysis of a phase field model of a free-boundary, Arch Ration Mech An, 92 (1986) 205-245.
[85] J.W. Cahn, J.E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys., 28 (1958) 258-267.
[86] M. Fabbri, V.R. Voller, The phase-field method in the sharp-interface limit: A comparison between model potentials, J. Comput. Phys., 130 (1997) 256-265.
[87] B. Morin, K.R. Elder, M. Sutton, M. Grant, Model of the Kinetics of Polymorphous Crystallization, Phys. Rev. Lett., 75 (1995) 2156-2159.
[88] R. Kobayashi, J.A. Warren, W.C. Carter, Vector-valued phase field model for crystallization and grain boundary formation, Physica D, 119 (1998) 415-423.
[89] J.A. Warren, R. Kobayashi, A.E. Lobovsky, W.C. Carter, Extending phase field models of solidification to polycrystalline materials, Acta Mater., 51 (2003) 6035-6058.
[90] Glicksma.Me, C.L. Vold, Determination of Absolute Solid-Liquid Interfacial Free Energies in Metals, Acta Metall., 17 (1969) 1-11.
[91] J.E. Blendell, W.C. Carter, C.A. Handwerker, Faceting and wetting transitions of anisotropic interfaces and grain boundaries, J. Am. Ceram. Soc., 82 (1999) 1889-1900.
[92] L. Granasy, T. Borzsonyi, T. Pusztai, Nucleation and bulk crystallization in binary phase field theory, Phys. Rev. Lett., 88 (2002) 206105.
[93] T. Pusztai, G. Bortel, L. Granasy, Phase field theory of polycrystalline solidification in three dimensions, Europhys. Lett., 71 (2005) 131-137.
[94] L.-Q. Chen, W. Yang, Computer simulation of the domain dynamics of a quenched system with a large number of nonconserved order parameters: The grain-growth kinetics, Phys. Rev. B, 50 (1994) 15752.
[95] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schmitz, J.L.L. Rezende, A phase field concept for multiphase systems, Physica D, 94 (1996) 135-147.
[96] 林華愷, 適應性相場模式在多晶高非均向性晶體生長之研究, in: 化學工程學研究所, 臺灣大學, 2010, pp. 1-76.
[97] S.V. Patankar, Numerical heat transfer and fluid flow, McGraw-Hill, New York, 1980.
[98] N. Provatas, N. Goldenfeld, J. Dantzig, Efficient computation of dendritic microstructures using adaptive mesh refinement, Phys. Rev. Lett., 80 (1998) 3308-3311.
[99] R. Tonhardt, G. Amberg, Dendritic growth of randomly oriented nuclei in a shear flow, J. Cryst. Growth, 213 (2000) 161-187.
[100] R.J. Braun, B.T. Murray, Adaptive phase-field computations of dendritic crystal growth, J. Cryst. Growth, 174 (1997) 41-53.
[101] J.H. Jeong, N. Goldenfeld, J.A. Dantzig, Phase field model for three-dimensional dendritic growth with fluid flow, Phys. Rev. E, 6404 (2001) 041602.
[102] C.C. Liu, Adaptive Finite Volume Methods for Solidification Problems, National Taiwan University, Master Thesis, (2000).
[103] C.M. Hsu, Adaptive Phase Field Simulation of Dendritic Crystal Growth in a Forced Flow, National Taiwan University, Master Thesis, (2001).
[104] C.W. Lan, C.C. Liu, C.M. Hsu, An Adaptive Finite Volume Method for Incompressible Heat Flow Problems in Solidification, J. Comput. Phys., 178 (2002) 464-497.
[105] U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl Numer Math., 25 (1997) 151-167.
[106] T. Duffar, A. Nadri, The grain-grain-liquid triple phase line during solidification of multi-crystalline silicon, C R Phys., 14 (2013) 185-191. [107] G. Nolze, Euler angles and crystal symmetry, Cryst. Res. Technol., 50 (2015) 188-201.
[108] V. Randle, I.o. Materials, The Role of the Coincidence Site Lattice in Grain Boundary Engineering, Institute of Materials, 1996.
[109] M.G. Tsoutsouva, T. Riberi-Beridot, G. Regula, G. Reinhart, J. Baruchel, F. Guittonneau, L. Barrallier, N. Mangelinck-Noel, In situ investigation of the structural defect generation and evolution during the directional solidification of < 110 > seeded growth Si, Acta Mater., 115 (2016) 210-223.
[110] A. Otsuki, Energies of (001) twist grain boundaries in silicon, Acta Mater., 49 (2001) 1737-1745.
[111] R. Hull, INSPEC, Properties of Crystalline Silicon, INSPEC, the Institution of Electrical Engineers, 1999.
[112] E. Bauer, Z. Kristallogr., 110 (1958) 372.
[113] W.D. Luedtke, U. Landman, M.W. Ribarsky, R.N. Barnett, C.L. Cleveland, Molecular-dynamics simulations of epitaxial crystal growth from the melt. II. Si(111), Phys. Rev. B, 37 (1988) 4647-4655.
[114] Y.W. Mo, D.E. Savage, B.S. Swartzentruber, M.G. Lagally, Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001), Phys. Rev. Lett., 65 (1990) 1020-1023.
[115] H.K. Lin, C.W. Lan, Revisiting the twinning mechanism in directional solidification of multi-crystalline silicon sheet, Acta Mater., 131 (2017) 1-10.
[116] K. Fujiwara, M. Ishii, K. Maeda, H. Koizumi, J. Nozawa, S. Uda, The effect of grain boundary characteristics on the morphology of the crystal/melt interface of multicrystalline silicon, Scripta Mater., 69 (2013) 266-269.
[117] D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals-II: Grain boundary mobility, Acta Mater., 57 (2009) 3704-3713.
[118] K. Fujiwara, W. Pan, K. Sawada, M. Tokairin, N. Usami, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Directional growth method to obtain high quality
polycrystalline silicon from its melt, J. Cryst. Growth, 292 (2006) 282-285
[119] H.K. Lin, C.C. Chen, C.W. Lan, A simple anisotropic surface free energy function for three-dimensional phase field modeling of multi-crystalline crystal growth, J. Cryst. Growth, 362 (2013) 62-65.
[120] P.W. Voorhees, S.R. Coriell, G.B. McFadden, R.F. Sekerka, The effect of anisotropic crystal melt surface-tension on grain boundary groove morphology, J. Cryst. Growth, 67 (1984) 425-440.
[121] W. Obreten, D. Kashchiev, V. Bostanov, Unified description of the rate of nucleation-mediated crystal growth, J. Cryst. Growth, 96 (1989) 843-848.
[122] M.C. Flemings, Solidification Processing, Mc-Graw Hill, New York, (1974).
[123] H.K. Lin, H.Y. Chen, C.W. Lan, Phase field modeling of facet formation during directional solidification of silicon film, J. Cryst. Growth, 385 (2014) 134-139.
[124] H.K. Lin, H.Y. Chen, C.W. Lan, Phase field modeling of facet formation during directional solidification of silicon film, J. Cryst. Growth.
[125] K. Fujiwara, K. Nakajima, T. Ujihara, N. Usami, G. Sazaki, H. Hasegawa, S. Mizoguchi, K. Nakajima, In situ observations of crystal growth behavior of silicon melt, J. Cryst. Growth, 243 (2002) 275-282.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20567-
dc.description.abstract近幾年由於光電領域的蓬勃發展,多晶矽的垂直固化長晶過程一直吸引著極大的關注。在本篇論文中,吾人將利用適應性相場模式來模擬多矽晶的長晶行為。對於單晶矽而言,固液界面型態對於缺陷的生成扮演著很重要的角色。在本文的模擬中,藉由考慮高非均向性的界面能與動力學,能成功的描述在固化過程中生成的{111}奇異面,並且對於固液界面型態的發展與奇異面的生成機制,都能有效的與實驗的觀察作比較。
而對於多晶矽而言,攣生成核與晶界種類對於矽晶太陽能電池的光電特性也扮演著很重要的角色。吾人首先修改先前攣生成核機制的模式,多考慮了在晶界凹槽處成核時兩個核之間的接觸之後,有效的推導出臨界成核的過冷度和成核機率,並且能夠從實驗中估計的值作比較。然後,吾人導入了此修改後的攣生成核模式在我們的相場模擬中,並描述了非均向性的晶界能與晶界遷移率後,可用來模擬長晶時的晶粒結構與晶界發展,因此,吾人便成功的解釋了三種在實驗上觀察到的晶界間交互關係。此外,吾人也討論了初始晶界種類與晶向分佈對於長晶過程中成核速度、平均晶粒大小、晶向與晶界種類發展的影響,並且提供了較佳的初始晶種排列,使其能幫助且應用在實際的實驗上。
zh_TW
dc.description.abstractThe directional solidification of silicon has attracted a great attention in recent years due to its booming applications in photovoltaics. In this thesis, adaptive phase field modeling is applied to simulate the crystal growth behavior of silicon in detail. For mono-crystalline silicon, the interface morphology of the solid-liquid interface plays a crucial role in defect formation. Highly anisotropic surface free energy and interfacial kinetics are considered in our simulation to form {111} facet planes during solidification, and the morphological evolution and the mechanism for facet formation are well-compared with experimental observation.
For multi-crystalline silicon grown by directional solidification, the formation of the twin nucleus plays a crucial role on the electrical properties of solar cells. We revise the previous twin nucleation model by considering the interaction between two nuclei at the grain boundary groove. The predicted undercooling and twinning probability for twin nucleation based on our revised model are consistent with the estimated value from experimental observations. Then we incorporate this model in our phase field model to simulate the evolution of grain structures and grain boundaries. After we consider the anisotropic energy and mobility of grain boundaries (GBs), three basic interactions of GBs during solidification are examined and they are consistent with experiments. The effect of initial distribution of grain boundary types and grain orientations is also investigated for the twinning frequency, the evolution of grain size, grain orientation and grain boundary types. A suitable seed arrangement is proposed and it would be helpful for experiments and production.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:53:30Z (GMT). No. of bitstreams: 1
ntu-106-D99524019-1.pdf: 7194022 bytes, checksum: da6bc5b2b0e96dae7dcf81653392759c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
Abstract III
Table of Contents V
Nomenclature VII
List of Tables XI
List of Figures XIII
Chapter 1. Introduction 1
Chapter 2. Literature Reviews 3
2-1 Equilibrium shapes and facet formation 3
2-2 Grain boundaries 9
2-3 Twin nucleation 17
2-4 Motivation and thesis outline 22
Chapter 3. Adaptive Phase Field Model and Numerical Methods 25
3-1 Modeling of solidification 25
3-1-1 Phase field model 27
3-1-2 Orientation field & multi-phase field model 30
3-1-3 Crystalline field 34
3-1-4 Governing equations 36
3-2 Numerical methods 38
3-2-1 Adaptive mesh refinement (AMR) 38
3-2-2 Finite volume method (FVM) 40
3-3 Computational domain and definition of variables 44
3-4 Summary 50
Chapter 4. Twinning mechanism 51
4-1 The bisector rule for grain growth 51
4-2 The twinning model 57
4-3 Multilayer nucleation for twinning 64
4-4 Comparison with experimental data 71
4-5 Summary 75
Chapter 5. Grain Growth of Multi-crystalline Silicon 77
5-1 Grain competition 77
5-2 Grain boundary properties 80
5-3 Grain boundary interaction and evolution 84
5-4 Grain growth including twinning 87
5-5 Summary 95
Chapter 6. Conclusions and Perspective 97
Bibliography 99
Appendix A: Properties of monocrystalline silicon 109
Appendix B: Curriculum Vitae 129
dc.language.isoen
dc.title相場模式在矽晶薄片垂直固化中晶粒與晶界發展之研究zh_TW
dc.titlePhase Field Modeling of Grain Structure and Grain Boundary Evolution during Directional Solidification of Silicon Sheeten
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖英志,何國川,高振宏,陳俊杉,陳志鴻
dc.subject.keyword相場模式,界面型態,垂直固化,晶界,重合位置點陣,攣生成核,zh_TW
dc.subject.keywordPhase field model,interfacial morphology,directional solidification,grain boundaries,coincident site lattice (CSL),twin nucleation,en
dc.relation.page130
dc.identifier.doi10.6342/NTU201702881
dc.rights.note未授權
dc.date.accepted2017-08-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved