請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20547
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 姚宗珍(Chung-Chen Yao) | |
dc.contributor.author | Yang-cheng Chen | en |
dc.contributor.author | 陳泱錚 | zh_TW |
dc.date.accessioned | 2021-06-08T02:52:42Z | - |
dc.date.copyright | 2017-09-13 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-11 | |
dc.identifier.citation | Aihara, N., Yamaguchi M. and Kasai K. (2006). 'Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro.' Lasers Med Sci. 21(1): 24-33.
Akeno, N., Robins J., Zhang M., Czyzyk-Krzeska M.F. and Clemens T.L. (2002). 'Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha.' Endocrinology. 143(2): 420-425. Al-Watban, F.A. and Andres B.L. (2009). 'Effect of HeNe laser and Polygen on CHO cells.' Journal of Clinical Laser Medicine & Surgery. 18(3): 145-150. Aldridge, S.E., Lennard T.W.J., Williams J.R. and Birch M.A. (2005). 'Vascular endothelial growth factor receptors in osteoclast differentiation and function.' Biochem. Biophys. Res. Commun. 335(3): 793-798. Alhashimi, N., Frithiof L., Brudvik P. and Bakhiet M. (1999). 'Chemokines are upregulated during orthodontic tooth movement.' J. Interferon Cytokine Res. 19(9): 1047-1052. Altan, B.A., Sokucu O., Ozkut M.M. and Inan S. (2012). 'Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement.' Lasers Med. Sci. 27(1): 131-140. Andrade Jr, I., Taddei S.R.A., Garlet G.P., Garlet T.P., Teixeira A.L., Silva T.A. and Teixeira M.M. (2009). 'CCR5 down-regulates osteoclast function in orthodontic tooth movement.' J. Dent. Res. 88(11): 1037-1041. Barleon, B., Sozzani S., Zhou D., Weich H.A., Mantovani A. and Marme D. (1996). 'Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1.' Blood 87(8): 3336-3343. Bicakci, A.A., Kocoglu-Altan B., Toker H., Mutaf, I., and Sumer Z. (2012). 'Efficiency of low-level laser therapy in reducing pain induced by orthodontic forces.' Photomed Laser Surg. 30(8): 460-465. Birkedal-Hansen, H., Moore W.G.I., Bodden M.K., Windsor L.J., Birkedal-Hansen B., Decarlo, A., and Engler J.A. (1993). 'Matrix metalloproteinases a review.' Crit. Rev. Oral Biol. Med. 4(2): 197-250. Bosatra, M., Jucci A., Olliaro P., Quacci D. and Sacchi S. (1984). 'In vitro fibroblast and dermis fibroblast activation by laser irradiation at low energy. An electron microscopic study.' Dermatologica. 168(4): 157-162. Brooks, P.J., Nilforoushan D., Manolson M.F., Simmons C.A. and Gong S.G. (2009). 'Molecular markers of early orthodontic tooth movement.' Angle Orthod. 79(6): 1108-1113. Burstone, M.S. (1959). 'Histochemical demonstration of acid phosphatase activity in osteoclasts.' J Histochem Cytochem. 7(1): 39-41. Carr, M.W., Roth S.J., Luther E.D., Rose S.S. and Springer T.A. (1994). 'Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant.' Proc Natl Acad Sci U S A. 91(9): 3652-3656. Cepera, F., Torres F.C., Scanavini M.A., Paranhos L.R., Capelozza Filho L., Cardoso M.A. and Siqueira D.F. (2012). 'Effect of a low-level laser on bone regeneration after rapid maxillary expansion.' Am J Orthod Dentofacial Orthop. 141(4): 444-450. Chen, C.H., Hung H.S. and Hsu S.H. (2008). 'Low-energy laser irradiation increases endothelial cell proliferation, migration, and eNOS gene expression possibly via PI3K signal pathway.' Lasers Surg Med. 40(1): 46-54. Chen, J.W. and Zhou Y.C. (2004). 'Effect of low level carbon dioxide laser radiation on biochemical metabolism of rabbit mandibular bone callus.' LASER THERAPY 14(Pilot_2): 41-44. Chen, Q. (1991). 'Effect of pulsed electromagnetic field on orthodontic tooth movement through transmission electromicroscopy.' Zhonghua Kou Qiang Yi Xue Za Zhi 26(1): 7-10. Cleall, J.F., Wilson G.W. and Garnett D.S. (1968). 'Normal craniofacial skeletal growth of the rat.' Am J Phys Anthropol. 29(2): 225-242. Collins, M.K. and Sinclair P.M. (1988). 'The local use of vitamin D to increase the rate of orthodontic tooth movement.' Am J Orthod Dentofacial Orthop. 94(4): 278-284. Coluzzi, D.J. (2004). 'Fundamentals of dental lasers: science and instruments.' Dent Clin North Am. 48: 751-770. Conlan, M.J., Rapley J.W. and Cobb C.M. (1996). 'Biostimulation of wound healing by low‐energy laser irradiation A review.' J. Clin. Periodontol. 23(5): 492-496. Corazza, A.V., Jorge J., Kurachi C. and Bagnato V.S. (2007). 'Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources.' Photomed Laser Surg. 25(2): 102-106. Dörtbudak, O., Haas R. and Mailath‐Pokorny G. (2000). 'Biostimulation of bone marrow cells with a diode soft laser.' Clin Oral Implants Res. 11(6): 540-545. Dandajena, T.C., Ihnat M.A., Disch B., Thorpe J. and Currier G.F. (2012). 'Hypoxia triggers a HIF-mediated differentiation of peripheral blood mononuclear cells into osteoclasts.' Orthod Craniofac Res. 15(1): 1-9. Darendeliler, M.A., Sinclair P.M. and Kusy R.P. (1995). 'The effects of samarium-cobalt magnets and pulsed electromagnetic fields on tooth movement.' Am. J. Orthod. Dentofacial Orthop. 107(6): 578-588. Davidovitch, Z., Finkelson M.D., Steigman S., Shanfeld J.L., Montgomery P.C. and Korostoff E. (1980). 'Electric currents, bone remodeling, and orthodontic tooth movement. I. The effect of electric currents on periodontal cyclic nucleotides.' Am J Orthod. 77(1): 14-32. Di Domenico, M., D'apuzzo F., Feola A., Cito L., Monsurrò A., Pierantoni G.M., ... and Perillo L. (2012). 'Cytokines and VEGF induction in orthodontic movement in animal models.' J Biomed Biotechnol 2012: 1-4. Domínguez, A., Gómez C. and Palma J.C. (2015). 'Effects of low-level laser therapy on orthodontics: rate of tooth movement, pain, and release of RANKL and OPG in GCF.' Lasers Med. Sci. 30(2): 915-923. Duan, J., Na Y., Liu Y. and Zhang Y. (2012). 'Effects of the pulse frequency of low-level laser therapy on the tooth movement speed of rat molars.' Photomed. Laser Surg. 30(11): 663-667. Feng, J., Zhang Y. and Xing D. (2012). 'Low-power laser irradiation (LPLI) promotes VEGF expression and vascular endothelial cell proliferation through the activation of ERK/Sp1 pathway.' Cell Signal. 24(6): 1116-1125. Frigo, L., Fávero G.M., Lima H.J.C., Maria D.A., Bjordal J.M., Joensen J., ... and Lopes-Martins R.a.B. (2010). 'Low-level laser irradiation (InGaAlP-660 nm) increases fibroblast cell proliferation and reduces cell death in a dose-dependent manner.' Photomed Laser Surg. 28(S1): S151-S156. Fujimoto, K., Kiyosaki T., Mitsui N., Mayahara K., Omasa S., Suzuki N. and Shimizu N. (2010). 'Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells.' Lasers Surg Med. 42(6): 519-526. Fujita, S., Yamaguchi M., Utsunomiya, T., , Yamamoto H. and Kasai K. (2008). 'Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL.' Orthod Craniofac Res. 11(3): 143-155. Fukuda, T.Y., Tanji M.M., De Jesus J.F., Da Silva S.R., Sato M.N. and Plapler H. (2013). 'Infrared low-level diode laser on serum chemokine MCP-1 modulation in mice.' Lasers Med Sci. 28(2): 451-456. Fukuhara, E., Goto T., Matayoshi T., Kobayashi S. and Takahashi T. (2006). 'Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial osteoblasts.' Calcif Tissue Int. 79(6): 443-450. Gama, S.K., Habib F.A., Monteiro J.S., Paraguassu G.M., Araujo T.M., Cangussu M.C. and Pinheiro A.L. (2010). 'Tooth movement after infrared laser phototherapy: clinical study in rodents.' Photomed. Laser Surg. 28 (S2): S79-S83. Garcia, R.L., Coltrera M.D. and Gown A.M. (1989). 'Analysis of proliferative grade using anti-PCNA/cyclin monoclonal antibodies in fixed, embedded tissues. Comparison with flow cytometric analysis.' Am J Pathol. 134(4): 733-739. Garlet, T.P., Coelho U., Repeke C.E., Silva J.S., De Queiroz Cunha F. and Garlet G.P. (2008). Differential expression of osteoblast and osteoclast chemmoatractants in compression and tension sides during orthodontic movement. 42: 330-335. Garlet, T.P., Coelho U., Silva J.S. and Garlet G.P. (2007). 'Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans.' Eur. J. Oral Sci. 115(5): 355-362. Ge, M.K., He W.L., Chen J., Wen C., Yin X., Hu Z.A., Liu Z.P. and Zou S.J. (2015). 'Efficacy of low-level laser therapy for accelerating tooth movement during orthodontic treatment: a systematic review and meta-analysis.' Lasers Med. Sci. 30(5): 1609-1618. Genc, G., Kocadereli I., Tasar F., Kilinc K., El S. and Sarkarati B. (2013). 'Effect of low-level laser therapy (LLLT) on orthodontic tooth movement.' Lasers Med. Sci. 28(1): 41-47. Glinkowski, W. and Pokora L. (1993). Lasery w terapii, Laser Instruments-Centrum Techniki Laserowej. Grassi, F.R., Ciccolella F., D'apolito G., Papa F., Iuso A., Salzo A.E., ... and Silvestris F. (2011). 'Effect of low-level laser irradiation on osteoblast proliferation and bone formation.' J Biol Regul Homeost Agents. 25(4): 603-614. Habib, F.A., Gama S.K., Ramalho L.M., Cangussu M.C., Dos Santos Neto F.P., Lacerda J.A., De Araujo T.M. and Pinheiro A.L. (2012). 'Effect of laser phototherapy on the hyalinization following orthodontic tooth movement in rats.' Photomed. Laser Surg. 30(3): 179-185. Hillenkamp, F. (1980). Interaction between Laser Radiation and Biological Systems. Lasers in Biology and Medicine. Hillenkamp et al. Boston, MA, Springer US: 37-68. Hirata, S., Kitamura C., Fukushima H., Nakamichi I., Abiko Y., Terashita M. and Jimi E. (2010). 'Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway.' J Cell Biochem. 111(6): 1445-1452. Huang, H., Williams R.C. and Kyrkanides S. (2014). 'Accelerated orthodontic tooth movement: molecular mechanisms.' Am. J. Orthod. Dentofacial Orthop. 146(5): 620-632. Huang, T.H., Liu S.L., Chen C.L., Shie M.Y. and Kao C.T. (2013). 'Low-level laser effects on simulated orthodontic tension side periodontal ligament cells.' Photomed. Laser Surg. 31(2): 72-77. Hughes, F., Turner W, Belibasakis G and G. M. (2006). 'Effects of growth factors and cytokines on osteoblast differentiation.' Periodontol. 2000 41(1): 48-72. Jauchem, J.R., Lopez M., Sprague E.A. and Schwartz C.J. (1982). 'Mononuclear cell chemoattractant activity from cultured arterial smooth muscle cells.' Exp Mol Pathol. 37(2): 166-174. Jäger, A., Zhang D., Kawarizadeh A., Tolba R., Braumann B., Lossdörfer S. and Götz W. (2005). 'Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat.' Eur. J. Orthod. 27(1): 1-11. Kagayama, M., Akita H., Sasano Y. and Kindaichi K. (1994). 'Localization of uncalcified cementum in adult rat molar roots and its relation to physiological tooth movement.' Arch Oral Biol. 39(10): 829-832. Kaku, M., Motokawa M., Tohma Y., Tsuka N., Koseki H., Sunagawa H., Arturo Marquez Hernandes R., Ohtani J., Fujita T., Kawata T. and Tanne K. (2008). 'VEGF and M-CSF levels in periodontal tissue during tooth movement.' Biomed. Res. 29(4): 181-187. Kale, S., Kocadereli I., Atilla P. and Aşan E. (2004). 'Comparison of the effects of 1,25 dihydroxycholecalciferol and prostaglandin E2 on orthodontic tooth movement.' Am J Orthod Dentofacial Orthop. 125(5): 607-614. Kana, J.S. and Hutschenreiter G. (1981). 'Effect of low-power density laser radiation on healing of open skin wounds in rats.' Arch Surg. 116(3): 293-296. Kanzaki, H., Chiba M., Arai K., Takahashi I., Haruyama N., Nishimura M. and Mitani H. (2006). 'Local RANKL gene transfer to the periodontal tissue accelerates orthodontic tooth movement.' Gene Ther. 13(8): 678-685. Kanzaki, H., Chiba M., Takahashi I., Haruyama N., Nishimura M. and Mitani H. (2004). 'Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement.' J Dent Res. 83(12): 920-925. Katagiri, T. and Takahashi N. (2002). 'Regulatory mechanisms of osteoblast and osteoclastdifferentiation.' Oral Dis. 8(3): 147-159. Kawasaki, K. and Shimizu N. (2000). 'Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats.' Lasers Surg Med. 26(3): 282-291. Kim, H.H., Lee S.E., Chung W.J., Choi Y., Kwack K., Kim S.W., ... and Lee Z.H. (2002). 'Stabilization of hypoxia-inducible factor-1alpha is involved in the hypoxic stimuli-induced expression of vascular endothelial growth factor in osteoblastic cells.' Cytokine. 17(1): 14-27. Kim, S.J., Chou M.Y. and Park Y.G. (2015). 'Effect of low-level laser on the rate of tooth movement.' Semin Orthod. 21(3): 210-218. Kim, S.J., Park K.H., Park Y.G., Lee S.W. and Kang Y.G. (2013). 'Compressive stress induced the up-regulation of M-CSF, RANKL, TNF-alpha expression and the down-regulation of OPG expression in PDL cells via the integrin-FAK pathway.' Arch Oral Biol. 58(6): 707-716. Kim, T., Handa A., Iida J. and Yoshida S. (2007). 'RANKL expression in rat periodontal ligament subjected to a continuous orthodontic force.' Arch. Oral Biol. 52(3): 244-250. Kim, Y.D., Kim S.S., Hwang D.S., Kim S.G., Kwon Y.H., Shin S.H., Kim U.K., Kim J.R. and Chung I.K. (2007). 'Effect of low-level laser treatment after installation of dental titanium implant-immunohistochemical study of RANKL, RANK, OPG: an experimental study in rats.' Lasers Surg. Med. 39(5): 441-450. Kim, Y.D., Kim S.S., Kim S.J., Kwon D.W., Jeon E.S. and Son W.S. (2010). 'Low-level laser irradiation facilitates fibronectin and collagen type I turnover during tooth movement in rats.' Lasers Med Sci. 25(1): 25-31. Kiyosaki, T., Mitsui N., Suzuki N. and Shimizu N. (2010). 'Low-level laser therapy stimulates mineralization via increased Runx2 expression and ERK phosphorylation in osteoblasts.' Photomed Laser Surg. 28(S1): S167-S172. Koichiro Kawasaki, N.S. (2000). 'Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats.' Lasers Surg. Med. 26(3): 282-291. Krishnan, V. and Davidovitch Z. (2006). 'Cellular, molecular, and tissue-level reactions to orthodontic force.' Am J Orthod Dentofacial Orthop. 129(4): 469.e461-432. Kubota, E., Imamura H., Kubota T., Shibata T. and Murakami K.I. (1997). 'Interleukin 1B and Stromelysin (MMP3) Activity of Synovial Fluid as Possible Markers of Osteoarthritis in the Temporomandibular Joint.' J. Oral Maxillofac. Surg. 55(1): 20-27. Kurihara, S. (1977). 'An electron microscopic observation on cells found in bone resorption area incident to experimental tooth movement.' Bull Tokyo Med Dent Univ. 24(1): 103-123. Leung, D.W., Cachianes G., Kuang W.J., Goeddel D.V. and Ferrara N. (1989). 'Vascular endothelial growth factor is a secreted angiogenic mitogen.' Science 246(4935): 1306-1309. Long, H., Zhou Y., Xue J., Liao L., Ye N., Jian F., Wang Y. and Lai W. (2015). 'The effectiveness of low-level laser therapy in accelerating orthodontic tooth movement: a meta-analysis.' Lasers Med. Sci. 30(3): 1161-1170. Lowney, J., Norton L., Shafer Dm and Ef. R. (1995). 'Orthodontic forces increase tumor necrosis factor alpha in the human gingival sulcus.' Am. J. Orthod. Dentofacial Orthop. 108(5): 519-524. Marquezan, M., Bolognese A.M. and Araujo M.T. (2010). 'Effects of two low-intensity laser therapy protocols on experimental tooth movement.' Photomed. Laser Surg. 28(6): 757-762. Martinasso, G., Mozzati M., Pol R., Canuto R.A. and Muzio G. (2007). 'Effect of superpulsed laser irradiation on bone formation in a human osteoblast-like cell line.' Minerva Stomatol. 56(1/2): 27-30. Mayr-Wohlfart, U., Waltenberger, J., , Hausser H., Kessler S., Günther K.P., Dehio C., ... and Brenner R.E. (2002). 'Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.' Bone 30(3): 472-477. Meikle, M.C. (2006). 'The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt.' Eur. J. Orthod. 28(3): 221-240. Mester, E., Mester A.F. and Mester A. (1985). 'The biomedical effects of laser application.' Lasers Surg Med. 5(1): 31-39. Mirsky, N., Krispel Y., Shoshany Y., Maltz L. and Oron U. (2002). 'Promotion of angiogenesis by low energy laser irradiation.' Antioxid Redox Signal. 4(5): 785-790. Miyagawa, A., Chiba M., Hayashi H. and Igarashi K. (2009). 'Compressive force induces VEGF production in periodontal tissues.' J. Dent. Res. 88(8): 752-756. Motomura, K., Nakajima M., Ihara A. and Atsumi K. (1984). 'Effects of various laser irradiation on callus formation after osteotomy.' Nippon Laser Igakkaishi, 4(1): 195-196. Nagai, M., Yoshida A., Sato N. and Wong D.T. (1999). 'Messenger RNA level and protein localization of transforming growth factor-beta1 in experimental tooth movement in rats.' Eur. J. Oral Sci. 107(6): 475-481. Nagasawa, A., Kato K. and Negishi A. (1991). 'Bone regeneration effect of low level lasers including argon laser.' Laser therapy 3(2): 59-62. Nakagawa, M., Kaneda T., Arakawa T., Morita S., Sato T., Yomada T., ... and Hakeda Y. (2000). 'Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts.' FEBS Leu 473(2): 161-164. Nakai, T., Yoshimura Y., Deyama Y., Suzuki K. and Iida J. (2009). 'Mechanical stress up-regulates RANKL expression via the VEGF autocrine pathway in osteoblastic MC3T3-E1 cells.' Mol Med Rep. 2(2): 229-234. Niida, S., Kaku M., Amano H., Yoshida H., Kataoka H., Nishikawa S., ... and Kodama H. (1999). 'Vascular endothelial growth factor can substitute for macrophage colony-stimulating factor in the support of osteoclastic bone resorption.' J. Exp. Med. 190(2): 293-298. Nishijima, Y., Yamaguchi M., Kojima T., Aihara N., Nakajima R. and Kasai K. (2006). 'Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro.' Orthod Craniofac Res. 9(2): 63-70. Nishimura, M., Chiba M., Ohashi T., Sato M., Shimizu Y., Igarashi K. and Mitani H. (2008). 'Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats.' Am. J. Orthod. Dentofacial Orthop. 133(4): 572-583. Nussbaum, E.L., Lilge L. and Mazzulli T. (2002). 'Effects of 810 nm laser irradiation on in vitro growth of bacteria: comparison of continuous wave and frequency modulated light.' Lasers Surg Med. 31(5): 343-351. Ohashi, M., Yamaguchi M., Tanimoto Y. and Kasai K. (2013). 'Low-energy Laser Irradiation Induces the Expression of Osteopontin in Tension Side during Orthodontic Tooth Movement.' Journal of Oral Tissue Engineering 11(1): 67-78. Omasa, S., Motoyoshi M., Arai Y., Ejima K.I. and Shimizu N. (2012). 'Low-level laser therapy enhances the stability of orthodontic mini-implants via bone formation related to BMP-2 expression in a rat model.' Photomed Laser Surg. 30(5): 255-261. Park, H.J., Baek K.H., Lee H.L., Kwon A., Hwang H.R., Qadir A.S., ... and Baek J.H. (2011). 'Hypoxia inducible factor-1alpha directly induces the expression of receptor activator of nuclear factor-kappaB ligand in periodontal ligament fibroblasts.' Mol Cells. 31(6): 573-578. Parker, S. (2007). 'Low-level laser use in dentistry.' Br. Dent. J. 202(3): 131-138. Pires Oliveira, D.A., De Oliveira R.F., Zangaro R.A. and Soares C.P. (2008). 'Evaluation of low-level laser therapy of osteoblastic cells.' Photomed Laser Surg. 26(4): 401-404. Pugh, C.W. and Ratcliffe P.J. (2003). 'Regulation of angiogenesis by hypoxia: role of the HIF system.' Nat. Med. 9(6): 677-684. Ren, Y., Maltha J.C., Van’t Hof M.A. and Kuijpers-Jagtman A.M. (2003). 'Age effect on orthodontic tooth movement in rats.' J Dent Res. 82(1): 38-42. Rody, W.J., King G.J. and Gu G. (2001). 'Osteoclast recruitment to sites of compression in orthodontic tooth movement.' Am J Orthod Dentofacial Orthop. 120(5): 477-489. Ryan, H.E., Lo J. and Johnson R.S. (1998). 'HIF-1 alpha is required for solid tumor formation and embryonic vascularization.' EMBO J. 17(11): 3005-3015. Saito, S. and Shimizu N. (1997). 'Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat.' Am J Orthod Dentofacial Orthop. 111(5): 525-532. Sakata, M., Yamamoto Y., Imamura N., Nakata S. and Nakasima A. (2008). 'The effects of a static magnetic field on orthodontic tooth movement.' J. Orthod. 35(4): 249-254. Salomão, M.F.L., Reis S.R.D.A., Vale V.L.C., Machado C.D.V., Meyer R. and Nascimento I.L.O. (2014). 'Immunolocalization of FGF-2 and VEGF in rat periodontal ligament during experimental tooth movement.' Dental Press J. Orthod. 19(3): 67-74. Schultz, R.J., Krishnamurthy S., Thelmo W., Rodriguez J.E. and Harvey G. (1985). 'Effects of varying intensities of laser energy on articular cartilage: a preliminary study.' Lasers Surg Med. 5(6): 577-588. Seifi, M., Eslami B. and Saffar A.S. (2003). 'The effect of prostaglandin E2 and calcium gluconate on orthodontic tooth movement and root resorption in rats.' Eur J Orthod. 25(2): 199-204. Senger, D.R., Galli S.J., Dvorak A.M., Perruzzi C.A., Harvey V.S. and Dvorak H.F. (1983). 'Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.' Science 219(4587): 983-985. Shingyochi, Y., Kanazawa S., Tajima S., Tanaka R., Mizuno H. and Tobita M. (2017). 'A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK.' PLoS One. 12(1): e0168937. Shiohama, Y. (1994). 'Histological and immunocytochemical study of bone resorption and endothelin-1 localization in experimental tooth movement.' J. Jpn. Orthd. Soc. 53: 457-471. Shirazi, M., Ahmad Akhoundi M.S., Javadi E., Kamali A., Motahhari P., Rashidpour M. and Chiniforush N. (2015). 'The effects of diode laser (660 nm) on the rate of tooth movements: an animal study.' Lasers Med. Sci. 30(2): 713-718. Shweiki, D., Itin A., Soffer D. and Keshet E. (1992). 'Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.' Nature. 359(6398): 843-845. Soma, S., Iwamoto M., Higuchi Y. and Kurisu K. (1999). 'Effects of continuous infusion of PTH on experimental tooth movement in rats.' J Bone Miner Res. 14(4): 546-554. Soma, S., Matsumoto S., Higuchi Y., Takano-Yamamoto T., Yamashita, K., , Kurisu K. and Iwamoto M. (2000). 'Local and chronic application of PTH accelerates tooth movement in rats.' J Dent Res. 79(9): 1717-1724. Street, J., Bao M., Bunting S., Peale F.V., Ferrara N., Steinmetz H., ... and Redmond H.P. (2002). 'Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.' Proc Natl Acad Sci USA 99(15): 9656-9661. Taddei, S.R., Andrade I., Jr., Queiroz-Junior C.M., Garlet T.P., Garlet G.P., Cunha Fde Q., Teixeira M.M. and Da Silva T.A. (2012). 'Role of CCR2 in orthodontic tooth movement.' Am. J. Orthod. Dentofacial Orthop. 141(2): 153-160. Taddei, S.R., Queiroz-Junior C.M., Moura A.P., Andrade I., Jr., Garlet G.P., Proudfoot A.E., Teixeira M.M. and Da Silva T.A. (2013). 'The effect of CCL3 and CCR1 in bone remodeling induced by mechanical loading during orthodontic tooth movement in mice.' Bone 52(1): 259-267. Takano-Yamamoto, T., Kawakami, M., and Yamashiro T. (1992). 'Effect of age on the rate of tooth movement in combination with local use of 1,25(OH)2D3 and mechanical force in the rat.' J Dent Res. 71(8): 1487-1492. Tang, X.M. and Chai B.P. (1986). 'Effect of CO2 laser irradiation on experimental fracture healing: a transmission electron microscopic study.' Lasers Surg Med. 6(3): 346-352. Tengku, B.S., Joseph B.K., Harbrow D., Taverne A.a.R. and Symons A.L. (2000). 'Effect of a static magnetic field on orthodontic tooth movement in the rat ' Eur. J. Orthod. 22(5): 475-487. Torri, S. and Weber J.B. (2013). 'Influence of low-level laser therapy on the rate of orthodontic movement: a literature review.' Photomed. Laser Surg. 31(9): 411-421. Tran, V.P., Vignery A. and Baron (1982). 'Cellular kinetics of the bone remodeling sequence in the rat.' Anat Rec. 202(4): 445-451. Trelles, M.A. and Mayayo E. (1987). 'Bone fracture consolidates faster with low-power laser.' Lasers Surg Med. 7(1): 36-45. Ueda, Y. and Shimizu N. (2003). 'Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells.' J Clin Laser Med Surg. 21(5): 271-277. Uematsu, S., Mogi M. and Deguchi T. (1996). 'Increase of transforming growth factor-beta 1 in gingival crevicular fluid during human orthodontic tooth movement.' Arch. Oral Biol. 41(11): 1091-1095. Uematsu, S., Mogi M. and Deguchi T. (1996). 'Interleukin (IL)-1 beta, IL-6, tumor necrosis factor-alpha, epidermal growth factor, and beta 2-microglobulin levels are elevated in gingival crevicular fluid during human orthodontic tooth movement.' J Dent Res. 75(1): 562-567. Umit Gurton, A., Akin E., Sagdic D. and Olmez H. (2004). 'Effects of PGI2 and TxA2 analogs and inhibitors in orthodontic tooth movement.' Angle Orthod. 74(4): 526-532. Van Breugel, H.H. and Bar P.R. (1992). 'Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro.' Lasers Surg Med. 12(5): 528-537. Wang, G.W., Wang M.Q., Wang X.J., Yu S.B., Liu X.D. and Jiao K. (2010). 'Changes in the expression of MMP-3, MMP-9, TIMP-1 and aggrecan in the condylar cartilage of rats induced by experimentally created disordered occlusion.' Arch. Oral Biol. 55(11): 887-895. Weidemann, A. and Johnson R.S. (2008). 'Biology of HIF-1alpha.' Cell Death Differ. 15(4): 621-627. Wiki. (15 March 2017 23:29 UTC). 'Cd31.' from https://en.wikipedia.org/w/index.php?title=CD31&oldid=770527550. Wiki. (20 February 2017 21:56 UTC). 'Tartrate-resistant acid phosphatase.' from https://en.wikipedia.org/w/index.php?title=Tartrate-resistant_acid_phosphatase&oldid=766563541. Williams, S.R., Jiang Y., Cochran D., Dorsam G. and Graves D.T. (1992). 'Regulated expression of monocyte chemoattractant protein-1 in normal human osteoblastic cells.' American Journal of Physiology - Cell Physiology 263(1): C194-C199. Yamaguchi, M. (2009). 'RANK/RANKL/OPG during orthodontic tooth movement.' Orthod. Craniofac. Res. 12(2): 113-119. Yamaguchi, M., Aihara N., Kojima T. and Kasai K. (2006). 'RANKL increase in compressed periodontal ligament cells from root resorption.' J Dent Res. 85(8). Yamaguchi, M., Fujita S., Yoshida T., Oikawa K., Utsunomiya T., Yamamoto H. and Kasai K. (2007). 'Low-energy laser irradiation stimulates the tooth movement velocity via expression of M-CSF and c-fms.' Orthodontic Waves 66(4): 139-148. Yamaguchi, M., Hayashi M., Fujita S., Yoshida T., Utsunomiya T., Yamamoto H. and Kasai K. (2010). 'Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats.' Eur. J. Orthod. 32(2): 131-139. Yamasaki, K., Shibata Y. and Fukuhara T. (1982). 'The effect of prostaglandins on experimental tooth movement in monkeys (Macaca fuscata).' J Dent Res. 61(12): 1444-1446. Yamasaki, K., Shibata Y., Imai S., Tani Y., Shibasaki Y. and Fukuhara T. (1984). 'Clinical application of prostaglandin E1 (PGE1) upon orthodontic tooth movement.' Am J Orthod. 85(6): 508-518. Yoshida, T., Yamaguchi M., Utsunomiya, T., , Kato M., Arai Y., Kaneda T., ... and Kasai K. (2009). 'Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling ' Orthodontics and Craniofacial Research 12(4): 289–298. Yoshimatsu, M., Shibata Y., Kitaura H., Chang X., Moriishi T. and Hashimoto F., ... Yamaguchi, A. (2006). 'Experimental model of tooth movement by orthodontic force in mice and its application to tumor necrosis factor receptor-deficient mice.' J. Bone Miner. Metab. 24(1): 20-27. Zainal Ariffin, S.H., Yamamoto Z., Zainol Abidin I.Z., Megat Abdul Wahab R. and Zainal Ariffin Z. (2011). 'Cellular and molecular changes in orthodontic tooth movement.' The Scientific World Journal. 11: 1788-1803. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20547 | - |
dc.description.abstract | 矯正牙齒移動是牙齒受力後,牙周韌帶與齒槽骨組織重塑的結果。包含許多細胞激素參與,RANKL-RANK-OPG系統是調控骨重塑活動的重要一環,也是許多加速牙齒移動機制的主要目標。眾多文獻回顧支持低能量雷射治療有加速矯正牙齒移動功效,可能的機制為透過RANKL-RANK系統活化噬骨細胞、刺激骨生成,以及加快矯正治療中的透明帶移除。
影響RANKL-RANK-OPG系統的因子很多,本實驗使用波長970 nm,功率輸出500 mW之低能量雷射,對大鼠上顎臼齒進行照射,利用IVIS活體影像系統觀察MMP3變化,並針對RANKL、OPG、VEGF、PECAM-1、HIF-1α、PCNA、MCP-1進行免疫化學組織染色分析;亦透過單純照射大鼠下顎臼齒探討單純照射高劑量LLLT對大鼠骨質代謝的影響。結果發現高劑量LLLT刺激並加成RANKL、VEGF、HIF-1α及MCP-1表現,且影響皆相當早期,而噬骨細胞數目的確因雷射刺激而顯著增加;單純照射高劑量LLLT對HIF-1α有明顯刺激作用。 綜合本實驗各項結果推論:LLLT加速牙齒移動機制除了RANKL-RANK系統,可能與HIF-1α→VEGF途徑亦有關,但詳細機轉仍須更進一步研究。 | zh_TW |
dc.description.abstract | Orthodontic tooth movement (OTM) is the result of periodontium remodeling after mechanical force application. The remodeling includes many cytokines involved. RANKL-RANK-OPG system is one of the important keys to achieve periodontium remodeling, and different approaches were attempted to accelerate tooth movement. Lots of literatures support that low level laser therapy (LLLT) can increase rate of orthodontic tooth movement. The possible mechanisms are activating osteoclasts activity through the RANKL-RANK pathway, stimulating bone formation, and early removal of hyalinization tissue.
There are many factors contributing to the RANKL-RANK system. The aim of present study is to explore the LLLT effects on the bone remodeling of OTM in rat model. IVIS living image system was used for detecting luciferase actvitiy under MMP3 promoter at early stages of OTM, and immunohistochemistry was used to analyze the expression RANKL、OPG、VEGF、PECAM-1、HIF-1α、PCNA、MCP-1 at the tissue levels at day 1, day 3, day 7, day day 21 after OTM. The results reveal that MMP3 may be not an appropriate reporter of LLLT acceleration, however, the expression of RANKL、VEGF、HIF-1α及MCP-1 are upgraded early after LLLT stimulation. The number of osteoclasts are significantly higher in the high dose irritation group. And LLLT but without OTM, enhances HIF-1αexpression during physiological molar distal drifting in rats. We suggest that the effects of LLLT on accelerating orthodontic tooth movement are related to RANKL-RANK system and possibly the HIF-VEGF pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:52:42Z (GMT). No. of bitstreams: 1 ntu-106-R03422025-1.pdf: 5196274 bytes, checksum: 680c9472b8bd0342bb683a547e712deb (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 前言 1 1.1 齒顎矯正牙齒移動(orthodontic tooth movement, OTM) 1 1.1.1骨重塑(bone remodeling) 2 1.1.2 細胞激素、生長因子與齒顎矯正牙齒移動 3 1.2 加速牙齒移動機制 5 1.3 低能量雷射(Low level laser) 7 1.3.1 雷射參數 7 1.3.2 低能量雷射於牙科之應用 8 1.3.3 低能量雷射與矯正相關之組織變化 9 1.4 本實驗室歷年研究發現 9 1.5 結語與研究目標 10 第二章 材料與方法 11 2.1 大鼠OTM模式及口內裝置 11 2.2 動物雷射照射方式及參數設定 11 2.3 高劑量LLLT對基因轉殖鼠MMP3表現影響實驗 12 2.3.1 MMP3偵測與量化 12 2.4 不同劑量LLLT於大鼠OTM模式引發之組織反應 – TRAP counts 13 2.4.1 免疫化學組織染色(Immunohistochemical analysis, IHC) 13 2.4.2 IHC觀察目標及範圍 14 2.5 高劑量LLLT於大鼠OTM模式引發之組織反應 14 2.5.1 標本處理 14 2.5.2 IHC 15 2.5.3 IHC觀察目標及範圍 16 2.6 單純照射高劑量LLLT之大鼠組織反應 16 2.6.1 IHC 16 2.6.2 IHC觀察目標及範圍 16 第三章 結果 17 3.1 高劑量LLLT對基因轉殖大鼠MMP3 promoter-Luciferase表現影響 17 3.2 不同劑量LLLT於大鼠OTM模式引發之組織反應 – TRAP counts 17 3.3 高劑量LLLT於大鼠OTM模式引發之組織反應 18 3.4 單純照射LLLT對組織影響 18 第四章 討論 19 4.1 大鼠OTM模式探討與應用 19 4.2 LLLT對「矯正牙齒移動速率影響」之動物實驗 19 4.3 LLLT引發之細胞組織層面反應 20 4.3.1 MMP3 20 4.3.2 RANKL、OPG 21 4.3.3 VEGF、PECAM-1 22 4.3.4 HIF-1α 24 4.3.5 PCNA 24 4.3.6 MCP-1 25 4.3.7 Osteoclasts 25 4.3.8 單純照射LLLT對組織影響 26 第五章 結論 28 參考文獻 56 | |
dc.language.iso | zh-TW | |
dc.title | 低能量雷射治療對大鼠矯正牙齒移動模式之影響 | zh_TW |
dc.title | Effects of low level laser on orthodontic tooth movement
model in rats | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳羿貞(Yi-Chen Chen),張百恩(Bei-En Chang),林思洸(Sze-Kwan Lin) | |
dc.subject.keyword | 矯正牙齒移動,加速牙齒移動,低能量雷射治療,骨重塑,免疫化學組織染色, | zh_TW |
dc.subject.keyword | orthodontic tooth movement,accelerate tooth movement,low level laser therapy,bone remodeling,immunohistochemistry, | en |
dc.relation.page | 69 | |
dc.identifier.doi | 10.6342/NTU201702496 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-12 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。