Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20528
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 于明暉(Ming-Whei Yu) | |
dc.contributor.author | Jia-Kai Hsu | en |
dc.contributor.author | 許家愷 | zh_TW |
dc.date.accessioned | 2021-06-08T02:51:58Z | - |
dc.date.copyright | 2017-09-14 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-14 | |
dc.identifier.citation | [1] Okada K, Kamiyama I, Inomata M, Imai M, Miyakawa Y. e antigen and anti-e in the serum of asymptomatic carrier mothers as indicators of positive and negative transmission of hepatitis B virus to their infants. The New England journal of medicine 1976;294:746-9.
[2] Ganem D, Prince AM. Hepatitis B virus infection--natural history and clinical consequences. The New England journal of medicine 2004;350:1118-29. [3] International Agency for Research on Cancer. Globocan 2012: Estimated cancer incidence , mortality, and prevalence worldwide 2012. (http://globocan.iarc.fr/Default.aspx). 2012. [4] 國民健康署. 104年台灣國人死因統計結果. 2015. [5] Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer: worldwide incidence and trends. Gastroenterology 2004;127:S5-S16. [6] Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama 2006;295:65-73. [7] Wu CF, Yu MW, Lin CL, Liu CJ, Shih WL, Tsai KS, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29:106-12. [8] Mendy ME, Welzel T, Lesi OA, Hainaut P, Hall AJ, Kuniholm MH, et al. Hepatitis B viral load and risk for liver cirrhosis and hepatocellular carcinoma in The Gambia, West Africa. Journal of viral hepatitis 2010;17:115-22. [9] Sung FY, Jung CM, Wu CF, Lin CL, Liu CJ, Liaw YF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009;137:1687-97. [10] Sunbul M. Hepatitis B virus genotypes: global distribution and clinical importance. World journal of gastroenterology : WJG 2014;20:5427-34. [11] Fujie H, Moriya K, Shintani Y, Yotsuyanagi H, Iino S, Koike K. Hepatitis B virus genotypes and hepatocellular carcinoma in Japan. Gastroenterology 2001;120:1564-5. [12] Chan HL, Hui AY, Wong ML, Tse AM, Hung LC, Wong VW, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53:1494-8. [13] Yang HI, Lu SN, Liaw YF, You SL, Sun CA, Wang LY, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. The New England journal of medicine 2002;347:168-74. [14] Chu CJ, Keeffe EB, Han SH, Perrillo RP, Min AD, Soldevila-Pico C, et al. Prevalence of HBV precore/core promoter variants in the United States. Hepatology 2003;38:619-28. [15] Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. Journal of gastroenterology and hepatology 1997;12:S294-308. [16] Yu MW, Chang HC, Liaw YF, Lin SM, Lee SD, Liu CJ, et al. Familial risk of hepatocellular carcinoma among chronic hepatitis B carriers and their relatives. Journal of the National Cancer Institute 2000;92:1159-64. [17] Yu MW, Yeh SH, Chen PJ, Liaw YF, Lin CL, Liu CJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. Journal of the National Cancer Institute 2005;97:265-72. [18] Chao LT, Wu CF, Sung FY, Lin CL, Liu CJ, Huang CJ, et al. Insulin, glucose and hepatocellular carcinoma risk in male hepatitis B carriers: results from 17-year follow-up of a population-based cohort. Carcinogenesis 2011;32:876-81. [19] Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathologie-biologie 2010;58:258-66. [20] Singh M, Dicaire A, Wakil AE, Luscombe C, Sacks SL. Quantitation of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in the liver of HBV-infected patients by LightCycler real-time PCR. Journal of virological methods 2004;118:159-67. [21] Tanaka E, Matsumoto A, Suzuki F, Kobayashi M, Mizokami M, Tanaka Y, et al. Measurement of hepatitis B virus core-related antigen is valuable for identifying patients who are at low risk of lamivudine resistance. Liver international : official journal of the International Association for the Study of the Liver 2006;26:90-6. [22] Wong DK, Tanaka Y, Lai CL, Mizokami M, Fung J, Yuen MF. Hepatitis B virus core-related antigens as markers for monitoring chronic hepatitis B infection. Journal of clinical microbiology 2007;45:3942-7. [23] Maasoumy B, Wiegand SB, Jaroszewicz J, Bremer B, Lehmann P, Deterding K, et al. Hepatitis B core-related antigen (HBcrAg) levels in the natural history of hepatitis B virus infection in a large European cohort predominantly infected with genotypes A and D. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2015;21:606 e1-10. [24] Shinkai N, Tanaka Y, Orito E, Ito K, Ohno T, Hirashima N, et al. Measurement of hepatitis B virus core-related antigen as predicting factor for relapse after cessation of lamivudine therapy for chronic hepatitis B virus infection. Hepatology research : the official journal of the Japan Society of Hepatology 2006;36:272-6. [25] Jungermann K, Kietzmann T. Oxygen: modulator of metabolic zonation and disease of the liver. Hepatology 2000;31:255-60. [26] Watashi K, Urban S, Li W, Wakita T. NTCP and beyond: opening the door to unveil hepatitis B virus entry. International journal of molecular sciences 2014;15:2892-905. [27] Li H, Zhu W, Zhang L, Lei H, Wu X, Guo L, et al. The metabolic responses to hepatitis B virus infection shed new light on pathogenesis and targets for treatment. Scientific reports 2015;5:8421. [28] Xie G, Wang X, Huang F, Zhao A, Chen W, Yan J, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. International journal of cancer Journal international du cancer 2016;139:1764-75. [29] Zeng J, Huang X, Zhou L, Tan Y, Hu C, Wang X, et al. Metabolomics Identifies Biomarker Pattern for Early Diagnosis of Hepatocellular Carcinoma: from Diethylnitrosamine Treated Rats to Patients. Scientific reports 2015;5:16101. [30] Tan Y, Yin P, Tang L, Xing W, Huang Q, Cao D, et al. Metabolomics study of stepwise hepatocarcinogenesis from the model rats to patients: potential biomarkers effective for small hepatocellular carcinoma diagnosis. Molecular & cellular proteomics : MCP 2012;11:M111 010694. [31] Zhang W, Zhou L, Yin P, Wang J, Lu X, Wang X, et al. A weighted relative difference accumulation algorithm for dynamic metabolomics data: long-term elevated bile acids are risk factors for hepatocellular carcinoma. Scientific reports 2015;5:8984. [32] Yang F, Yan S, He Y, Wang F, Song S, Guo Y, et al. Expression of hepatitis B virus proteins in transgenic mice alters lipid metabolism and induces oxidative stress in the liver. Journal of hepatology 2008;48:12-9. [33] Teng CF, Hsieh WC, Yang CW, Su HM, Tsai TF, Sung WC, et al. A biphasic response pattern of lipid metabolomics in the stage progression of hepatitis B virus X tumorigenesis. Molecular carcinogenesis 2016;55:105-14. [34] Bard-Chapeau EA, Nguyen AT, Rust AG, Sayadi A, Lee P, Chua BQ, et al. Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model. Nature genetics 2014;46:24-32. [35] Zhang A, Sun H, Han Y, Yan G, Wang X. Urinary metabolic biomarker and pathway study of hepatitis B virus infected patients based on UPLC-MS system. PloS one 2013;8:e64381. [36] YANG Yong-xia YS-y, LIANG Min-feng, QIU Cui-huan. 1H NMR spectroscopy combined with principal component analysis for metabonomic study on serum of HBV patients. ACADEMIC JOURNAL OF SECOND MILITARY MEDICAL UNIVERSITY 2010. [37] Qi S, Tu Z, Ouyang X, Wang L, Peng W, Cai A, et al. Comparison of the metabolic profiling of hepatitis B virus-infected cirrhosis and alcoholic cirrhosis patients by using (1) H NMR-based metabonomics. Hepatology research : the official journal of the Japan Society of Hepatology 2012;42:677-85. [38] Hongchang Gao, Qiang Lu, Xia Liu, Hui Cong, Liangcai Zhao, Huimin Wang, et al. Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Science 2009. [39] Zhang L, Huang Y, Lian M, Fan Z, Tian Y, Wang Y, et al. Metabolic profiling of hepatitis B virus-related hepatocellular carcinoma with diverse differentiation grades. Oncology letters 2017;13:1204-10. [40] Ladep NG, Dona AC, Lewis MR, Crossey MM, Lemoine M, Okeke E, et al. Discovery and validation of urinary metabotypes for the diagnosis of hepatocellular carcinoma in West Africans. Hepatology 2014;60:1291-301. [41] Liaw YF. Natural history of chronic hepatitis B virus infection and long-term outcome under treatment. Liver international : official journal of the International Association for the Study of the Liver 2009;29 Suppl 1:100-7. [42] Schoeman JC, Hou J, Harms AC, Vreeken RJ, Berger R, Hankemeier T, et al. Metabolic characterization of the natural progression of chronic hepatitis B. Genome medicine 2016;8:64. [43] Pepe MS, Etzioni R, Feng Z, Potter JD, Thompson ML, Thornquist M, et al. Phases of biomarker development for early detection of cancer. Journal of the National Cancer Institute 2001;93:1054-61. [44] Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols 2007;2:2692-703. [45] Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and statistical approaches to metabolomics research. Journal of separation science 2009;32:2183-99. [46] Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochemical and biophysical research communications 2003;310:943-8. [47] van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC genomics 2006;7:142. [48] Euceda LR, Giskeodegard GF, Bathen TF. Preprocessing of NMR metabolomics data. Scandinavian journal of clinical and laboratory investigation 2015;75:193-203. [49] Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Analytical chemistry 1995;67:793-811. [50] Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PloS one 2011;6:e16957. [51] Warren Yabsley SH-V, and Julie Fisher. Nuclear Magnetic Resonance Spectroscopy in the Detection and Characterisation of Cardiovascular Disease: Key Studies. ISRN Vascular Medicine 2012;2012. [52] Banerjee P, Dutta M, Srivastava S, Joshi M, Chakravarty B, Chaudhury K. (1)H NMR serum metabonomics for understanding metabolic dysregulation in women with idiopathic recurrent spontaneous miscarriage during implantation window. Journal of proteome research 2014;13:3100-6. [53] Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic acids research 2009;37:W652-60. [54] Xia J, Wishart DS. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature protocols 2011;6:743-60. [55] Xia J, Wishart DS. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Current protocols in bioinformatics 2016;55:14 0 1- 0 91. [56] Liang KY, Zeger SL. Longitudinal Data-Analysis Using Generalized Linear-Models. Biometrika 1986;73:13-22. [57] Chi HC, Chen SL, Lin SL, Tsai CY, Chuang WY, Lin YH, et al. Thyroid hormone protects hepatocytes from HBx-induced carcinogenesis by enhancing mitochondrial turnover. Oncogene 2017. [58] Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. Journal of lipid research 2007;48:2664-72. [59] Maran RR, Thomas A, Roth M, Sheng Z, Esterly N, Pinson D, et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. The Journal of pharmacology and experimental therapeutics 2009;328:469-77. [60] Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhoffer M, et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer research 2012;72:356-64. [61] Tiziani S, Lopes V, Gunther UL. Early stage diagnosis of oral cancer using 1H NMR-based metabolomics. Neoplasia 2009;11:269-76, 4p following [62] Gao R, Cheng J, Fan C, Shi X, Cao Y, Sun B, et al. Serum Metabolomics to Identify the Liver Disease-Specific Biomarkers for the Progression of Hepatitis to Hepatocellular Carcinoma. Scientific reports 2015;5:18175. [63] Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. The Journal of nutrition 2006;136:207S-11S. [64] Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, et al. Metabolite profiles and the risk of developing diabetes. Nature medicine 2011;17:448-53. [65] Ruiz HH, Chi T, Shin AC, Lindtner C, Hsieh W, Ehrlich M, et al. Increased susceptibility to metabolic dysregulation in a mouse model of Alzheimer's disease is associated with impaired hypothalamic insulin signaling and elevated BCAA levels. Alzheimer's & dementia : the journal of the Alzheimer's Association 2016;12:851-61. [66] Levine RJ, Conn HO. Tyrosine metabolism in patients with liver disease. The Journal of clinical investigation 1967;46:2012-20. [67] Fulenwider JT, Nordlinger BM, Faraj BA, Ivey GL, Rudman D. Deranged tyrosine metabolism in cirrhosis. The Yale journal of biology and medicine 1978;51:625-33. [68] Huang Q, Tan Y, Yin P, Ye G, Gao P, Lu X, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer research 2013;73:4992-5002. [69] Yin P, Lehmann R, Xu G. Effects of pre-analytical processes on blood samples used in metabolomics studies. Analytical and bioanalytical chemistry 2015;407:4879-92. [70] Yu R, Dan Y, Xiang X, Zhou Y, Kuang X, Yang G, et al. Stability of Chronic Hepatitis-Related Parameters in Serum Samples After Long-Term Storage. Biopreservation and biobanking 2017;15:211-9. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20528 | - |
dc.description.abstract | 背景及目的:過去研究發現B型肝炎感染者及未感染者,肝細胞癌患者及未發生肝細胞癌者體內的代謝情況會有明顯不同,因此我們認為B型肝炎病毒造成慢性感染者體內代謝的變化和後續發展成肝細胞癌有關。於是本研究利用回溯性長期多時點研究設計來探討B型肝炎病毒帶原者於發生肝細胞癌之前長期代謝體輪廓的變化。
材料與方法:本研究從過去1143人的病例對照世代資料庫中隨機選取71名肝細胞癌病患及71名未發病個案,該病例對照世代樣本皆為B型肝炎病毒帶原且年齡介於30-65歲之男性個案。71對樣本依據進入研究之年份及年齡進行個別配對,並於1989-2006年的追蹤時間中依據抽血時間進行2-6個時點的配對(追蹤時間中位數:8.69年)。血漿的代謝體實驗是利用一維度氫原子NMR(nuclear magnetic resonance)質譜來進行,並且會利用PCA(principal component analysis)及OPLS- DA(orthogonal projections to latent structures discriminant analysis)的方式去進行分組的鑑別。後續會利用GEE(generalized estimating equation)模式去探討長期的代謝體變化和肝細胞癌及病毒因子間的關係,同時也會利用代謝分子群集分析來辨識何種生物路徑受到影響。 結果:從基線的檢定可以發現,formate、citrate、pyruvate、tyrosine、isopropanol、creatinine、valine及leucine等8個代謝小分子顯著於兩組的分布不同(P值皆≤0.0649),表示能量代謝及支鍊族胺基酸的代謝可能受到B型肝炎病毒影響。具體而言,formate、citrate、pyruvate等能量代謝相關的代謝小分子會顯著的於肝細胞癌組增加;而valine及leucine支鍊族胺基酸會顯著的於肝細胞癌組降低。能量代謝相關之代謝分子濃度的上升和B型肝炎病毒之長期病毒量有顯著的正相關。 結論:本研究發現能量代謝路徑相關分子濃度上升及支鏈族胺基酸的代謝分子濃度下降,可能和發展成B型肝炎相關肝細胞癌有關。 | zh_TW |
dc.description.abstract | Background & Aims: Studies have shown distinct metabolic profiles in hepatitis B virus (HBV)-infected vs. uninfected persons, and in patients with hepatocellular carcinoma (HCC) vs. those without. We hypothesized that changes in metabolic pathways may mediate the effect of chronic HBV infection during the development of HCC. A retrospective longitudinal repository study was designed to longitudinally explore associations between metabolomics profiles and viral factors and HCC risk.
Materials and Methods: In a case-cohort study database of 1143 hepatitis B surface antigen-positive men aged 30-65 years, we randomly selected 71 HCC cases and 71 matched controls with blood drawn 2 to 6 times before diagnosis of HCC from 1989 to 2006 (median follow-up: 8.69 years). Cases and controls were matched for by entry year, age at recruitment, and blood collection time. Plasma metabolomics profiling was performed by 1D 1H NMR (nuclear magnetic resonance) spectroscopy. PCA and OPLS-DA was used in global profiles of pattern recognition. Generalized estimating equation (GEE) models were performed to explore the longitudinal relationship between specific metabolites and HCC or viral factors. Metabolite set enrichment analysis was used to identify and interpret patterns of human metabolite concentration changes in a biological pathway. Result: We showed that baseline plasma metabolomics patterns were significantly different between HCC cases and controls. Eight baseline discriminatory metabolites (including formate, citrate, pyruvate, tyrosine, isopropanol, creatinine, valine, and leucine) were associated with HCC (all p-values≤0.0649), indicating that diverse pathways were altered, including energy metabolism and branched-chain amino acid metabolism. Specifically, metabolites related to energy metabolism, including citrate, pyruvate, and formate were significantly increased in the HCC cases vs. controls, while metabolites related to branched-chain amino acid metabolism, including valine and leucine were significantly were decreased in the HCC cases vs. controls. The serum concentrations of energy related metabolites increased and this up-regulation trend associated with longitudinal HBV viral load. Conclusion: This study showed that metabolic alterations, including increased energy metabolism and decreased branched-chain amino acid group, may be associated with the development of HBV-related HCC risk. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:51:58Z (GMT). No. of bitstreams: 1 ntu-106-R04849009-1.pdf: 2226302 bytes, checksum: 86037f4d322323603996dc0082ea52ad (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝........................................... i
中文摘要....................................... ii 英文摘要........................................iii 一、研究背景.....................................1 B型肝炎病毒與細胞癌...............................1 代謝體學.........................................4 B型肝炎及細胞癌的代謝體研究........................5 目的............................................ 11 二、材料與方法....................................12 資料庫...........................................12 抽樣及研究設計...................................13 代謝體實驗.......................................13 統計方法.........................................15 三、結果.........................................17 病例組及對照的基線資料............................17 兩組於基線時代謝小分子對群之貢獻及布情形............17 基線代謝主成分數和HCC之危險性......................18 8個重要代謝小分子於追蹤期間之相對濃度變化趨勢........19 病例組中隨時間進展重要代謝小分子之濃度是否將有所變化..20 代謝小分子於病例組隨追蹤期間的變化趨勢和毒因之關係....20 四、討論...........................................22 能量代謝路徑與HBV病毒及HCC之關係.....................23 Pyruvate與基線HBeAg陽性及基線ALT異常之關係...........26 芳香族胺基酸及支鏈與HBV病毒及HCC之關係...............26 研究限制...........................................28 五、參考文獻........................................30 | |
dc.language.iso | zh-TW | |
dc.title | 血液代謝體變化和肝細胞癌致癌進程的關係 | zh_TW |
dc.title | Blood Metabolic Profiling during the Development of Hepatitis B-Related Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林靖愉(Ching-Yu Lin) | |
dc.contributor.oralexamcommittee | 鄭尊仁,林志陵,黃奕文 | |
dc.subject.keyword | B 型肝炎病毒,肝細胞癌,代謝體, | zh_TW |
dc.subject.keyword | hepatitis B virus,hepatocellular carcinoma,metabolomics, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU201703232 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-14 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
Appears in Collections: | 流行病學與預防醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 2.17 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.