Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20421
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施吉昇(Chi-Sheng Shih)
dc.contributor.authorFan-Ping Tangen
dc.contributor.author湯梵平zh_TW
dc.date.accessioned2021-06-08T02:48:10Z-
dc.date.copyright2020-09-29
dc.date.issued2020
dc.date.submitted2020-09-02
dc.identifier.citationR. Mur-Artal, J. M. M. Montiel, and J. D. Tardós, “Orb-slam: A versatile and accurate monocular slam system,” IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.
L. Chen, W. Tang, N. W. John, T. R. Wan, and J. J. Zhang, “Slambased dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality,” Computer Methods and Programs in Biomedicine, vol. 158, pp. 135 – 146, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169260717301694
G. A. Puerto-Souza, J. A. Cadeddu, and G. Mariottini, “Toward long-term and accurate augmented-reality for monocular endoscopic videos,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 10, pp. 2609–2620, 2014.
B. Münzer, K. Schoeffmann, and L. Böszörmenyi, “Content-based processing and analysis of endoscopic images and videos: A survey,” Multimedia Tools and Applications, vol. 77, no. 1, pp. 1323–1362, Jan 2018. [Online]. Available: https://doi.org/10.1007/s11042-016-4219-z
G. Klein and D. Murray, “Parallel tracking and mapping for small ar workspaces,” in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, 2007, pp. 225–234.
N. Mahmoud, A. Hostettler, T. Collins, L. Soler, C. Doignon, and J. M. M. Montiel, “SLAM based quasi dense reconstruction for minimally invasive surgery scenes,” CoRR, vol. abs/1705.09107, 2017. [Online]. Available: http://arxiv.org/abs/1705.09107
S. Bernhardt, S. A. Nicolau, V. Agnus, L. Soler, C. Doignon, and J. Marescaux, “Automatic localization of endoscope in intraoperative ct image: A simple approach to augmented reality guidance in laparoscopic surgery,” Medical Image Analysis, vol. 30, pp. 130 – 143, 2016. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1361841516000153
S. Song, B. Li, W. Qiao, C. Hu, H. Ren, H. Yu, Q. Zhang, M. Q. . Meng, and G. Xu, “6-d magnetic localization and orientation method for an annular magnet based on a closed-form analytical model,” IEEE Transactions on Magnetics, vol. 50, no. 9, pp. 1–11, 2014.
D. M. Pham and S. M. Aziz, “A real-time localization system for an endoscopic capsule,” in 2014 IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2014, pp. 1–6.
K. M. Popek, A.W. Mahoney, and J. J. Abbott, “Localization method for a magnetic capsule endoscope propelled by a rotating magnetic dipole field,” in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 5348–5353.
C. Di Natali, M. Beccani, and P. Valdastri, “Real-time pose detection for magnetic medical devices,” IEEE Transactions on Magnetics, vol. 49, no. 7, pp. 3524–3527, 2013.
L.-M. Su, B. P. Vagvolgyi, R. Agarwal, C. E. Reiley, R. H. Taylor, and G. D. Hager, “Augmented reality during robot-assisted laparoscopic partial nephrectomy: Toward real-time 3d-ct to stereoscopic video registration,” Urology, vol. 73, no. 4, pp. 896 – 900, 2009. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S009042950801947X
S. Speidel, S. Roehl, S. Suwelack, R. Dillmann, H. Kenngott, and B. Müller, “Intraoperative surface reconstruction and biomechanical modeling for soft tissue registration,” 07 2013.
Y. Adagolodjo, R. Trivisonne, N. Haouchine, S. Cotin, and H. Courtecuisse, “Silhouette-based pose estimation for deformable organs application to surgical augmented reality,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 539–544.
N. Haouchine, F. Roy, L. Untereiner, and S. Cotin, “Using contours as boundary conditions for elastic registration during minimally invasive hepatic surgery,” in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 495–500.
R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, 2nd ed. Cambridge University Press, 2004.
B. O. Community, Blender - a 3D modelling and rendering package, Blender Foundation, Stichting Blender Foundation, Amsterdam, 2018. [Online]. Available: http://www.blender.org
G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.
R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13 2011.
J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A benchmark for the evaluation of rgb-d slam systems,” in Proc. of the International Conference on Intelligent Robot Systems (IROS), Oct. 2012.
J. Sturm, W. Burgard, and D. Cremers, “Evaluating egomotion and structure-frommotion approaches using the TUM RGB-D benchmark,” in Proc. of theWorkshop on Color-Depth Camera Fusion in Robotics at the IEEE/RJS International Conference on Intelligent Robot Systems (IROS), Oct. 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20421-
dc.description.abstract隨著內視鏡的發展且能夠提供許多傳統手術沒有的優點,外科醫生也必須面臨內視鏡手術下的挑戰,例如視角過小、缺乏深度資訊及觸覺回饋。要如何在狹窄的內視鏡影像中定位出血管、腫瘤、以及各種器官也成為非常重要的問題,因此,近年來越來越多關於內視鏡手術下定位技術的研究,其中多數的研究都需要額外的傳感器,像是超音波、深度、電腦斷層和慣性測量傳感器等,而本篇專注在實務中最常使用的單目內視鏡影像。隨著內視鏡的發展且能夠提供許多傳統手術沒有的優點,然而單一影像所能提供的資訊有限,所以我們採用基於特徵的即時定位與地圖構建和點雲註冊來得到內視鏡與器官組織的相對位置。基於特徵的即時定位與地圖構建演算法需要相機以特定的移動方式來進行初始化且需要一定的時間來找到匹配的前後幀,本篇論文中我們改良了初始化的方法使得成功率提升超過十倍。而在定位的實驗中,器官定位誤差在7.5公釐以下,也證明我們提出的方法可以有效的在內視鏡手術中提供正確的定位。zh_TW
dc.description.abstractMinimally invasive surgery (MIS) is increasingly popular because of advances in robotic and endoscopic technology. While MIS provides significant benefits to patients, surgeons require additional training and practice because of the narrow field of view, lack of depth information and haptic response. One of the most critical challenges for MIS is how to accurately localize the objects such as blood vessels, tumors and organs. Hence, there are growing research interests in helping surgeons. Most of the related works require additional sensors including ultrasound probe, depth sensor, intraoperative CT and IMU. This work focuses on only using monocular endoscope image sequences under surgical scene. Because the information from monocular images is relatively limited, we resort to feature-based real-time SLAM and point cloud registration to provide endoscope location with respect to the internal organs. Most feature-based monocular SLAM initialization methods start with key points matching in nearby frames. However, it can take lots of time to find proper frame pair. In this thesis, we present an effective method to initialize and localize endoscope by registering the map from SLAM to the preoperative 3D model. The accuracy of the location estimation is assessed through simulation surgical video rendered by Blender. Results show that our organ position error is less than 7.5 mm, and the initialization success rate of our proposed method is 10 times higher than that of ORB-SLAM.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:48:10Z (GMT). No. of bitstreams: 1
U0001-0109202017023400.pdf: 1602914 bytes, checksum: b47f04c2152009ff8e91073136f22d43 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Background and Related Work 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Computer-Assisted Endoscopy Surgery . . . . . . . . . . . . . . 5
2.1.2 Simultaneous Localization And Mapping . . . . . . . . . . . . . 6
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Intraoperative Computed Tomography . . . . . . . . . . . . . . . 7
2.2.2 Magnetic Capsule Endoscope . . . . . . . . . . . . . . . . . . . 7
2.2.3 Stereo Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Monocular Camera . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 System Architecture and Problem Definition 10
3.1 System Architecture and Assumptions . . . . . . . . . . . . . . . . . . . 10
3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.2 Initial Guess . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.3 SLAM Initialization Success Rate . . . . . . . . . . . . . . . . . 13
4 Design and Implementation 14
4.1 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Design Details and Algorithms . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Monocular Camera Tracking and Mapping . . . . . . . . . . . . 15
4.2.2 Initialization of SLAM . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.3 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5 Performance Evaluation 20
5.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Initialization evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Localization evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Conclusion 26
Bibliography 27
dc.language.isoen
dc.title內視鏡影像下之三維定位-以多個參考幀加速初始化即時定位與地圖構建系統及點雲註冊達到器官定位zh_TW
dc.titleLocalization in Minimally Invasive Surgery: Using Multiple Reference Frames in SLAM and Registrationen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳炳宇(Bing-Yu Chen),楊宗霖(Tsung-Lin Yang),楊家驤(Chia-Hsiang Yang),劉宗德(Tsung-Te Liu)
dc.subject.keyword內視鏡手術,單目內視鏡,即時定位與地圖建構,點雲註冊,定位,zh_TW
dc.subject.keywordMinimally Invasive Surgery,Registration,SLAM,Endoscope,Localization,Endoscopy,en
dc.relation.page29
dc.identifier.doi10.6342/NTU202004200
dc.rights.note未授權
dc.date.accepted2020-09-02
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
U0001-0109202017023400.pdf
  未授權公開取用
1.57 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved