Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20396
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor伍安怡
dc.contributor.authorChu-Yu Liuen
dc.contributor.author劉竹祐zh_TW
dc.date.accessioned2021-06-08T02:47:21Z-
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-20
dc.identifier.citationAkoumianaki, T., Kyrmizi, I., Valsecchi, I., Gresnigt, M.S., Samonis, G., Drakos, E., Boumpas, D., Muszkieta, L., Prevost, M.C., Kontoyiannis, D.P., et al. (2016). Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host Microbe 19, 79-90.
Ariizumi, K., Shen, G.L., Shikano, S., Xu, S., Ritter, R., 3rd, Kumamoto, T., Edelbaum, D., Morita, A., Bergstresser, P.R., and Takashima, A. (2000). Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J Biol Chem 275, 20157-20167.
Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87, 245-313.
Bullock, W.E., and Wright, S.D. (1987). Role of the adherence-promoting receptors, CR3, LFA-1, and p150,95, in binding of Histoplasma capsulatum by human macrophages. The Journal of Experimental Medicine 165, 195-210.
Deretic, V. (2010). Autophagy in infection. Curr Opin Cell Biol 22, 252-262.
Eissenberg, L.G., Goldman, W.E., and Schlesinger, P.H. (1993). Histoplasma capsulatum modulates the acidification of phagolysosomes. The Journal of Experimental Medicine 177, 1605-1611.
Erwig, L.P., and Gow, N.A. (2016). Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14, 163-176.
Flannagan, R.S., Cosio, G., and Grinstein, S. (2009). Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol 7, 355-366.
Freeman, S.A., and Grinstein, S. (2014). Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunological Reviews 262, 193-215.
Ganley, I.G., Lam du, H., Wang, J., Ding, X., Chen, S., and Jiang, X. (2009). ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284, 12297-12305.
Gantner, B.N., Simmons, R.M., and Underhill, D.M. (2005). Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24, 1277-1286.
Gildea, L.A., Morris, R.E., and Newman, S.L. (2001). Histoplasma capsulatum Yeasts Are Phagocytosed Via Very Late Antigen-5, Killed, and Processed for Antigen Presentation by Human Dendritic Cells. The Journal of Immunology 166, 1049-1056.
Glick, D., Barth, S., and Macleod, K.F. (2010). Autophagy: cellular and molecular mechanisms. J Pathol 221, 3-12.
Gomez, F.J., Pilcher-Roberts, R., Alborzi, A., and Newman, S.L. (2008). Histoplasma capsulatum Cyclophilin A Mediates Attachment to Dendritic Cell VLA-5. The Journal of Immunology 181, 7106-7114.
Gutierrez, M.E., Canton, A., Sosa, N., Puga, E., and Talavera, L. (2005). Disseminated Histoplasmosis in Patients with AIDS in Panama: A Review of 104 Cases. Clinical Infectious Diseases 40, 1199-1202.
Hernanz-Falcon, P., Joffre, O., Williams, D.L., and Reis e Sousa, C. (2009). Internalization of Dectin-1 terminates induction of inflammatory responses. Eur J Immunol 39, 507-513.
Huang, J., Canadien, V., Lam, G.Y., Steinberg, B.E., Dinauer, M.C., Magalhaes, M.A.O., Glogauer, M., Grinstein, S., and Brumell, J.H. (2009). Activation of antibacterial autophagy by NADPH oxidases. Proceedings of the National Academy of Sciences 106, 6226-6231.
Huang, J.H., Lin, C.Y., Wu, S.Y., Chen, W.Y., Chu, C.L., Brown, G.D., Chuu, C.P., and Wu-Hsieh, B.A. (2015). CR3 and Dectin-1 Collaborate in Macrophage Cytokine Response through Association on Lipid Rafts and Activation of Syk-JNK-AP-1 Pathway. PLoS Pathog 11, e1004985.
Kauffman, C.A. (2007). Histoplasmosis: a Clinical and Laboratory Update. Clinical Microbiology Reviews 20, 115-132.
Kyrmizi, I., Gresnigt, M.S., Akoumianaki, T., Samonis, G., Sidiropoulos, P., Boumpas, D., Netea, M.G., van de Veerdonk, F.L., Kontoyiannis, D.P., and Chamilos, G. (2013). Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 191, 1287-1299.
Lai, S.C., and Devenish, R.J. (2012). LC3-Associated Phagocytosis (LAP): Connections with Host Autophagy. Cells 1, 396-408.
Li, Y., and Trush, M.A. (1998). Diphenyleneiodonium, an NAD(P)H Oxidase Inhibitor, also Potently Inhibits Mitochondrial Reactive Oxygen Species Production. Biochemical and Biophysical Research Communications 253, 295-299.
Lin, J.S., Huang, J.H., Hung, L.Y., Wu, S.Y., and Wu-Hsieh, B.A. (2010). Distinct roles of complement receptor 3, Dectin-1, and sialic acids in murine macrophage interaction with Histoplasma yeast. J Leukoc Biol 88, 95-106.
Lin, J.S., Yang, C.W., Wang, D.W., and Wu-Hsieh, B.A. (2005). Dendritic Cells Cross-Present Exogenous Fungal Antigens to Stimulate a Protective CD8 T Cell Response in Infection by Histoplasma capsulatum. The Journal of Immunology 174, 6282-6291.
Long, K.H., Gomez, F.J., Morris, R.E., and Newman, S.L. (2003). Identification of Heat Shock Protein 60 as the Ligand on Histoplasma capsulatum That Mediates Binding to CD18 Receptors on Human Macrophages. The Journal of Immunology 170, 487-494.
Luther, K., Torosantucci, A., Brakhage, A.A., Heesemann, J., and Ebel, F. (2007). Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol 9, 368-381.
Ma, J., Becker, C., Lowell, C.A., and Underhill, D.M. (2012). Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 287, 34149-34156.
Martinez, J., Almendinger, J., Oberst, A., Ness, R., Dillon, C.P., Fitzgerald, P., Hengartner, M.O., and Green, D.R. (2011). Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc Natl Acad Sci U S A 108, 17396-17401.
Martinez, J., Malireddi, R.K., Lu, Q., Cunha, L.D., Pelletier, S., Gingras, S., Orchard, R., Guan, J.L., Tan, H., Peng, J., et al. (2015). Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 17, 893-906.
Matsunaga, K., Saitoh, T., Tabata, K., Omori, H., Satoh, T., Kurotori, N., Maejima, I., Shirahama-Noda, K., Ichimura, T., Isobe, T., et al. (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 11, 385-396.
Mizushima, N. (2007). Autophagy: process and function. Genes Dev 21, 2861-2873.
Nakatogawa, H., Ichimura, Y., and Ohsumi, Y. (2007). Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130, 165-178.
Newman, S.L., Gootee, L., Hilty, J., and Morris, R.E. (2006). Human Macrophages Do Not Require Phagosome Acidification to Mediate Fungistatic/Fungicidal Activity against Histoplasma capsulatum. The Journal of Immunology 176, 1806-1813.
Nicola, A.M., Albuquerque, P., Martinez, L.R., Dal-Rosso, R.A., Saylor, C., De Jesus, M., Nosanchuk, J.D., and Casadevall, A. (2012). Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect Immun 80, 3065-3076.
Retallack, D.M., and Woods, J.P. (1999). Molecular epidemiology, pathogenesis, and genetics of the dimorphic fungus Histoplasma capsulatum. Microbes and Infection 1, 817-825.
Rogers, N.C., Slack, E.C., Edwards, A.D., Nolte, M.A., Schulz, O., Schweighoffer, E., Williams, D.L., Gordon, S., Tybulewicz, V.L., Brown, G.D., et al. (2005). Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22, 507-517.
Romao, S., Gasser, N., Becker, A.C., Guhl, B., Bajagic, M., Vanoaica, D., Ziegler, U., Roesler, J., Dengjel, J., Reichenbach, J., et al. (2013). Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol 203, 757-766.
Sanjuan, M.A., Dillon, C.P., Tait, S.W., Moshiach, S., Dorsey, F., Connell, S., Komatsu, M., Tanaka, K., Cleveland, J.L., Withoff, S., et al. (2007). Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253-1257.
Sanjuan, M.A., Milasta, S., and Green, D.R. (2009). Toll-like receptor signaling in the lysosomal pathways. Immunological Reviews 227, 203-220.
Strasser, J.E., Newman, S.L., Ciraolo, G.M., Morris, R.E., Howell, M.L., and Dean, G.E. (1999). Regulation of the Macrophage Vacuolar ATPase and Phagosome-Lysosome Fusion by Histoplasma capsulatum. The Journal of Immunology 162, 6148-6154.
Tam, J.M., Mansour, M.K., Khan, N.S., Seward, M., Puranam, S., Tanne, A., Sokolovska, A., Becker, C.E., Acharya, M., Baird, M.A., et al. (2014). Dectin-1-dependent LC3 recruitment to phagosomes enhances fungicidal activity in macrophages. J Infect Dis 210, 1844-1854.
Tanida, I., Ueno, T., and Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36, 2503-2518.
Underhill, D.M., Rossnagle, E., Lowell, C.A., and Simmons, R.M. (2005). Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood 106, 2543-2550.
Weidberg, H., Shpilka, T., Shvets, E., Abada, A., Shimron, F., and Elazar, Z. (2011). LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev Cell 20, 444-454.
Wu-Hsieh, B.A., and Howard, D.H. (1987). Inhibition of the intracellular growth of Histoplasma capsulatum by recombinant murine gamma interferon. Infect Immun 55, 1014-1016.
Xu, Y., Jagannath, C., Liu, X.D., Sharafkhaneh, A., Kolodziejska, K.E., and Eissa, N.T. (2007). Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135-144.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20396-
dc.description.abstractLC3 相關之吞噬作用 (LC3-associated phagocytosis;LAP) 是一種參與在吞噬體成熟 (phagosome maturation) 的非典型的自噬作用(autophagy)。病原菌被細胞表面的模式識別受體 (pattern-recognition receptor) 辨認後,活化下游訊號使脂化的LC3 (LC3-II) 聚集並鑲嵌於吞噬體的細胞膜上,協助吞噬體和溶酶體 (lysosome) 之間的融合。過去的研究中指出,LAP 在抵禦白色念珠菌、黃麴黴菌以及新型隱球菌這些真菌中扮演著重要的角色。然而,LAP 在組織胞漿菌的感染中的角色尚未被釐清。
組織胞漿菌 (Histoplasma capsulatum)是一種雙型態的致病性真菌,在免疫低下的個體中會造成嚴重的肺部感染。巨噬細胞 (macrophage) 在組織胞漿菌的感染中非常重要且扮演多重的角色,它是組織胞漿菌的宿主細胞、感染後產生細胞激素之細胞、做為提供抗原的細胞,在被活化之後也能作為作用細胞清除胞內的組織胞漿菌。因此,了解 LAP 在巨噬細胞與組織胞漿菌交互作用中所扮演的角色是相當重要的。
本篇研究的目的在探討巨噬細胞受到組織胞漿菌感染後,所引起之 LAP 形成的作用機制。我們發現 LC3-II 在組織胞漿菌刺激後的 30 分鐘內即會形成,並且在 60 分鐘時被招募至吞噬體的細胞膜上。透過電子顯微鏡的觀察,我們發現包裹在被吞噬的組織胞漿菌外圍的吞噬體膜呈現單層膜結構,進一步證實組織胞漿菌可以引發巨噬細胞形成 LAP。藉由封阻型抗體以及 Dectin-1、CR3 缺失的巨噬細胞,我們發現 Dectin-1 參與了組織胞漿菌引發的 LAP,且排除 CR3、Dectin-2、TLR2 參與 LAP 形成的可能性。利用化學抑制劑抑制 Syk 激酶的活化會呈現劑量依存性的 LC3-II 形成下降。此外,專一性的抑制 NOX2 產生活性氧化物質(reactive oxygen species; ROS)會使組織胞漿菌引起的 LC3-II 形成下降,但抑制粒線體產生 ROS 以及一氧化氮合酶 (nitric oxide synthases) 則對於 LC3-II 形成沒有影響。已知黃麴黴菌需要藉由 Rubicon 來引發 LAP。但在本篇研究中,我們發現利用 siRNA 使 Rubicon 表現下降並不影響 LC3-II 的形成、招募,以及吞噬體和溶酶體間的融合。
這些結果顯示在巨噬細胞與組織胞漿菌交互作用時,需要藉由 Dectin-1/Syk/NOX2 訊息傳遞所釋放之 ROS 來引發 LAP。除此之外,我們的實驗結果也指出組織胞漿菌所引發的 LAP 不需要透過 Rubicon。
zh_TW
dc.description.abstractLC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway involved in phagosome maturation. Pathogens interacting with pattern recognition receptor (PRR) triggers LC3-II recruitment to phagosomal membrane and facilitates its fusion with lysosome. Previous studies show that LAP plays a significant role in defense against fungal pathogens including Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. However, the role of LAP in Histoplasma capsulatum infection is not clear.
H. capsulatum is a dimorphic fungal pathogen that causes severe pulmonary infections in immunocompromised individuals. Macrophage being the host cell, cytokine-producing cell, antigen-donor cell and effector cell, is important for H. capsulatum infection. Therefore, it is critical to understand the role of LAP in the interaction between macrophage and H. capsulatum.
This study aims to investigate the mechanism of LAP formation in macrophages upon encountering H. capsulatum. We found that LC3-II was formed within 30 min and was recruited to phagosomes by1 h after interaction with H. capsulatum. Electron microscopic imaging showed that H. capsulatum-containing phagosomes was a single-membrane but not a double-membrane structure, confirming that H. capsulatum can trigger LAP formation in macrophages. Employing receptor blocking antibodies and Dectin-1-/- and CR3-/- macrophages, we found that Dectin-1, but not CR3, Dectin-2 or TLR2, was involved in H. capsulatum-induced LAP. Chemical inhibition of Syk signaling reduced LC3-II formation in a dose dependent manner. We also showed that specific inhibition of ROS production by NOX2 but not mitochondria or nitric oxide synthases reduced H. capsulatum-induced LC3-II formation. While Rubicon is known to be required for Aspergillus-induced LAP, we found that silencing Rubicon did not affect LC3-II formation, its recruitment or fusion of H. capsulatum-containing phagosome with lysosome.
These data together suggest that Dectin-1/Syk/NOX2-mediated release of ROS is required for LAP formation in macrophages upon encountering H. captulatum. Moreover, we demonstrated that LC3-associated phagocytosis of H. captulatum is independent of Rubicon.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:47:21Z (GMT). No. of bitstreams: 1
ntu-106-R04449013-1.pdf: 2554698 bytes, checksum: 568541073dc18211c0e3d8c59177b66a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
Abstract III
Abbreviations V
Contents VI
Figures IX
Chapter I. Introduction 2
1. LC3-associated phagocytosis (LAP) 2
1.1 Autophagy 2
1.2 LAP 2
1.3 Receptors involved in LAP 3
1.4 Molecular characterization of LAP 4
1.5 The difference between LAP and canonical autophagy 5
1.6 The importance of LAP in fungal infection 5
2. Histoplasma capsulatum 7
2.1 Histoplasma capsulatum infection 7
2.2 Innate recognition of Histoplasma capsulatum 7
2.3 Macrophages and Histoplasma capsulatum 8
Chapter II. Aims of the study 11
Chapter III. Materials and Methods 14
Part I. Materials 14
Part II. Methods 22
Chapter IV. Results 26
1. H. capsulatum induces LC3-II formation in macrophages 26
2. Dectin-1 is required for LC3-II formation upon encountering H. capsulatum 27
3. Dectin-1/Syk-mediated ROS production is essential for H. capsulatum induced- LC3-II formation 27
4. NOX2-mediated ROS production is required for H. capsulatum-induced LC3-II formation 28
5. H. capsulatum-containing phagosome fuses with lysosome but does not undergo maturation process. 29
6. Silencing Rubicon does not affect H. capsulatum-induced LC3-II formation, LC3-II recruitment to phagosome, or phagolysosomal fusion. 30
Chapter V. Discussion 33
Reference 40
Figures 49
dc.language.isozh-TW
dc.title探討LC3相關之吞噬作用在巨噬細胞與組織胞漿菌交互作用之下的角色zh_TW
dc.titleTo study the role of LC3-associated phagocytosis in macrophage interaction with Histoplasma capsulatumen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee繆希椿,徐立中
dc.subject.keywordLC3相關之吞噬作用,組織胞漿菌,菸醯胺腺嘌呤二核磷酸氧化? II,活性氧化物質,巨噬細胞,zh_TW
dc.subject.keywordLC3-associated phagocytosis(LAP),Histoplasma capsulatum,Dectin-1,NOX2,ROS,macrophages,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201703654
dc.rights.note未授權
dc.date.accepted2017-08-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved