Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 病理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20390
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor黃佩欣(Pei-Hsin Huang)
dc.contributor.authorYing Ling Wangen
dc.contributor.author王穎玲zh_TW
dc.date.accessioned2021-06-08T02:47:09Z-
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-21
dc.identifier.citation1. Cardozo T, Pagano M. The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol. 2004;5(9):739-51.
2. Ho MS, Ou C, Chan YR, Chien CT, Pi H. The utility F-box for protein destruction. Cellular and molecular life sciences : CMLS. 2008;65(13):1977-2000.
3. Hermand D. F-box proteins: more than baits for the SCF? Cell division. 2006;1:30.
4. Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. The international journal of biochemistry & cell biology. 2016;73:99-110.
5. Vernon AE, LaBonne C. Slug stability is dynamically regulated during neural crest development by the F-box protein Ppa. Development (Cambridge, England). 2006;133(17):3359-70.
6. Vinas-Castells R, Beltran M, Valls G, Gomez I, Garcia JM, Montserrat-Sentis B, et al. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation. The Journal of biological chemistry. 2010;285(6):3794-805.
7. Zheng H, Du Y, Hua Y, Wu Z, Yan Y, Li Y. Essential role of Fbxl14 ubiquitin ligase in regulation of vertebrate axis formation through modulating Mkp3 level. Cell research. 2012;22(5):936-40.
8. Fang X, Zhou W, Wu Q, Huang Z, Shi Y, Yang K, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. The Journal of experimental medicine. 2017;214(1):245-67.
9. Abdelmoity AT, Hall JJ, Bittel DC, Yu S. 1.39 Mb inherited interstitial deletion in 12p13.33 associated with developmental delay. European journal of medical genetics. 2011;54(2):198-203.
10. Silva IM, Rosenfeld J, Antoniuk SA, Raskin S, Sotomaior VS. A 1.5Mb terminal deletion of 12p associated with autism spectrum disorder. Gene. 2014;542(1):83-6.
11. Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, Godinho SI, et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science (New York, NY). 2007;316(5826):900-4.
12. Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, et al. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 2013;152(5):1106-18.
13. Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M, Harper JW. Systematic analysis and nomenclature of mammalian F-box proteins. Genes & development. 2004;18(21):2573-80.
14. Cheng Y, Gao WW, Tang HM, Deng JJ, Wong CM, Chan CP, et al. beta-TrCP-mediated ubiquitination and degradation of liver-enriched transcription factor CREB-H. Scientific reports. 2016;6:23938.
15. Kawakami E, Tokunaga A, Ozawa M, Sakamoto R, Yoshida N. The histone demethylase Fbxl11/Kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators. Mechanisms of development. 2015;135:31-42.
16. van Wezel T, Lombaerts M, van Roon EH, Philippo K, Baelde HJ, Szuhai K, et al. Expression analysis of candidate breast tumour suppressor genes on chromosome 16q. Breast cancer research : BCR. 2005;7(6):R998-1004.
17. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337(6098):1062-5.
18. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. The Journal of cell biology. 2003;160(2):189-200.
19. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science (New York, NY). 2004;305(5685):858-62.
20. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nature genetics. 2004;36(5):449-51.
21. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. The Journal of biological chemistry. 2005;280(28):26185-92.
22. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Molecular biology of the cell. 2009;20(15):3525-32.
23. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, et al. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nature genetics. 2000;26(2):211-5.
24. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, et al. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nature genetics. 2000;26(2):207-10.
25. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126(1):177-89.
26. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell. 2013;155(1):160-71.
27. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Developmental cell. 2001;1(4):515-25.
28. Elgass K, Pakay J, Ryan MT, Palmer CS. Recent advances into the understanding of mitochondrial fission. Biochimica et biophysica acta. 2013;1833(1):150-61.
29. Loson OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Molecular biology of the cell. 2013;24(5):659-67.
30. Liu R, Chan DC. The mitochondrial fission receptor Mff selectively recruits oligomerized Drp1. Molecular biology of the cell. 2015;26(24):4466-77.
31. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK. Multiple dynamin family members collaborate to drive mitochondrial division. Nature. 2016;540(7631):139-43.
32. Rube DA, van der Bliek AM. Mitochondrial morphology is dynamic and varied. Molecular and cellular biochemistry. 2004;256-257(1-2):331-9.
33. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron. 2013;77(3):485-502.
34. Hendricks AG, Perlson E, Ross JL, Schroeder HW, 3rd, Tokito M, Holzbaur EL. Motor coordination via a tug-of-war mechanism drives bidirectional vesicle transport. Current biology : CB. 2010;20(8):697-702.
35. Fu MM, Holzbaur EL. JIP1 regulates the directionality of APP axonal transport by coordinating kinesin and dynein motors. The Journal of cell biology. 2013;202(3):495-508.
36. Kang JS, Tian JH, Pan PY, Zald P, Li C, Deng C, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell. 2008;132(1):137-48.
37. Yi M, Weaver D, Hajnoczky G. Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. The Journal of cell biology. 2004;167(4):661-72.
38. Wang X, Schwarz TL. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell. 2009;136(1):163-74.
39. Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, et al. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron. 2009;61(4):541-55.
40. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, et al. Microtubule acetylation promotes kinesin-1 binding and transport. Current biology : CB. 2006;16(21):2166-72.
41. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. The Journal of cell biology. 2010;190(3):363-75.
42. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science (New York, NY). 1998;280(5370):1763-6.
43. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495(7441):389-93.
44. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. ER tubules mark sites of mitochondrial division. Science (New York, NY). 2011;334(6054):358-62.
45. Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science (New York, NY). 2016;353(6296):aaf5549.
46. Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Lakshminaranayan S, et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(40):11249-54.
47. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal. 2008;27(2):433-46.
48. Ding WX, Yin XM. Mitophagy: mechanisms, pathophysiological roles, and analysis. Biological chemistry. 2012;393(7):547-64.
49. Gustafsson CM, Falkenberg M, Larsson NG. Maintenance and Expression of Mammalian Mitochondrial DNA. Annual review of biochemistry. 2016;85:133-60.
50. Magnusson J, Orth M, Lestienne P, Taanman JW. Replication of mitochondrial DNA occurs throughout the mitochondria of cultured human cells. Experimental cell research. 2003;289(1):133-42.
51. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN. Composition and dynamics of human mitochondrial nucleoids. Molecular biology of the cell. 2003;14(4):1583-96.
52. Gilkerson RW, Margineantu DH, Capaldi RA, Selker JM. Mitochondrial DNA depletion causes morphological changes in the mitochondrial reticulum of cultured human cells. FEBS letters. 2000;474(1):1-4.
53. Barodia SK, Creed RB, Goldberg MS. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain research bulletin. 2016.
54. Hasson SA, Kane LA, Yamano K, Huang CH, Sliter DA, Buehler E, et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013;504(7479):291-5.
55. Kazlauskaite A, Kondapalli C, Gourlay R, Campbell DG, Ritorto MS, Hofmann K, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. The Biochemical journal. 2014;460(1):127-39.
56. Kondapalli C, Kazlauskaite A, Zhang N, Woodroof HI, Campbell DG, Gourlay R, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open biology. 2012;2(5):120080.
57. Heo JM, Ordureau A, Paulo JA, Rinehart J, Harper JW. The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Molecular cell. 2015;60(1):7-20.
58. Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309-14.
59. Chen BB, Coon TA, Glasser JR, Zou C, Ellis B, Das T, et al. E3 ligase subunit Fbxo15 and PINK1 kinase regulate cardiolipin synthase 1 stability and mitochondrial function in pneumonia. Cell reports. 2014;7(2):476-87.
60. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM, Pogson JH, et al. The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature neuroscience. 2013;16(9):1257-65.
61. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human molecular genetics. 2010;19(24):4861-70.
62. Liu Y, Lear T, Iannone O, Shiva S, Corey C, Rajbhandari S, et al. The Proapoptotic F-box Protein Fbxl7 Regulates Mitochondrial Function by Mediating the Ubiquitylation and Proteasomal Degradation of Survivin. The Journal of biological chemistry. 2015;290(19):11843-52.
63. Hagenbuchner J, Kuznetsov AV, Obexer P, Ausserlechner MJ. BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene. 2013;32(40):4748-57.
64. Liu Y, Lear T, Zhao Y, Zhao J, Zou C, Chen BB, et al. F-box protein Fbxl18 mediates polyubiquitylation and proteasomal degradation of the pro-apoptotic SCF subunit Fbxl7. Cell death & disease. 2015;6:e1630.
65. Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, et al. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. American journal of human genetics. 2013;93(3):482-95.
66. Bonnen PE, Yarham JW, Besse A, Wu P, Faqeih EA, Al-Asmari AM, et al. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. American journal of human genetics. 2013;93(3):471-81.
67. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141(2):280-9.
68. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, et al. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nature cell biology. 2009;11(8):958-66.
69. Neuspiel M, Schauss AC, Braschi E, Zunino R, Rippstein P, Rachubinski RA, et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Current biology : CB. 2008;18(2):102-8.
70. Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Current biology : CB. 2010;20(14):1310-5.
71. Sugiura A, Mattie S, Prudent J, McBride HM. Newly born peroxisomes are a hybrid of mitochondrial and ER-derived pre-peroxisomes. Nature. 2017;542(7640):251-4.
72. Desler C, Hansen TL, Frederiksen JB, Marcker ML, Singh KK, Juel Rasmussen L. Is There a Link between Mitochondrial Reserve Respiratory Capacity and Aging? Journal of aging research. 2012;2012:192503.
73. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. Cardiovascular research. 2004;61(3):372-85.
74. Ishihara N, Jofuku A, Eura Y, Mihara K. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochemical and biophysical research communications. 2003;301(4):891-8.
75. Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, et al. Mitochondrial fission and remodelling contributes to muscle atrophy. The EMBO journal. 2010;29(10):1774-85.
76. Picard M, Shirihai OS, Gentil BJ, Burelle Y. Mitochondrial morphology transitions and functions: implications for retrograde signaling? American journal of physiology Regulatory, integrative and comparative physiology. 2013;304(6):R393-406.
77. Hu C, Huang Y, Li L. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. International journal of molecular sciences. 2017;18(1).
78. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. The EMBO journal. 2011;30(3):556-68.
79. Smethurst DG, Cooper KF. ER fatalities-The role of ER-mitochondrial contact sites in yeast life and death decisions. Mechanisms of ageing and development. 2017;161(Pt B):225-33.
80. Cagalinec M, Safiulina D, Liiv M, Liiv J, Choubey V, Wareski P, et al. Principles of the mitochondrial fusion and fission cycle in neurons. Journal of cell science. 2013;126(Pt 10):2187-97.
81. Yu Y, Lee HC, Chen KC, Suhan J, Qiu M, Ba Q, et al. Inner membrane fusion mediates spatial distribution of axonal mitochondria. Scientific reports. 2016;6:18981.
82. Fransson S, Ruusala A, Aspenstrom P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochemical and biophysical research communications. 2006;344(2):500-10.
83. Bravo-Sagua R, Rodriguez AE, Kuzmicic J, Gutierrez T, Lopez-Crisosto C, Quiroga C, et al. Cell death and survival through the endoplasmic reticulum-mitochondrial axis. Current molecular medicine. 2013;13(2):317-29.
84. Tan MK, Lim HJ, Bennett EJ, Shi Y, Harper JW. Parallel SCF adaptor capture proteomics reveals a role for SCFFBXL17 in NRF2 activation via BACH1 repressor turnover. Molecular cell. 2013;52(1):9-24.
85. Miller KE, Sheetz MP. Axonal mitochondrial transport and potential are correlated. Journal of cell science. 2004;117(Pt 13):2791-804.
86. Verburg J, Hollenbeck PJ. Mitochondrial membrane potential in axons increases with local nerve growth factor or semaphorin signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2008;28(33):8306-15.
87. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122(5):735-49.
88. de Hoop MJ, Huber LA, Stenmark H, Williamson E, Zerial M, Parton RG, et al. The involvement of the small GTP-binding protein Rab5a in neuronal endocytosis. Neuron. 1994;13(1):11-22.
89. Liu J, Lamb D, Chou MM, Liu YJ, Li G. Nerve growth factor-mediated neurite outgrowth via regulation of Rab5. Molecular biology of the cell. 2007;18(4):1375-84.
90. Satoh D, Sato D, Tsuyama T, Saito M, Ohkura H, Rolls MM, et al. Spatial control of branching within dendritic arbors by dynein-dependent transport of Rab5-endosomes. Nature cell biology. 2008;10(10):1164-71.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20390-
dc.description.abstract為了迎合細胞的需求,細胞裡的粒線體一直在融合與分裂。這些需求包括粒線體內容物的混合,提供ATP,準備進入凋亡階段和粒線體自噬等等。我們之前的實驗結果顯示當一個F-box 家族的蛋白質FBXL14過度表現在Cos-7細胞裡時,它會跟粒線體重合,並且使粒線體碎裂和聚集在細胞核附近。同樣地,當FBXL14過度表現在皮質神經細胞裡時,也會使粒線體比控制組的粒線體的短。當FBXL14的F-box domain被剔除掉之後,會無法形成SCF 複合物,來對目標蛋白質泛素化。然而,它依然會跟粒線體重合,並且粒線體還是呈碎裂的形態,說明FBXL14對粒線體的作用並非需要SCF 複合物的形成。影響粒線體形狀的因素很多,其中包括調控MFN1、MFN2或DRP1的因子、粒線體基因的完整性、鈣離子的調控、粒線體自噬以及粒線體膜電位的變化。當在Cos-7細胞裡過度表現粒線體融合蛋白MFN1或MFN2,或者降低粒線體分裂蛋白DRP1與過度表現FBXL14時,因為粒線體的融合增加,我們觀察到粒線體的形狀有部分恢復。儘管我們觀察不到粒線體基因表現量的降低,但我們能觀察到粒線體膜電位的變化、粒線體的呼吸作用的變化、粒線體移動的速率減弱、粒線體內活性氧的提升以及細胞凋亡的現象(尤其在低氧的條件下)。以上種種結果說明了FBXL14對調控粒線體具有多向性。
如今有多項實驗發現了多組相互拮抗作用的F-box蛋白共同來調控多種細胞內的作用。在F-box蛋白家族裡,FBXL14和FBXL8的F-box domain最為相似,因此我們想要探討FBXL8是否會與FBXL14一起調控粒線體。然而,與Fbxl14不同的是,在Cos-7細胞裡面FBXL8並不會與粒線體重合,它反而會部分與溶酶體、內質網與高爾基體重合。不過當我們同時過度表現FBXL14和FBXL8的時候,FBXL8和FBXL14會高度重合,粒線體的形態也會沒那麼破裂,細胞凋亡率也跟著降低(同樣也在低氧的條件下)。但有趣的是,儘管Co-IP的實驗顯示FBXL14和FBXL8並不會相互作用。以上的觀察告訴我們FBXL8會與FBXL14相互調控粒線體,但是通過什麼樣的機制,我們還無從得知。
zh_TW
dc.description.abstractMitochondria undergo constant fusion and fission processes to meet the requirements of multiple cellular functions, such as mitochondria content mixing, meeting cellular ATP demand, preparation for apoptosis or mitophagy etc. Our previous data show that FBXL14, a member of the F-box protein family, co-localised with mitochondria while transiently expressed in Cos-7 cells. This co-localisation can cause mitochondria to undergo fragmentation and perinuclear aggregation. Likewise, dissociated cortical neurons transiently expressing FBXL14-GFP showed significant reduction in mitochondria length compared with those of neurons transfected with Mock-GFP. Deletion of the F-box domain of FBXL14, which disrupts SCF complex formation and thus disables ubiquitination of FBXL14’s target proteins, could not prevent FBXL14 from localization in the mitochondria and mitochondrial fragmentation, suggesting that FBXL14-mediated mitochondrial fragmentation is not through functional FBXL14SCF. Mitochondria morphology can be affected by multiple factors, which include molecules that regulate mitochondria dynamics such as MFN1/2 and DRP1, mitochondria DNA integrity, calcium regulation, mitophagy and altered mitochondria membrane potential. Our study reveals that overexpressing MFN1, MFN2 or downregulating DRP1 in co-transfected Cos-7 cells could not prevent FBXL14 from causing mitochondria fragmentation. Despite the fact that there is no decrease in mtDNA level, FBXL14 overexpression results in decreased mitochondria connectivity, depolarized mitochondria membrane potential, elevated ROS levels, and promoted apoptosis in response to cell stress especially under hypoxia conditions, all of which suggest pleiotropic effect of FBXL14 on/or through mitochondria.
Current studies imply reciprocal or collaborative antagonistic regulation of biological activity by paired F-box family members in multiple cellular processes. Given that FBXL8 is the closest relative of FBXL14 in phylogenetic tree of the F-box protein family, we investigate whether FBXL8 is functionally related to FBXL14 in modulating mitochondria dynamics. Different from FBXL14, FBXL8 did not share the same localisation with mitochondria when transiently expressed in Cos-7 cells, but is found partially locating on lysosome, Golgi, and ER. However, FBXL8 and FBXL14 are highly co-localised when co-expressed in Cos-7 cells and partially located on peroxisome, ER, lysosome and Golgi. Co-expression of FBXL8 and FBXL14 resulted in less mitochondria fragmentation and lower apoptotic percentage, also under hypoxia condition. Intriguingly, FBXL8 and FBXL14 did not form protein complex as shown by co-immunoprecipitation assay. All the data suggest that FBXL8 cross-talks with FBXL14 via an indirect, yet-to-be-defined molecular mechanism in the regulation of mitochondria morphology and function.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:47:09Z (GMT). No. of bitstreams: 1
ntu-106-R03444008-1.pdf: 3338811 bytes, checksum: 404f256e116b2d7b277320330b2a513e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents v
Introduction 1
1 FBXL14 and FBXL8 belong to the F-box protein family 1
2 Mitochondria morphology is constantly dynamic where it undergoes fusion and fission 3
3 Mitochondria motility and tethering 5
4 Mitochondria and its cellular function 7
5 Ubiquitin proteasome pathway (UPS) and mitochondria 9
Materials and methods 11
Results 19
1 FBXL14 overexpression can modulate mitochondria morphology in a way independent from SCF formation 19
2 FBXL14 and mitochondria functions 21
3 FBXL8 is located on lysosome and early endosome and can reduce mitochondria abnormality caused by FBXL14 when co-expressed. 24
4 Overexpression or downregulation of FBXL4 in cortical neurons can reduce mitochondria length in axons 25
5 Overexpression or downregulation of FBXL8 can increase complexity of cortical neuron dendrites 25
Discussion 27
1 The role of FBXL14 in mitochondria dynamics 27
2 The role of FBXL14 in mitochondria motility 31
3 FBXL8 and FBXL14 in mediating mitochondria dynamics 33
Figures and figure legends 34
Figure 1 Transient FBXL14 localises on mitochondria and causes mitochondria fragmentation and perinuclear aggregation 35
Figure 2 ΔF-FBXL14-GFP cannot form SCF complex with SKP1 and CULIN1, but can still cause mitochondria fragmentation 37
Figure 3 FBXL14 does not alter mitochondria morphology by regulating key mitochondria dynamic proteins 39
Figure 4 FBXL14 overexpression in Cos-7 cells display damaged mitochondria membrane potential, cause ROS production and affect normal mitochondria respiration 41
Figure 5 FBXL14 overexpression in Cos-7 cells induces cellular apoptosis 43
Figure 6 FBXL14 overexpression in Cos-7 cells reveals reduced mitochondria connectivity 45
Figure 7 FBXL8 can highly co-localise with FBXL14 and can reduce the effect of FBXL14 on causing mitochondria abnormalities 47
Figure 8 FBXL14 or F-FBXL14-GFP overexpression and FBXL14 down-regulation would result in shorter axonal mitochondria 49
References 51
Supplementary data 63
dc.language.isoen
dc.titleFBXL14和FBXL8在調控粒線體動態中所扮演的角色zh_TW
dc.titleThe role of FBXL14 and FBXL8 in mitochondria dynamicsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee程淮榮(Hwai-Jong Cheng),黃憲松(Hsien-Sung Huang),李秀香(Hsiu-Hsiang Lee)
dc.subject.keywordFBXL14,FBXL8,粒線體形態,粒線體功能,zh_TW
dc.subject.keywordFBXL14,FBXL8,mitochondria morphology,mitochondria function,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201703503
dc.rights.note未授權
dc.date.accepted2017-08-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept病理學研究所zh_TW
Appears in Collections:病理學科所

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
3.26 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved