Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠
dc.contributor.authorShih-Chieh Yehen
dc.contributor.author葉世傑zh_TW
dc.date.accessioned2021-06-08T02:46:11Z-
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-10-13
dc.identifier.citation1.htts://read01.com/Q3Gg8A.html (太陽風動力來源)
2.https://www.greentechmedia.com/articles/read/sharp-hits-record-44-4-efficiency-for-triple-junction-solar-cell (夏普發表多層膜太陽能電池)
3.O'Regan, B.; Grätzel, M. A low cost, high efficiency solar cell based dye- sensitized colloid TiO2 film. Nature 1991, 353, 737-740.
4.Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595-6663.
5.Mishar, A.; Fischer, M. K. R.; Bäuerle, P. Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
6.Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Grätzel, M. A Swift Dye Uptake Procedure for Dye Sensitized Solar Cells. Chem. Commun., 2003, 12, 1456-1457.
7.Holliman, P. J.; Davies, M. L.; Connell, A.; Vaca Velasco, B.;Watson, T. M. Ultra-fast Dye Sensitisation and Co-sensitisation for Dye-Sensitized Solar Cells. Chem. Commun. 2010, 46, 7256-72588.
8.Holliman, P. J.; Mohsen, M.; Connell, A.; Davies, M. L.; Al-Salihi, K.; Pitak, M. B.; Tizzard, G. J.; Coles, S. J.; Harrington, R. W.; Clegg, W.; Serpa, C.; Fontes, O. H.; Charbonneau, C.; Carnie, M. J. Ultra-fast Co-sensitization and Tri-sensitization of Dye-Sensitized Solar Cells with N719, SQ1 and Triarylamine Dyes. J. Mater. Chem. 2012, 22, 13318-13327.
9.Kuo, H.-P.; Wu, C.-T. Speed Up Dye-Sensitized Solar Cell Fabrication by Rapid Dye Solution Droplets Bombardment. Sol. Energy Mater. Sol. Cells. 2014, 120, 81-86.
10.https://en.wikipedia.org/wiki/Lev_Perovski (Lev Perovski照片)
11.Kojima, A.; Teshiam, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050-6051.
12.Wang, D.; Wright, M.; Kumar, N. K.; Uddin, A. Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255-275.
13.Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338, 643-647.
14.https://cleantechnica.com/2013/07/15/dye-sensitized-solar-cells-achieve-record-efficiency-of-15/ (Gratzel團隊2013年所開發15%的染料敏化太陽能電池模組)
15.http://www.eettaiwan.com/news/article/20161207NT01-large-perovskite-solar-cell-efficiency-hits-record (澳洲團隊所開發鈣鈦礦太陽能電池模組)
16.https://www.nrel.gov/pv/ (美國國家再生能源實驗室(NREL)整理的各類太陽能電池效率進展)
17.https://www.pv-magazine.com/2017/07/26/unist-achieves-22-1-efficiency-in-perovskite-solar-cell/ (目前最高效率的鈣鈦礦太陽能電池元件)
18.Luo, S.; Daoud, W. A. Crystal Structure Formation of CH3NH3PbI3-xClx Perovskite. Materials 2016, 9, 123.
19.Wang, J.-Y.; Hsu, F.-C.; Huang, J.-Y.; Wang, L.; Chen, Y.-F. Bi-Functional Polymer Nanocomposites as Hole Transport Layers for Efficient Light Harvesting: Application to Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 27676-27684.
20.Zhou, H.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.-S.; Hong, Z.; You, J.; Liu, Y.; Yang, Y. Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 2014, 345, 542-546.
21.Snaith, H. J.; Abate, A.; Ball, J. M.; Eperon, G. E.; Leijtens, T.; Noel, N. K.; Stranks, S. D.; Wang, J. T.-W.; Wojciechowski, K.; Zhang, W. Anomalous Hysteresis in Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 1511-1515.
22.Unger, E. L.; Hoke, E. T.; Bailie C. D.; Nguyen, W. H.; Bowring, A. R; Heumuller, T.; Christoforo, M. G.; McGehee, M. D. Hysteresis and Transient Behavior in Current-Voltage Measurements of Hybrid-Perovskite Absorber Solar Cells. Energy Environ. Sci. 2014, 7, 3690-3698.
23.Ono, L. K.; Raga, S. R.; Wang, S.; Kato, Y.; Qi, Y. Temperature-Dependent Hysteresis Effects in Perovskite-Based Solar Cells. J. Mater. Chem. A 2015, 3, 9074-9080.
24.Kim, H.-S.; Park, N.-G. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. J. Phys. Chem. Lett. 2014, 5, 2927-2934.
25.Wei, J.; Zhao, Y.; Li, H.; Li, G.; Pan, J.; Xu, D.; Zhao, Q.; Yu, D. Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5, 3937-3945.
26.Zhao, C.; Chen, B.; Qiao, X.; Luan, L.; Lu, K.; Hu, B. Revealing Underlying Processes Involved in Light Soaking Effects and Hysteresis Phenomena in Perovskite Solar Cells Adv. Energy Mater. 2015, 5, 1500279.
27.Mali, S. S.; Hong, C. K. P-i-N/N-i-P Type Planar Hybrid Structure of Highly Efficient Perovskite Solar Cells Toward Improved Air Stability: Synthetic Strategies and The Role of P-type Hole Transport Layer (HTL) and N-type Electron Transport Layer (ETL) Metal Oxides. Nanoscale 2016, 8, 10528-10540.
28.Wang, J.; Liu, K. Ma, L. Zhan, X. Triarylamine: Versatile Platform for Organic, Dye-Sensitized, and Perovskite Solar Cells. Chem. Rev. 2016, 116, pp 14675-14725.
29.Manders, J. R.; Tsang, S.-W.; Hartel, M. J.; Lia, T.-H.; Chen, S.; Amb, C. M.; Reynolds, J. R.; So, F. Solution-Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Adv. Funct. Mater. 2013, 23, 2993-3001.
30.Zhu, Z.; Bai, Y.; Zhang, T.; Liu, Z.; Liu, Z.; Long, X.; Wei, Z.; Wang, Z.; Zhang, L.; Wang, J.; Yan, F.; Yang, S. High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells. Angew. Chem. Int. Ed. 2014, 53, 12571-12575.
31.Chen, W.; Wu, Y.; Liu, J.; Qin, C.; Yang, X.; Islam, A.; Cheng, Hybrid Interfacial Layer Leads to Solid Performance Improvement of Inverted Perovskite Solar Cells. Energy Environ. Sci. 2015, 8, 629-640.
32.Bai, Y.; Yu, H.; Zhu, Z.; Jiang, K.; Zhang, T.; Zhao, N.; Yang, S.; Yan, H. High Performance Perovskite Solar Cells Based on a PCBM:polystyrene Blend Electron Transport Layer. J. Mater. Chem. A 2015, 3, 9098-9102.
33.Liu, Z.; Zhang, M.; Xu, X.; Cai, F.; Yuan, H.; Bu, L.; Li, W.; Zhu, A.; Zhao, Z.; Wang, M.; Cheng, Y.-B.; He, H. NiO Nanosheets as Efficient Top Hole Transporters for Carbon Counter Electrode Based Perovskite Solar Cells. J. Mater. Chem. A 2015, 3, 24121-24127.
34.Yin, X.; Que, M.; Xing, Y.; Que, W. High Effieicency Hysteresis-less Inverted Planar Heterojunction Perovskite Solar Cells with a Solution-Derived NiOx Hole Contact Layer. J. Mater. Chem. A 2015, 3, 9098 -9102.
35.Li, E.; Guo, Y.; Liu, T.; Hu, W.; Wang, N.; He, H.; Lin, H. Preheating-assisted Deposition of Solution-Processed Perovskite Layer for an Efficiency-Improved Inverted Planar Composite Heterojunction Solar Cell. RSC Adv. 2016, 6, 30978-30985.
36.Yin, X.; Yao, Z.; Luo, Q.; Dai, X.; Zhou, Y.; Zhang, Y.; Zhou, Y.; Luo, S.; Li, J.; Wang, N.; Lin, H. High Efficiency Inverted Planar Perovskite Solar Cells with Solution-Processed NiOx Hole Contact. ACS Appl. Mater. Interfaces 2017, 9, 2439-2448.
37.Liu, Z.; Zhu, A.; Cai, F.; Tao, L.; Zhou, Y.; Zhao, Z.; Chen, Q.; Cheng, Y.-B.; Zhou, H. Nickel Oxide Nanoparticles for Efficient Hole Transport in P-i-N and N-i-P Perovskite Solar Cells. J. Mater. Chem. A 2017, 5, 6597-6605.
38.Christians, J. A.; Fung, R. C. M.; Kamat, P. V. An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. J. Am. Chem. Soc. 2014, 136, 758-764.
39.Takahashi, K.; Suzuki, Y. Perovskite Solar Cells with CuI Inorganic Hole Conductor. Jpn. J. Appl. Phys. 2017, 56, 08MC04.
40.Ye, S.; Sun, W.; Li, Y.; Yan, W.; Peng, H.; Bian, Z.; Liu, Z.; Huang, C. CuSCN-Based Inverted Planar Perovskite Solar Cell with an Average PCE of 15.6%. Nano Lett. 2015, 15, 3723-3728.
41.Madhavan, V. E.; Zimmermann, I.; Carmona, C. R.; Grancini, G.; Buffiere, M.; Belaidi, A.; Nazzeruddin, M. K. Copper Thiocyanate Inorganic Hole-Transporting Material for High-Efficiency Perovskite Solar Cells. ACS Energy Lett. 2016, 1, 1112-1117.
42.Yang, G.; Tao, H.; Qin, P.; Ke, W.; Fang, G. Recent Progress In Electron Transport Layers for Efficient Perovskite Solar Cells. J. Mater. Chem. A 2016, 4 , 3970–3990.
43.Miller, N. C.; Sweetnam, S.; Hoke, E. T.; Gysel, R.; Miller, C. E.; Bartelt, J. A.; Xie, X.; Toney, M. F.; McGehee, M. D. Molecular Packing and Solar Cell Performance in Blends of Polymers with a Bisadduct Fullerene. Nano Lett. 2012, 12, 1566−1570.
44.Tripathi, N.; Shirai, Y.; Yanagida, M.; Karen, A.; Miayno, K. Novel Surface Passivation Technique for Low-Temperature Solution-Processed Perovskite PV Cells. ACS Appl. Mater. Interfaces 2016, 8, 4644−4650.
45.Zhang, H.; Xue, L.; Han, J.; Fu, Y. Q.; Shen, Y.; Zhang, Z.; Li, Y.; Wang, M. New Generation Perovskite Solar Cells with Solution-Processed Amino-Substituted Perylene Diimide Derivative as Electron-Transport Layer. J. Mater. Chem. A, 2016, 4, 8724-8733.
46.Wang, B.; Zhang, Z.; Ye, S.; Gao, L.; Yan, T.; Bian, Z.; Huang, C.; Li, Y. Solution-Processable Cathode Buffer Layer for High-Performance ITO/CuSCN-based Planar Heterojunction Perovskite Solar Cell. Electrochimica Acta 2016, 218, 263-270.
47.Correa-Baena, J.-P.; Abate, A.; Saliba, M.; Tress, W.; Jacobsson, T. J.; Grätzel, M.; Hagfeldt, A. The Rapid Evolution of Highly Efficient Perovskite Solar Cells. Energy Environ. Sci. 2017, 10, 710-727.
48.Chueh, C.-C.; Li, C.-Z.; Jen, A. K.-Y. Recent Progress and Perspective in Solution-Processed Interfacial Materials for Efficient and Stable Polymer and Organometal Perovskite Solar Cells. Energy Environ. Sci. 2015, 8, 1160-1189.
49.Chueh, C.-C.; Liao, C.-Y.; Zuo, F.; Williamns, S. T.; Liang, P.-W.; Jen, A. K.-Y. The Roles of Alkyl Halide Additives In Enhancing Perovskite Solar Cell Performance. J. Mater. Chem. A 2015, 3, 9058-9062.
50.Chang, C.-Y.; Chu, C.-Y.; Huang, Y.-C.; Huang, C.-W.; Chang, S.-Y.; Chen, C.-A.; Chao, C.-Y.; Su, W.-F. Tuning Perovskite Morphology by Polymer Additive for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces 2015, 7, 4955-4961.
51.Wu, C.-G.; Chian, C.-H.; Tseng, Z.-L.; Nazeeruddin, M. K.; Hagfeldt, A.; Gratzel, M. High Efficiency Stable Inverted Perovskite Solar Cells Without Current Hysteresis. Energy Environ. Sci. 2015, 8, 2725-2733.
52.Wu, Q.; Zhou, P.; Zhou, W.; Wei, X.; Chen, T.; Yang, S. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 15333-15340.
53.Boopathi, K. M.; Mohan, R.; Huang, T.-Y.; Budiawan, W.; Lin, M.-Y.; Lee, C.-H.; Ho, K.-C.; Chu, C.-W. Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives. J. Mater. Chem. A 2016, 4, 1591-1597.
54.Abdi-Jalebi, M.; Dar, M. I., Sadhanala, A.; Senanayak, S. P.; Frančkevicius, M.; Arora, N.; Hu, Y.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M.; Friend, R. H. Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite. Adv. Energy Mater. 2016, 6, 1502472.
55.Li, X.; Dar, M. I.; Yi, C.; Luo, J.; Tschumi, M.; Zakeeruddin, S. M.; Nazeeruddin, M. K.; Han, H.; Grätzel, M. Improved Performance and Stability of Perovskite Solar Cells by Crystal Crosslinking with Alkyphosphonic Acid -Ammonium Chlorides. Nat. Chem. 2015, 7, 703-711.
56.Bai, Y.; Dong, Q.; Shao, Y.; Deng, Y.; Wang, Q.; Shen, L.; Wang, D.; Wei, W.; Huang, J. Enhancing Stability and Efficiency of Perovskite Solar Cells with Crosslinkinable Silane-Functionalized and Doped Fullerene. Nat. Commun. 2016, 7, 1-9.
57.Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic-Inorganic Lead Halide Perovskites. ACS Nano 2014, 8, 9815-9821.
58.Kato, Y.; Ono, L. K.; Lee, M. V.; Wang, S.; Raga, S. R.; Qi, Y. Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes. Adv. Mater. Interfaces 2015, 2, 1500195.
59.Wang, D.; Wright, M. Elumalai, N. K., Uddin, A. Stability of Perovskite Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 255-275.
60.Wang, Z.; Shi, Z.; Li, T.; Chen, Y.; Huang, W. Stability of Perovskite Solar Cells: A Prospective on the Substitution of the A Cation and X Anion Angew. Chem. Int. Ed. 2017, 56, 1190 – 1212.
61.Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldtd, A.; Gratzel M. Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency. Energy Environ. Sci. 2016, 9, 1989-1997.
62.Chen, Y.; He, M.; Peng, J.; Sun, Y.; Sun, Y.; Liang, Z. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals Adv. Sci. 2016, 3, 1500392.
63.Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Gratzel, M.; Park, N.-G. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep. 2012, 2, 1-7.
64.Abou-Helal, M. O.; Seeber, W. T. Preparation of TiO2 Thin Films by Spray Pyrolysis to Be Used as a Photocatalyst. Appl. Surf. Sci. 2002, 195, 53-62.
65.Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in Thin-Film Field-Effect Transistors. Science 1999, 286, 945-947.
66.Li, F.; Ma, C.; Wang, H.; Hu, W.; Yu, W.; Sheikh, A. D.; Wu, T. Ambipolar Solution-Processed Hybrid Perovskite Phototransistors Nat. Commun. 2015, 6, 1-8.
67.Stranks, S. D.; Snaith, H. J. Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nature Nanotech. 2015, 10, 391-402.
68.Xing, J.; Yan, F.; Zhao, Y.; Chen, S.; Yu, H.; Zhang, Q.; Zeng, R.; Demir, H. V.; Sun, X.; Huan, A.; Xiong, Q. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles ACS Nano 2016, 10, 6623-6630.
69.Dou, L.; Yang (Michael), Y.; You, J.; Hong, Z.; Chang, W.-H.; Li, G.; Yang, Y. Solution-Processed Hybrid Perovskite Photodetectors with High Detectivity. Nat. Commun. 2014, 5, 5404-5409.
70.Yeh, S.-C.; Lee, P.-H.; Liao, H.-Y.; Pei-Heng Lee, Chen, Y.-Y.; Chen, C.-T.; Jeng, R.-J.; Shuye, J.-J. Facile Solution Dropping Method: A Green Process for Dyeing TiO2 Electrodes of Dye-Sensitized Solar Cells with Enhanced Power Conversion Efficiency. ACS Sustainable Chem. Eng. 2015, 3, 71-81.
71.Nazeeruddin, M. K.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835 -16847.
72.Nazeeruddin, M. K.; Zakeerruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; S, V.; Fischer, C. H.; Grätzel, M. Acid -base Equilibria of (2,2’-Bipyridyl-4,4’-dicarboxylic acid)-Ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorg. Chem. 1999, 38, 6298 -6305.
73.Barnes, P. R.; Miettunen, K., Li, X.; Anderson, A. Y.; Bessho, T.; Grätzel, M.; O ’ Regan, B. C. Interpretation of Optoelectronic Transient and Charge Extraction Measurements in Dye-Sensitized Solar Cells. Adv. Mater. 2013, 25, 1881-1922.
74.Kopidakis, N.; Benkstein, K. D.; L van de Lagemaat, J.; Frank, A. J. Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 2003, 107, 11307-11315.
75.O ’ Regan, B. C.; Lenzman, F. Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors:  Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells. J. Phys. Chem. B 2004, 108, 4342-4350.
76.van de Lagemaat, J.; Frank, A. J. Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films:  Transient Photocurrent and Random-Walk Modeling Studies. J. Phys. Chem. B 2001, 105, 11194-11205.
77.Wang, X., Karanjit, S., Zhang, L., Fong, H., Qiao, Q., Zhu, Z. Transient Photocurrent and Photovoltage Studies on Charge Transport in Dye-sensitized Solar Cells Made From the Composites of TiO2 Nanofibers and Nnanoparticles. Appl. Phys. Lett. 2011, 98, 082114.
78.Chen, C.-T.; Yeh, S.-C.; Wang, L.-J.; Yang, H.-M.; Dai, Y.-H.; Jeng, R.-J.; Lin, C.-W. Structure-Property Relationship Study of Donor and Acceptor 2,6-disubstituted BODIPY Derivatives for High Performance Dye-sensitized Solar Cells. Chem. Eur. J. 2017, August, DOI: 10.1002/chem.201702285.
79.Hashmi, S. G.; Ozkan, M.; Halme, J.; Zakeeruddin, S. M.; Paltakari, J.; Grätzel, M.; Lund, P. D. Dye-Sensitized Solar Cells with Inkjet-Printed Dyes. Energy Environ. Sci. 2016, 9, 2453-2462.
80.Wu, Q.; Chen, P.; Zhou, W.; Wei, X.; Chen, T.; Yang, S. Acetate Salts as Nonhalogen Additives To Improve Perovskite Film Morphology for High-Efficiency Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 15333-15340.
81.Boopathi, K. M.; Mohan, R.; Huang, T.-Y.; Budiawan, W.; Lin, M.-Y.; Lee, C.-H.; Ho, K.-C.; Chu, C.-W. Synergistic Improvements in Stability and Performance of Lead Iodide Perovskite Solar Cells Incorporating Salt Additives. J. Mater. Chem. A 2016, 4, 1591-1597.
82.Abdi-Jalebi, M.; Dar, M. I.; Sadhanala, A.; Senanayak, S. P.; Franckevičius, M.; Aroar, N.; Hu, Y.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Grätzel, M.; Friend, R. H. Impact of Monovalent Cation Halide Additives on the Structural and Optoelectronic Properties of CH3NH3PbI3 Perovskite. Adv. Energy Mater. 2016, 6, 1502472.
83.Chen, Z.; Li, H.; Tang, Y.; Huang, X.; Ho, D.; Lee, C.-S. Corrigendum on Shape-controlled Synthesis of Organolead Halide Perovskite Nanocrystals and Their Tunable Optical Absorption. Mater. Res. Express 2014, 1, 015034.
84.Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-performance Perovskite-sensitized Solar Cells. Nature 2013, 499, 316-320.
85.Jain, S. M.; Philippe, B.; Johansson, E. M. J.; Park, B.-W.; Rensmo, H.; Edvinsson, T.; Boschloo G. Vapor Phase Conversion of PbI2 to CH3NH3PbI3 Spectroscopic Evidence for Formation of and Intermediate Phase. J. Mater. Chem. A, 2016, 4, 2630-2642.
86.Qiu, J.; Qiu, Y.; Yan, K.; Zhong, M.; Mu, C.; Yan, H.; Yang, S. All-solid-state Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-dimensional TiO2 Nanowire Arrays. Nanoscale 2013, 5, 3245-3248.
87.Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the Stability of CH3NH3PbI3 Films and the Effect of Post-modification by Aluminum Oxide in All-solid-state Hybrid Solar Cells. J. Mater. Chem. A 2014, 2, 705-710.
88.Chiang, C.-H.; Tseng, Z.-L.; Wu, C.-G. Planar Heterojunction Perovskite/PC71BM Solar Cells with Enhanced Open-circuit Voltage via a (2/1)-step Spin-coating Process. J. Mater. Chem. A 2014, 2, 15897-15903.
89.Rolda´n-Carmona, C.; Gratia, P.; Zimmermann, I.; Grancini,G.; Gao, P.; Zimmermann, I.; Gräetzel, M.; Nazeeruddin, M. K. High Efficiency Methylammonium Lead Triiodide Perovskite Solar Cells: the Relevance of Non-stoichiometric Precursors. Energy Environ. Sci. 2015, 8, 3550-3556.
90.Jacobsson, T. J.; Correa-Baena, J.-P.; Anaraki, E. H., Philippe, B.; Stranks, S. D.; Bouduban, M. E. F.; Tress, W.; Schenk, K.; Teuscher, J.; Moser, J.-E.; Rensmo, H.; Hagfeldt, A. Unreacted PbI2 as a Double-edged Sword for Enhancing the Performance of Perovskite Solar Cells. J. Am. Chem. Soc. 2016, 138, 10331-10343.
91.Liu, D.; Gangishetty, M. K.; Kelly, T. L. Effect of CH3NH3PbI3 Thickness on Device Efficiency in Planar Heterojunction Perovskite Solar Cells. J. Mater. Chem. A 2014, 2, 19873-19881.
92.Ooyama, Y.; Sato, T.; Harima, Y.; Ohshita, J. Development of a D–π–A dye with Benzothienopyridine as the Electron-withdrawing Anchoring Group for Dye-sensitized Solar Cells. J. Mater. Chem. A 2014, 2, 3293-3296.
93.Mathies, F.; Abzieher, T.; Hochstuhl, A.; Glaser, K.; Closmann, A.; Paetzold, U. W.; Hernandez-Sosa, G.; Lemmer, U.; Quintilla, A. Multipass Inkjet Printed Planar Methylammonium Lead Iodide Perovskite Solar Cells. J. Mater. Chem. A 2016, 4, 19207-19213.
94.Chang, J., Zhu, H., Xiao, J. Isikgor, F. H., Lin, Z., Hao, Y., Zeng, K., Xu, Q.-H., Ouyang, J. Enhancing the Planar Heterojunction Perovskite Solar Cell Performance Through Tuning the Precursor Ratio. J. Mater. Chem. A 2016, 4, 7943-7949.
95.Cohen, B.-E.; Wierzbowska, M.; Etgar, L. High Efficiency and High Open Circuit Voltage in Quasi 2D Perovskite Based Solar Cells. Adv. Funct. Mater. 2017, 27, 1604733.
96.Liu, D.; Li, Y., Yuan, J.; Hong, Q.; Shi, G.; Yuan, D.; Wei, J.; Huang, C.; Tang, J.; Fung, M.-K. Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT:PSS Hole Transport Layers. J. Mater. Chem. A 2017, 5, 5701-5708.
97.Tanase, C.; Blom, P. W. M.; de Leeuw, D. M. Origin of The Enhanced Space-Charge-Limited Current in Poly(p-phenylene vinylene). Phys. Rev. B 2004, 70, 193202.
98.Reid, O. G.; Muenchika, K.; Ginger, D. S. Space Charge Limited Current Measurements on Conjugated Polymer Films Using Conductive Atomic Force Microscopy. Nano Lett. 2008, 8,1602-1609.
99.Murali, B.; Krupanidhi, S. B. Transport Properties of CuIn1−xAlxSe2/AZnO Heterostructure for Low Cost Thin Film Photovoltaics. Dalton Trans. 2014, 43, 1974-1983.
100.Chen, Q.; Chen, L.; Ye, F.; Zhao, T.; Tang, F.; Rajagopal, A.; Jiang, Z., Jiang, S.; Jen, A. K.-Y.; Xie, Y.; Cai, J.; Chen, L. Ag-Incorporated Organic–Inorganic Perovskite Films and Planar Heterojunction Solar Cells. Nano Lett. 2017, 17, 3231-3237.
101.Ahn, S.; Jang, W.; Park, J. H.; Wang, D. H. Morphology Fixing Agent for [6,6]-phenyl C61-butyric Acid Methyl Ester (PC60BM) in Planar-type Perovskite Solar Cells for Enhanced Stability. RSC Adv. 2016, 6, 51513-51519.
102.Kumar, H.; Kurmar, P.; Bhardwaj, R.; Sharma, G. D.; Venkatesu, P. Space Charge Limited Hole Transport in Evaporated Thin Films of α-H2Pc. Phys. Scr. 2012, 85, 035806.
103.李佩恆碩士論文 β-吡咯取代之紫質合成與鑑定及其在染料敏化太陽能電池之應用 國立交通大學應化系-碩士論文, 2012年7月
104.王儷靜碩士論文 推拉電子基β位取代 BODIPY 染料之合成與鑒定及其在染料敏化太陽能電池之應用國立中央大學化學系-碩士論文, 2012年7月
105.楊鴻銘碩士論文 用於染敏電池推拉電子基取代 BODIPY染料之合成與鑑定國立台灣科技大學化學工程學系-碩士論文, 2014年7月
106.戴于惠碩士論文 具有氮氧化吡啶錨定基推拉電子BODIPY染料之合成與鑑定及其在染料敏化太陽能電池之應用國立交通大學應化系-碩士論文, 2015年7月
107.Chang, Y. J.; Chow, T. J. Dye-Sensitized Solar Cell Utilizing Organic Dyads Containing Triarylene Conjugates. Tetrahedron 2009, 65, 4726-4734.
108.Liao, S.-H.; Shiu, J.-R.; Liu, S.-W.; Yeh, S.-J.; Chen, Y.-H.; Shun-Wei Liu, Chen, C.-T.; Chow, T.-J.; Wu, C.-I. Hydroxynaphthyridine-Derived Group III Metal Chelates: Wide Band Gap and Deep Blue Analogues of Green Alq3 (Tris(8-hydroxyquinolate)aluminum) and Their Versatile Applications for Organic Light-Emitting Diodes. J. Am. Chem. Soc. 2009, 131, 763-777.
109.廖思虹碩士論文 含氮喹啉錯合物之性質研究與元件探討 國立台灣師範大學化學研究所-碩士論文, 2008年7月
110.Chang, C.-Y.; Huang, W.-K.; Chang, Y.-C.; Lee, K.-T.; Chen, C.-T. A Solution-Processed N-doped Fullerene Cathode Interfacial Layer for Efficient and Stable Large-area Perovskite Solar Cells. J. Mater. Chem. A, 2016, 4, 640-648.
111.Yin, X.; Que, M.; Xing, Y.; Que, W. High Efficiency Hysteresis-less Inverted Planar Heterojunction Perovskite Solar Cells with a Solution-derived NiOx Hole Contact Layer. J. Mater. Chem. A, 2015, 3, 24495–24503.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20358-
dc.description.abstract本論文以氟摻氧化錫透明導電膜 (FTO) 製作太陽能電池元件,研究主題分為兩部份。第一部份開發新型液滴式 (solution dropping method) 快速染料附著製程,製作高效率染料敏化太陽能電池 (dye-sensitized solar cells; DSSCs)。第二部份研究以氮喹啉 (4-methyl-[1.5]-naph- thyridin-8-ol; HmND) 配位基形成的金屬螯合物,作為鈣鈦礦太陽能電池添加劑 (perovskite solar cells; PSCs) ,並分析此類添加劑對元件效率的影響。
首先,第一部份以新型液滴式 (new solution dropping method) 進行染料附著,達到染料敏化太陽能電池效能優化的目的。有別於傳統的浸泡式 (dipping method) 的方法,需長時間浸泡 (2-24小時) 才能得高效率的元件。本論文液滴式的方法,以高極性及高濃度的溶液將染料快速附著於二氧化鈦 (TiO2) 表面上,製備元件的時間將縮短至10分鐘以內,染料附著的程序更只需5分鐘。以一個0.16 cm2的元件為列,所需的染料量將為傳統浸泡式的1/10。除此之外,液滴式的方法可以避免染料浪費及節省溶劑讓製程更環保。
液滴式快速染料附著法,選擇三種典型的染料製作元件,光電轉換效率 (power conversion efficiency; PCE) 皆可以達到很好的效果。包括第一種釕 (Ru) 金屬錯合物N719,平均光電轉換效率可達8.5% (浸泡式8.1%)、第二種有機推拉式分子 1P-PSS,平均效率可達6.6% (浸泡式5.9%)。效果最好的大環分子ATT,其平均相對於浸泡式更增加了60% (從4.1% 增加到6.7%)。經過一系列的分析,例如染料附著密度測試 (dye loading density)、電子顯微鏡碳/鈦原子訊號比值偵測 (SEM EDS for C/Ti) 分析,可發現新型液滴式的方法使染料高密度分散,並且更深入TiO2層。利用暫態光電壓/光電流衰減訊號 (Transient Photovoltage/Photocurrent; TPV/TPC) 量測,證明液滴式的元件有比較長的電子/電洞再結合的時間及較快的載子傳輸速度,如此能減少光電流的損失。為了進一步液滴式的優勢,以新開發的2,6取代的BODIPY染料進行液滴式元件的製作,其中MPBTTCA的液滴式元件效率最高效率可達6.4%。其中含有新錨定團基 (anchoring group) 的 MPBT-pyO,液滴式的元件效率達3.3 %,足足高出浸泡式元件的0.3%有10倍之多。其他的BODIPY染料利用液滴式製作元件,也呈現了相當好的效果。這也顯示此液滴式的方法,對於測試新的染料是相當快速且便宜實用的篩選方式。
第二部份,利用本實驗室已開發的一系列的金屬螯合物做為鈣鈦礦薄膜添加劑,製備一般式 (regular) 及反式 (inverted) 兩種型式的鈣鈦礦太陽能電池。此類添加劑以氮喹啉 (4-methyl-[1.5]-naph- thyridin-8-ol; HmND) 的配位基製備金屬螯合物,其中金屬中心包括鋅 (ZnII), 鎂 (MgII), 鋁 (AlIII), 鎵 (GaIII), 銦 (InIII) 及 鉿 (HfIV) 等。此類螯合物金屬螯合物上的氮原子會與鈣鈦礦結構薄膜產生作用力,達到修飾鈣鈦礦薄膜的效果。
本研究中將0.4 wt% 金屬螯合物 (重量百分比於碘化鉛(PbI2)) 的濃度加入碘化鉛的溶液中,以二步法製備鈣鈦礦薄膜。各金屬螯合物對於鈣鈦礦薄膜性的影響可包括: (1) 含有不同金屬原子,(2) 氮喹啉上的氮 (N) 具有孤對電子,及(3) 不同的分子構形 (meridional or facial) 都是造成鈣鈦礦薄膜及元件電性上的差異的原因。其中,鈣鈦礦結構中的鉛離子 (Pb2+) 或碘離子 (I-) 離子與各金屬螯合物之間的作用力,可透由比對金屬螯合物有無加入PbI2或甲基碘胺 (MAI) 的氫核磁共振光譜 (1H-NMR spectra) 及螢光光譜 (photoluminescence spectra; PL) 証明了作用力的存在並了解發生的位置。利用場發射電子顯微鏡 (FE-SEM) 與 X射線繞射光譜儀 (X-ray diffraction patterns) ,鑑定添加金屬螯合物的鈣鈦礦薄膜在表面形態及結晶組成都與未添加的薄膜不同程度的差異。此外,藉由鈣鈦礦薄膜的吸收光譜及低功率光電光譜儀 (AC2) 測得的數據定義此類鈣鈦礦薄膜的能階,薄膜的電子最高占有軌域 (HOMO) 能階從5.44 eV降低至5.5-5.6不等。
此一系列含有金屬螯合物鈣鈦礦太陽能電池,提升了一般式及反式的元件光電轉換效率都有提升。其中以MgmND2-based的元件有最好的效果。一般式元件最高轉換效率來到12.12% (無添加為9.95%)。主要是MgmND2-based的鈣鈦礦元件VOC增加至1.06V ,較無添加的元件0.94V高。另一方面,MgmND2-based反式的元件也可達14.54% (無添加為12.32%)。其他的金屬螯合物添加劑所製作的元件,也有增加的效果。本研究亦利用空間電流電荷 (space charge limited current; SCLC) 的方法評估此一系列的鈣鈦礦薄膜的載子遷移率 (charge carrier mobility)。初步了解,不同的金屬螯合物添加劑產生的作用,的確對於鈣鈦礦薄膜電性造成的相當程度的影響。鈣鈦礦太陽能電池的效率高,則電子/電洞的遷移率比較接近。最後,為了了解各金屬螯合物添加劑對元件穩定性的影響。以反式元件放置於常溫下儲存350小時,觀察添加劑長時間對鈣鈦礦薄膜是否有利。可以發現在350小時後,元件的遲滯效應有緩和的趨勢。其中又以分子對稱性高的fac-InmND3的元件長時間穩定性表現較佳。
zh_TW
dc.description.abstractA simple solution dropping method was established for sensitizing TiO2 in the fabrication of dye-sensitized solar cells (DSSCs). Comparing with conventional solution dipping (or immersion) method, solution dropping method is very fast, less than ~5 minutes vs >2~24 hours typically required in solution dipping method. There are much less organic solvent and dye substance (95% less) used in the dyeing TiO2 process and hence significantly less disposal of chemical waste from the device fabrication. Therefore, our facile and very fast solution dropping method is a greener and more sustainable process than conventional dropping method. Moreover, the solution dropping method is superior to solution dipping method in terms of power conversion efficiency (PCE) of the device. We have acquired compelling evidences, dye uptake assessment of TiO2 electrode, depth profile assay by SEM-EDX, and charge dynamic characteristics from transient photocurrent/photovoltage analysis, indicating the elevated dye loading of TiO2 electrode is the main cause of increasing short-circuit current and hence the PCE of DSCs. Three types of dye were used in this study to demonstrate the superiority of solution dropping method. They are classical N719 (ruthenium transition metal complex), 1P-PSS (metal free organic dye), and the newly synthesized ATT (a -pyrrole carbon-conjugated zinc tetraphenylporphyrin). With solution dropping method, the average PCEs (from thirty or forty tested devices of each dye) are all improved, 8.1% to 8.5%, 5.9% to 6.6%, and 4.1% to 6.7% for N719, 1P-PSS, and ATT, respectively. Further more, high performance 2,6-subsititute BODIPYs were also developed by solution dropping method. The best PCE of MPBTTCA could be achieved to 6.4%. Especially for the PCE of MPBT-pyO device by dropping method was ten times higher than it by dipping method. This indicates the new solution dropping method could be a feasible method for all dying process.
On the other hand, the incorporation of additives to perovskite layers is one of the most effective strategies to optimize perovskite solar cells (PSCs). Herein, we developed a series of 8-methyl-1,5-naphtyridin-4-ol (HmND) metal chelates as additives for both regular (mesoporous TiO2-based) and inverted (nickel oxide; NiOx-based) PSCs. These metal chelate additives including Zn(II), Mg(II), Al(III), Ga(III), In(III), and Hf(IV) metal cations, and the free ligand HmND were respectively incorporated into CH3NH3PbI3 films by a two-step method. The interaction of naphtyridine on metal chelates with lead and iodine ions in DMSO solution was first investigated by 1H-NMR and photoluminescence (PL) spectra. Moreover, the morphology of CH3NH3PbI3 affected by the chemical structure of metal chelates was investigated by field emission scanning electron microscopy (FE-SEM). A featureless morphology was found for the pristine CH3NH3PbI3 films. For the films incorporated with metal chelates, leaf-like or rose petal-like morphologies were observed on mesoporousTiO2 scaffold substrates, whereas coral reef-like morphologies were found on NiOx substrates. Apart from that, HOMO level shifts and microstructure phases of these modified CH3NH3PbI3 films were also thoroughly investigated. These metal chelate-based PSCs exhibited a significant enhancement in open-circuit voltage (VOC) (maximum 1.06 V vs 0.94 V for the pristine sample). The maximum power conversion efficiency (PCEmax) of Mg chelate-based devices were 12.12% and 14.54% for regular and inverted PSCs, respectively. In addition, the charge transport properties of metal chelate-based devices were evaluated by space-charge-limited-current (SCLC) method. To understand the long-term stability of respective metal chelate-based devices, these photovoltaic parameters were recorded for 350 h. The facial form in chelate-based solar cells were able to exhibit 12% of PCE increase when compared to their original values.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:46:11Z (GMT). No. of bitstreams: 1
ntu-106-D01549001-1.pdf: 8311052 bytes, checksum: 576138a271b2b04cbf30ebe9f9dbad78 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 I
中文摘要 II
英文摘要 V
目錄 VIII
圖目錄 XI
表目錄 XVII
第一章、太陽能電池元件相關介紹 1
1-1前言 1
1-2太陽光譜及材料吸收波段 2
1-3太陽能電池的種類 5
1-4 量測太陽能電池元件的參數 6
第二章、文獻回顧 8
2-1 染料敏化太陽能電池 (DYE-SENSITIZED SOLAR CELLS; DSSCS) 8
2-1-1 元件結構結構及其運作原理 (DSSCS STRUCTURE AND WORKING PRINCIPLE) 8
2-1-2 染料敏化太陽能電池快速染料附著製程 (FAST DYING METHODS FOR DSSCS) 10
2-2 鈣鈦礦太陽能電池 (PEROVSKITE SOLAR CELLS; PSCS) 12
2-2-1 鈣鈦礦材料與鈣鈦礦太陽能電池效率進展 (MATERIALS AND PROGRESS) 12
2-2-2 鈣鈦礦太陽能電池薄膜晶體結構 (CRYSTAL STRUCTURES FOR SOLAR CELLS) 16
2-2-3鈣鈦礦太陽能電池工作原理 ( PSCS WORKING PRINCIPLE) 17
2-2-4元件結構與常用材料(DEVICES STRUCTURE AND MATERIALS) 19
2-2-4-1電洞傳輸層 (HTL) 22
2-2-4-2電子傳輸層(ETL)及緩衝層 (BUFFER LAYER) 23
2-2-5鈣鈦礦薄膜改質(MODIFICATION OF PEROVSKITE LAYER) 27
2-2-5-1能隙調整 (BAND-GAP TUNING) 27
2-2-5-2 添加劑 (ADDITIVE) 30
2-2-6鈣鈦礦薄膜的劣化機制 (DEGRADATION OF PEROVSKITE) 35
2-2-7 多樣化的鈣鈦礦太陽能電池製程 (PROCESS OF PSCS) 39
2-2-8鈣鈦礦材料的其他應用(THE OTHER APPLICATIONS OF PEROVSKITE MATERIALS) 43
第三章、研究動機 46
第四章、染料敏化太陽能電池製程優化-液滴式快速染料附著法 49
4-1浸泡法與液滴式染料附著法製程比較 49
4-2 浸泡式及新型液滴式連續製作元件的效率觀察 52
4-3 二氧化鈦染料電極照片及SEM-EDS 針對碳原子及鈦原子的訊號比值
(C/TI) 55
4-4暫態光電壓/電流衰減測量(TRANSIENT PHOTOVOLTAGE/PHOTOCURRENT) 57
4-5以液滴式方法,測試本實驗室開發的BODIPY新式染料 59
4-6結論 62
第五章、金屬螯合物添加劑對鈣鈦礦太陽能電池的影響探討 64
5-1金屬螯合物化學結構與其對碘化鉛結晶速度影響 64
5-2核磁共振光譜 65
5-3螢光光譜 74
5-4鈣鈦礦薄膜的表面形態分析 (FE-SEM) 79
5-5 XRD繞射訊號觀察 82
5-6 鈣鈦礦薄膜紫外光-可見光 (UV-VISIABLE) 吸收光譜及能階評估 85
5-7鈣鈦礦太陽能電池效能分析 (J-V CURVE AND IPCE) 89
5-8 鈣鈦礦薄膜電荷遷移率分析 (SPACE-CHARGE LIMIT CURRENT; SCLC) 95
5-9含金屬螯合物鈣鈦礦薄膜在元件中的穩定性 98
5-10結論 105
第六章、總結 106
第七章、實驗部份 107
7-1染料敏化太陽能電池實驗操作 107
7-1-1使用的藥品及溶劑 107
7-1-2染料敏化太陽能電池元件組裝 108
7-1-3特性分析 110
7-2鈣鈦礦太陽能電池實驗操作 112
7-2-1 藥品及溶劑 112
7-2-2 一般特性分析 114
7-2-3 金屬螯合物添加劑鈣鈦礦太陽能電池製作流程 115
7-3光伏特及效率量測 116
第八章、參考文獻 118
附錄: 歷年發表期刊 138
dc.language.isozh-TW
dc.title染料敏化太陽能電池製程優化與金屬螯合物添加劑對鈣鈦礦太陽能電池的影響探討zh_TW
dc.titleFacile Solution Dropping Method for Dyeing TiO2 Electrode of Dye Sensitized Solar Cells (DSSCs) with Enhanced Power Conversion Efficiency and the Effects of New Metal Chelates as Additives for Perovskite Solar Cells (PSCs)en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.coadvisor陳錦地
dc.contributor.oralexamcommittee童世煌,張勝雄,陳志平,詹立行
dc.subject.keyword二氧化鈦層,染料敏化太陽能電池,浸泡式,液滴式,光電轉換效率,錨定基,鈣鈦礦太陽能電池,金屬螯合物,氮??,一般型,反式,空間電流電荷,載子遷移率,zh_TW
dc.subject.keywordTiO2,dye sensitized solar cells (DSSCs),immersion method,dropping method,anchoring group,perovskite solar cells (PSCs),metal chelates,4-methyl-[1.5]-naph- thyridin-8-ol (HmND),regular,inverted,space charge limited current (SCLC),charge carrier mobility,en
dc.relation.page141
dc.identifier.doi10.6342/NTU201704274
dc.rights.note未授權
dc.date.accepted2017-10-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved