Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20354
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鐘嘉德(Char-Dir Chung)
dc.contributor.authorChieh-Ju Tsaien
dc.contributor.author蔡杰儒zh_TW
dc.date.accessioned2021-06-08T02:46:04Z-
dc.date.copyright2021-02-22
dc.date.issued2020
dc.date.submitted2020-07-22
dc.identifier.citation[1] ETSI, Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television, ETS 300 744, Dec. 2001.
[2] 3GPP TS 38.211 V15.6.0, NR; Physical channels and modulation, Jun. 2019.
[3] IEEE 802.11-2012, IEEE standard for information technology– Telecommunications and information exchange between systems– Local and metropolitan area networks–
Specific requirements, Part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications, Mar. 2012.
[4] 3GPP TS 36.211 V12.3.0, LTE; Evolved universal terrestrial radio access (E-UTRA):
Physical channels and modulation, Oct. 2014.
[5] IEEE 802.16-2009, IEEE standard for local and metropolitan area networks, Part 16: Air interface for broadband wireless access systems, May 2009.
[6] IEEE 802.22-2011, Part 22: Cognitive wireless RAN medium access control (MAC)
and physical layer (PHY) specifications: Policies and procedures for operation in the
TV bands, Jul. 2011.
[7] IEEE 802.20-2008, IEEE standard for local and metropolitan area networks, Part
20: Air interface for mobile broadband wireless access systems supporting vehicular
mobility–Physical and media access control layer specification, Aug. 2008.
[8] M. M. Wang, A. Agrawal, A. Khandekar, and S. Aedudodla, “Preamble design, system
acquisition, and determination in modern OFDMA cellular communications: An overview,” IEEE Commun. Mag., vol. 49, pp. 164-175, Jul. 2011.
[9] C.-D. Chung andW.-C. Chen, “Preamble sequence design for spectral compactness and
initial synchronization in OFDM,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1428-1443, Feb. 2018.
[10] T. M. Schmidl, D. C. Cox, “Robust frequency and timing synchronization for OFDM,” IEEE Trans. Commun., vol. 45, no. 12, pp. 1613-162, Dec. 1997.
[11] H. Abdzadeh-Ziabari, W. P. Zhu, and M. N. S. Swamy, “Improved coarse timing estimation in OFDM systems using high-order statistics,” IEEE Trans. Commun., vol. 64, no. 12, pp. 5239-5253, Dec. 2016.
[12] J. W. Choi, J. Lee, Q. Zhao, and H. L. Lou, “Joint ML estimation of frame timing and carrier frequency offset for OFDM systems employing time-domain repeated preamble,” IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 311-317, Jan. 2010.
[13] H. Minn, V. K. Bhargava, and K. K. B. Letaief, “A robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Wireless Commun., vol. 2, no. 4, pp.
822-839, Jul. 2003.
[14] H. Minn, V. K. Bhargava, and K. K. B. Letaief, “A combined timing and frequency
synchronization and channel estimation for OFDM,” IEEE Trans. Commun., vol. 54,
no. 3, pp. 416-422, Mar. 2006.
[15] A. B. Awoseyila, C. Kasparis, and B. G. Evans, “Improved preamble-aided timing estimation for OFDM systems,” IEEE Commun. Lett., vol. 12, no. 11, pp. 825-827, Nov.
2008.
[16] T.-D. Chiueh, P.-Y. Tsai, and I.-W. Lai, Baseband Receiver Design for Wireless MIMOOFDM Communications, 2nd ed., Wiley, Apr. 2012.
[17] H. Abdzadeh-Ziabari and M. G. Shayesteh, “Robust timing and frequency synchronization for OFDM systems,” IEEE Trans. Veh. Technol., vol. 60, no. 8, pp. 3646-3656, Oct. 2011.
[18] T. H. Kim and I. C. Park, “Low-power and high-accurate synchronization for IEEE
802.16d systems,” IEEE Trans. VLSI Systems., vol. 16, no. 12, pp. 1620-1630, Dec.
2008.
[19] A. Fort, J. W. Weijers, V. Derudder, W. Eberle and A. Bourdoux, “A performance and complexity comparison of auto-correlation and cross-correlation for OFDM burst synchronization,” in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Process., pp. 341-344, Hong Kong, Apr. 2003.
[20] C. L. Wang and H. C. Wang, “On joint fine time adjustment and channel estimation for OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 4940-4944, Oct.
2009.
[21] M. Morelli and U. Mengali, “Carrier-frequency estimation for transmissions over selective channels,” IEEE Trans. Commun., vol. 48, no. 9, pp. 1580-1589, Sep. 2000.
[22] M. Ruan, M. C. Reed and Z. Shi, “Approximated maximum likelihood estimation of
carrier frequency offset in practical OFDM systems,” in Proc. IEEE Wireless Commun.
and Networking Conf., pp. 1406-1410, Kowloon, Mar. 2007.
[23] P. Stoica and O. Besson, “Training sequence design for frequency offset and frequencyselective channel estimation,” IEEE Trans. Commun., vol. 51, no. 11, pp. 1910-1917, Nov. 2003.
[24] O. Besson and P. Stoica, “Training sequence selection for frequency offset estimation in frequency-selective channels,” Digital Signal Processing: Rev. J., vol. 13, no. 1, pp. 106-127, Jan. 2003.
[25] H. Minn, X. Fu, and V. K. Bhargava, “Optimal periodic training signal for frequency offset estimation in frequency-selective fading channel,” IEEE Trans. Commun., vol. 54, no. 6, pp. 1081-1096, Jun. 2006.
[26] W.-C. Chen and C.-D. Chung, “Spectrally efficient OFDM pilot waveform for channel estimation,” IEEE Trans. Commun., vol. 65, no. 1, pp. 387-402, Jan. 2017.
[27] “Preamble sequence design for low PAPR, high spectral compactness and robust initial synchronization in OFDM,” C.-C. Lin master, in NTU Graduate Institute of
Communication Engineering, Jul. 2018.
[28] J. J. Benedetto and J. J. Donatelli, “Ambiguity function and frame-theoretic properties of periodic zero-autocorrelation waveforms,” IEEE J. Select. Topics Signal Process., vol. 1, no. 1, pp. 6-20, Jun. 2007.
[29] Y.-D. Kim, J. K. Lim, C. Suh, and Y. H. Lee, “Designing training sequences for carrier frequency estimation in frequency-selective channels,” IEEE Trans. Veh. Technol., vol. 5, no. 1, pp. 151-157, Jan. 2006.
[30] D. C. Chu, “Polyphase codes with good periodic correlation properties,” IEEE Trans. Inform. Theory, vol. 18, pp. 531-532, Jul. 1972.
[31] B. M. Popovic, “Generalized chirp-like polyphase sequences with optimum correlation properties,” IEEE Trans. Inform. Theory, vol. 38, pp. 1406-1409, Jul. 1992.
[32] D. V. Sarwate, “Bounds on crosscorrelation and autocorrelation of sequences,” IEEE Trans. on Inform. Theory, vol. 25, pp. 720-724, Nov. 1979.
[33] T. Hayashi, “A class of zero-correlation zone sequence set using a perfect sequence,”
IEEE Signal Process. Lett., vol. 16, no. 4, pp. 331-334, Apr. 2009.
[34] M. K. Simon, J. K. Omura, R. A. Scholtz, and B. K. Levitt, Spread Spectrum Communications, vol. 1. Computer Science Press, 1985.
[35] Y. Jeon, H. Park and E. Choi, “Synchronization and Cell Search Procedure in 3GPP 5G NR Systems,” 2019 21st International Conference on Advanced Communication Technology (ICACT)., 17-20 Feb. 2019.
[36] A. Cao, P. Xiao, and R. Tafazolli, “Frequency offset estimation based on PRACH preambles in LTE,” Proc. IEEE ISWCS., pp. 22-26, Aug. 2014.
[37] 3GPP TSG RAN, “Specification of restricted set of cyclic shifts of root Zadoff-Chu sequences,” WG1#49 R1-072898, Huawei, Shenzhen, China, Nov. 2009.
[38] 3GPP TSG RAN, “Restricted sets of RACH preamble signatures for environments with
high doppler shifts,” WG1#49 R1-070377, Nokia, Espoo, Finland, Jan. 2007.
[39] 3GPP TSG RAN, “RACH in support of high speed UEs,” Tallinn, Estonia, WG1#46
R1-062387, Sep. 2006.
[40] B. Liang and Z. He, “The research on random access signal detection algorithm in LTE systems,” Proc. IEEE Int. Symp. MAPE Wireless Commun., Oct. 2013, pp. 115-118.
[41] X. Yang and A. O. Fapojuwo, “Enhanced preamble detection for PRACH in LTE,” Proc. IEEE WCNC., Apr. 2013, pp. 3306–3311.
[42] Y. Chen, X.Wen, Z.Wei, and L. Xinqi, “Random access algorithm of LTE TDD system
based on frequency domain detection,” Proc. Int. Conf. Semantics., Knowl. Grid, Oct.
2009, pp. 725–728.
[43] Y. Hu et al., “A method of PRACH detection threshold setting in LTE TDD femtocell system,” Proc. CHINACOM Conf. Netw., Aug. 2012, pp. 408–413.
[44] “Random access preamble detection in LTE system with timing delay,” Y.-L. Wu master, in NTU Graduate Institute of Communication Engineering, Jun. 2018.
[45] J. Lee, J. P. Choi, H.-L. Lou, “Joint Maximum Likelihood Estimation
of Channel and Preamble Sequence for OFDM Systems,” IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference., 26-30 Nov. 2007.
[46] T.-C. Lin and S.-M. Phoong, “A new cyclic-prefix based algorithm for blind CFO estimation in OFDM systems,” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 3995-
4008, Jun. 2016.
[47] S. J. Press, Applied Multivariate Analysis. Holt, Rinehart and Winston Inc., 1972.
[48] R. J. Muirhead, Aspects of Multivariate Statistical Theory. John Wiley Sons Inc., 2005.
[49] P. Billingsley, Probability and Measure. 2nd edition, Wiley., 1986.
[50] 3GPP TR 38.804 V14.0.0, NR; Study on New Radio Access Technology: Radio Interface Protocol Aspects, Mar. 2017.
[51] H. Arslan and T. Yucek, “Delay spread estimation for wireless communication systems,” Proc. IEEE 8th Symp. Comput. and Commun., pp. 282-287, Kemer-Antalya, Turkey, Jul. 2003.
[52] J. G. Proakis, Digital Communications. 5th ed. NY: McGraw Hill, 2008.
[53] I. Reed, “On a moment theorem for complex Gaussian processes,” IEEE Trans. on Inform. Theory, vol. IT-8, pp. 194-195, Apr. 1962.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20354-
dc.description.abstract在現行的正交分頻多工(OFDM)系統和標準,對於時間和頻率的初始同步大多使用前導訊號波形,因此如何正確地偵測前導訊號序列是十分重要的議題。在現有的文獻中,通常使用自相關方法(autocorrelation method)或互相關方法(crosscorrelation method)進行前導訊號序列的偵測,然而這些方法對於通道的變化是敏感的。
在這篇論文中,基於廣義概似比檢驗(GLRT)和尼曼皮爾森(Neyman Pearson)標準,新的前導訊號偵測方法被提出,這些方法在前導訊號偵測的效果對於通道變化十分不敏感,能夠在未知的通道環境中提供強大的表現。
zh_TW
dc.description.abstractIn practical orthogonal frequency division multiplexing systems and standards, preamble waveforms are adopted to facilitate initial timing and frequency synchronization. Therefore, how to detect preamble sequences correctly is a crucial issue. In the literature, autocorrelation method and crosscorrelation method are commonly used to detect preamble sequences. However, both of the two methods are sensitive to the channels which preamble is transmitted in. In this thesis, the new preamble detection methods based on the generalized likelihood ratio test (GLRT) principle and the Neyman Pearson (NP) criterion are proposed. These preamble detection methods are not sensitive to channels, and they can provide a robust performance even if channel is unknown.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:46:04Z (GMT). No. of bitstreams: 1
U0001-1707202016582100.pdf: 2869935 bytes, checksum: 61c7c6a978faacc8b61a852995b2ad53 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables viii
1 Introduction 1
1.1 Overview of OFDM Systems 1
1.2 Review of Properties of Preamble Waveforms 2
1.3 Review of Sequence Detection 4
1.4 Thesis Motivation 5
1.5 Notations 5
2 Signal Model and MGLRT Method 7
2.1 Signal Model 7
2.1.1 Transmitter Signal Model 7
2.1.2 Receiver Signal Model 9
2.2 Maximum GLRT Method 10
2.2.1 GLRT Estimation 10
2.2.2 Decision Method 12
2.3 Detection Error Probability 13
2.4 Performance Analysis 16
2.4.1 Compared Sequences 17
2.4.2 Numerical and Simulation Result 18
3 IGLRT Method 34
3.1 Iterative GLRT Method 34
3.2 Detection Error Probability 35
3.3 Performance Analysis 38
3.3.1 Complexity Comparison 39
3.3.2 Numerical and Simulation Result 39
4 Conclusion 45
Bibliography 46
Appendix A: Derivation of (2.12) 52
Appendix B: Derivation of (2.13) 53
dc.language.isoen
dc.titleOFDM系統中的前導序列偵測zh_TW
dc.titlePreamble Sequence Detection in OFDM Systemsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.coadvisor陳維昌(Wei-Chang Chen)
dc.contributor.oralexamcommittee王晉良(Chin-Liang Wang),蘇育德(Yu-Ted Su),馮世邁(See-May Phoong)
dc.subject.keyword正交分頻多工,初始同步,前導訊號偵測,廣義概似比檢驗,尼曼皮爾森標準,zh_TW
dc.subject.keywordorthogonal frequency-division multiplexing,initial synchronization,preamble detection,GLRT,Neyman Pearson criterion,en
dc.relation.page54
dc.identifier.doi10.6342/NTU202001607
dc.rights.note未授權
dc.date.accepted2020-07-22
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1707202016582100.pdf
  目前未授權公開取用
2.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved