Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20352
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李顯峰(Hsien-Feng Lee)
dc.contributor.authorWan-Ting Tsengen
dc.contributor.author曾琬婷zh_TW
dc.date.accessioned2021-06-08T02:46:00Z-
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-10-19
dc.identifier.citation中文文獻
吳修宏,2013,《小波分析方法對時間序列模型預測能力之影響-以新台幣對美元匯率為例》,政治大學金融研究所碩士論文。
黃俊豪,2006,《小波理論應用於多因子模型-以台灣股市為例》,中山大學經濟學研究所碩士論文。
戴佳信,2004,《小波理論於智慧型影像處理在鋼構橋梁表面銹蝕面積檢測之應用》,交通大學土木工程系所碩士論文。
英文文獻
Aizerman, M.-A., Braverman, E.-M. and Rozonoer, L.-I., 1964, “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning,” Autom. Remote Control, Vol.25, 821-837.
Bernstein, P.-L., 2009, Capital Ideas Evolving, USA: Wiley.
Bagheri, Ahmad, Hamed Mohammadi Peyhani and Mohsen Akbari, 2014, “Financial Forecasting using ANFIS Networks with Quantum-behaved Particle Swarm Optimization,” Expert Systems With Applications, Vol.41, No.14, 6235-6250.
Cheng, Shou-Hsiung, Chen, Shyi-Ming and Jian, Wen-Shan Jian, 2016, “Fuzzy Time Series Forecasting Based on Fuzzy Logical,” Information Sciences,Vol.327, 272-287.
Daubechies, Ingrid, 1990, “The Wavelet Transform, Time Frequency Localization and Signal Analysis,” IEEE Transactions on Information Theory, Vol.36, No.5, 961-1005.
Daubechies, Ingrid, 1992, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, Pennsylvania, USA.
Gabor, D., 1946, “Theory of Communication,” J. IEE, Vol.93, 429-457.
Graps, A., 1995, An Introduction to Wavelets, IEEE Computational Science and Engineering. Vol.2, No.2, 50-61.
Huang, Chao, Huang, Li-Li and Han, Ting-Ting, 2012, “ Financial Time Series Forecasting based on Wavelet Kernel Support Vector Machine,” 2012 8th International Conference on Natural Computation.
Huang, Shupei, An, Haizhong, Gao, Xiangyun and Sun, Xiaoqi, 2017, “Do Oil Price Asymmetric Effects on the Stock Market Persist in Multiple Time Horizons,” Applied Energy, Vol.185, Part 2, 1799-1808.
Kishikawa, Yoshinori and Tokinaga, Shozo, 2000, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Vol.E83-A, No.2, 357-366.
Lee, D.-L., 2002, A High-Speed Semi-Recursive Architecture for 2-D Discrete Wavelet Transform, Department of Electrical Engineering, National Cheng Kung University.
Li, Sheng-Tun and Kuo, Shu-Ching , 2008, “Knowledge Discovery in Financial Investment for Forecasting and Trading Strategy through Wavelet-based SOM Networks,” Expert Systems with Applications, Vol.34, Issue 2, 935-951.
Lei, Hong, 2011, “Decomposition and Forecast for Financial Time Series with High-frequency Based on Empirical Mode Decomposition,” Energy Procedia, Vol. 5, 1333-1340.
Lin, Fu-Lai, Yang, Sheng-Yung, Terry Marsh and Chen, Yu-Fen, 2017, “Stock and Bond Return Relations and Stock Market Uncertainty: Evidence from Wavelet Analysis,” International Review of Economics & Finance, Available online.
Liu, Jingzhen, 2017, “ Impact of Oil Price Changes on Stock Returns of UK Oil and Gas Companies: A Wavelet-Based Analysis,” University of Aberdeen Business School, Dunbar Street, Aberdeen, AB24 3QY, UK.
Mallat, S., 1989, “A Theory for Multiresolution Signal Decomposition: the Wavelet
Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.11, No.7, 674-693.
Martin, V. and Cormac, H., 1992 “Wavelets and Filter Banks: Theory and Design” IEEE Transactions on Signal Processing, Vol.40, No.9, 2207-2227.
Mallat, S., 1998, A wavelet tour of signal processing. Academic. San Diego, CA.
Mousazadeh, Abbasi N., Aghaei, M. A. and Moradzadeh, Fard, M., 2015, “Forecasting Stock Market Using Wavelet Transforms And Neural Networks And ARIMA (Case Study Of Price Index Of Tehran Stock Exchange),” International Journal of Applied Operational Research, Vol.5, No.3, 31-40.
Percival, D.-B., and Walden, A.-T., 2000, Wavelet Methods for Time Series Analysis, Cambridge University Press, Cambridge, UK.
Ramsey, James B., Usikov, Daniel and Zaslavsky, George M., 1995, An Analysis of U.S. Stock Price Behavior Using Wavelet, Courant Institute of Mathematical Sciences and Department of Physics, New York University, USA.
Railean, Ion, Sorin Moga, and Monica Borda, 2009, “Forecasting by Neural Networks in the Wavelet Domain,” Acta Technica Napocensis Electronics and Telecommunications, Vol.50, 15-27.
Starck, J.-L., Murtagh, F., and Bijaoui, A., 1998, Image and Data Analysis: The Multiscale Approach, Cambridge University Press, Cambridge, UK.
Tsai, D.-M., and Chiang, C.-H., 2003, “Automatic Band Selection for Wavelet Reconstruction in the Application of Defect Detection,” Image and Vision Computing, Vol.21, 413-431.
Wei, Liang-Ying, 2016, “A Hybrid ANFIS Model based on Empirical Mode Decomposition for Stock Time Series Forecasting,” Applied Soft Computing, Vol.42, 368-376.
Yousefi, S., Weinreich, I., and Reinarz, D., 2005, “Wavelet-based Prediction of Oil Prices.” Solitons and Fractals, Vol.25, No.2, 265-275.
Zhang, Encheng, Wang, Degang and Li, Hongxing, 2016, “A Comprehensive High Order Type 2 Fuzzy Time Series Forecasting Model,” Chinese Control and Decision Conference (CCDC), IEEE, 6681-6686.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20352-
dc.description.abstract本文研究台灣加權股價指數(TAIEX)的預測模型,因欲與三個預測模型比較預測的準確度,選擇1998-2006年為樣本期間,應用小波轉換(Wavelet Transform)方法進行比較。小波轉換克服傅立葉轉換(Fourier Transform)之不足之處,可以分析非定態(non-stationary)與非週期性資料,並同時凸顯時域與頻域之效果。
小波轉換擷取資料特徵值,並根據特徵值重構多項式迴歸混合預測模型。佐以網格搜索(Grid Search)方式,探索台灣加權股價指數金融時間序列資料的趨勢及變化。實證研究結果顯示,本研究所應用的小波轉換與多項式迴歸預測模型可準確地預測台灣加權股價指數,其預測結果較其他現行研究結果的預測模型更為優異,具有參考價值,可提供決策主管當局之參考。
zh_TW
dc.description.abstractIn this study we try to construct a forecasting model of Taiwan Stock Exchange Index (TAIEX), based upon the Wavelet Transform method, to investigate the predicted accuracy from 1998 to 2006. Wavelet transform overcomes the shortcomings of Fourier transform, i.e., it can analyze non-stationary and non-periodic time series data, and highlights the effect of time domain and frequency domain.
Wavelet transform extracts the eigenvalue of the sample data and combines with the polynomial regression according to the eigenvalue. Grid Search explores the trend and change of financial time series data of Taiwan Stock Exchange Index. Our major findings show Wavelet transform combined with polynomial regression model can more accurately predict the Taiwan Stock Exchange Index. The predicting power of our model is more competent than the three previous models. It can be of a better reference for by the decision-making authorities.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:46:00Z (GMT). No. of bitstreams: 1
ntu-106-P04323027-1.pdf: 2371403 bytes, checksum: e84728857e816c549ade9d5bb15cde82 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
誌 謝 II
中文摘要 III
Abstract IV
目 錄 V
圖目錄 VII
表目錄 VIII
附表表次 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範疇及流程 5
1.4 章節架構 8
第二章 文獻回顧 9
2.1 小波轉換相關實證研究 9
2.2 股價預測準確性 11
第三章 研究方法 13
3.1 小波轉換 13
3.2 多尺度分析 24
第四章 實證研究分析 26
4.1 研究樣本資料 26
4.2 系統架構 27
4.3 建置預測模型 28
4.4 實證研究結果 30
第五章 結論與檢討 41
5.1 結論 41
5.2 檢討 42
參考文獻 43
附錄 47
dc.language.isozh-TW
dc.title台灣加權股價指數之預測模型:小波轉換與多項式迴歸模型之應用zh_TW
dc.titleA Prediction Model for Taiwan Stock Exchange Index: Application of the Wavelet Transform and Polynomial Regressionen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝德宗(Der-tzon Hsieh),林惠玲(Hui-Lin Lin)
dc.subject.keyword小波轉換,台灣加權股價指數,網格搜索,多項式迴歸,zh_TW
dc.subject.keywordWavelet Transform,Taiwan Stock Exchange Index (TAIEX),Grid Search,polynomial regression,en
dc.relation.page59
dc.identifier.doi10.6342/NTU201704306
dc.rights.note未授權
dc.date.accepted2017-10-19
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved