Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20350
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor伍安怡(Betty A. Wu-Hsieh)
dc.contributor.authorYu-Hsiang Leeen
dc.contributor.author李宇翔zh_TW
dc.date.accessioned2021-06-08T02:45:56Z-
dc.date.copyright2018-02-22
dc.date.issued2017
dc.date.submitted2017-10-20
dc.identifier.citationAdachi, M., Matsukura, S., Tokunaga, H., and Kokubu, F. (1997). Expression of cytokines on human bronchial epithelial cells induced by influenza virus A. Int Arch Allergy Immunol 113, 307-311.
Afonina, I.S., Elton, L., Carpentier, I., and Beyaert, R. (2015). MALT1 - a universal soldier: multiple strategies to ensure NF-κB activation and target gene expression. FEBS Journal 282, 3286-3297.
Atkinson, J.J., and Senior, R.M. (2003). Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol 28, 12-24.
Awla, D., Abdulla, A., Syk, I., Jeppsson, B., Regner, S., and Thorlacius, H. (2012). Neutrophil-derived matrix metalloproteinase-9 is a potent activator of trypsinogen in acinar cells in acute pancreatitis. J Leukoc Biol 91, 711-719.
Bhattacharyya, S., Dudeja, P.K., and Tobacman, J.K. (2008). Lipopolysaccharide activates NF-kappaB by TLR4-Bcl10-dependent and independent pathways in colonic epithelial cells. Am J Physiol Gastrointest Liver Physiol 295, G784-790.
Bhattacharyya, S., Xue, L., Devkota, S., Chang, E., Morris, S., and Tobacman, J.K. (2013). Carrageenan-induced colonic inflammation is reduced in Bcl10 null mice and increased in IL-10-deficient mice. Mediators Inflamm 2013, 397642.
Boghdadi, G., Hammad, N., Amer, A., Sammour, S., and Sorour, S. (2014). R848, a Toll-like receptors 7 and 8 agonist, a potential therapy for allergic rhinitis patients. Inflamm Allergy Drug Targets 13, 144-149.
Bonsignore, L., Passelli, K., Pelzer, C., Perroud, M., Konrad, A., Thurau, M., Sturzl, M., Dai, L., Trillo-Tinoco, J., Del Valle, L., et al. (2017). A role for MALT1 activity in Kaposi's sarcoma-associated herpes virus latency and growth of primary effusion lymphoma. Leukemia 31, 614-624.
Bradley, L.M., Douglass, M.F., Chatterjee, D., Akira, S., and Baaten, B.J. (2012). Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog 8, e1002641.
Brustle, A., Brenner, D., Knobbe, C.B., Lang, P.A., Virtanen, C., Hershenfield, B.M., Reardon, C., Lacher, S.M., Ruland, J., Ohashi, P.S., and Mak, T.W. (2012). The NF-kappaB regulator MALT1 determines the encephalitogenic potential of Th17 cells. J Clin Invest 122, 4698-4709.
Bussfeld, D., Kaufmann, A., Meyer, R.G., Gemsa, D., and Sprenger, H. (1998). Differential mononuclear leukocyte attracting chemokine production after stimulation with active and inactivated influenza A virus. Cell Immunol 186, 1-7.
CDC (2010). 2009 H1N1: Overview of a Pandemic. (1600 Clifton Rd. Atlanta, GA 30333, USA, Centers for Disease Control and Prevention.).
Cheng, C.Y., Hsieh, H.L., Hsiao, L.D., and Yang, C.M. (2012). PI3-K/Akt/JNK/NF-kappaB is essential for MMP-9 expression and outgrowth in human limbal epithelial cells on intact amniotic membrane. Stem Cell Res 9, 9-23.
Coornaert, B., Baens, M., Heyninck, K., Bekaert, T., Haegman, M., Staal, J., Sun, L., Chen, Z.J., Marynen, P., and Beyaert, R. (2008). T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-kappaB inhibitor A20. Nat Immunol 9, 263-271.
Corbel, M., Boichot, E., and Lagente, V. (2000). Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury. Braz J Med Biol Res 33, 749-754.
Dong, W., Liu, Y., Peng, J., Chen, L., Zou, T., Xiao, H., Liu, Z., Li, W., Bu, Y., and Qi, Y. (2006). The IRAK-1-BCL10-MALT1-TRAF6-TAK1 cascade mediates signaling to NF-kappaB from Toll-like receptor 4. J Biol Chem 281, 26029-26040.
Ferry, G., Lonchampt, M., Pennel, L., de Nanteuil, G., Canet, E., and Tucker, G.C. (1997). Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Letters 402, 111-115.
Finkelman, B.S., Viboud, C., Koelle, K., Ferrari, M.J., Bharti, N., and Grenfell, B.T. (2007). Global patterns in seasonal activity of influenza A/H3N2, A/H1N1, and B from 1997 to 2005: viral coexistence and latitudinal gradients. PLoS One 2, e1296.
Garg, P., Vijay-Kumar, M., Wang, L., Gewirtz, A.T., Merlin, D., and Sitaraman, S.V. (2009). Matrix metalloproteinase-9-mediated tissue injury overrides the protective effect of matrix metalloproteinase-2 during colitis. Am J Physiol Gastrointest Liver Physiol 296, G175-184.
Gewies, A., Gorka, O., Bergmann, H., Pechloff, K., Petermann, F., Jeltsch, K.M., Rudelius, M., Kriegsmann, M., Weichert, W., Horsch, M., et al. (2014). Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Rep 9, 1292-1305.
Gillotte-Taylor, K., Boullier, A., Witztum, J.L., Steinberg, D., and Quehenberger, O. (2001). Scavenger receptor class B type I as a receptor for oxidized low density lipoprotein. J Lipid Res 42, 1474-1482.
Gringhuis, S.I., Wevers, B.A., Kaptein, T.M., van Capel, T.M., Theelen, B., Boekhout, T., de Jong, E.C., and Geijtenbeek, T.B. (2011). Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog 7, e1001259.
Hailfinger, S., Nogai, H., Pelzer, C., Jaworski, M., Cabalzar, K., Charton, J.E., Guzzardi, M., Decaillet, C., Grau, M., Dorken, B., et al. (2011). Malt1-dependent RelB cleavage promotes canonical NF-kappaB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci U S A 108, 14596-14601.
Hara, H., and Saito, T. (2009). CARD9 versus CARMA1 in innate and adaptive immunity. Trends Immunol 30, 234-242.
Hashemian, S.M., Mortaz, E., Tabarsi, P., Jamaati, H., Maghsoomi, Z., Khosravi, A., Garssen, J., Masjedi, M.R., Velayati, A.A., Folkerts, G., et al. (2014). Elevated CXCL-8 expression in bronchoalveolar lavage correlates with disease severity in patients with acute respiratory distress syndrome resulting from tuberculosis. J Inflamm (Lond) 11, 21.
Heissig, B., Nishida, C., Tashiro, Y., Sato, Y., Ishihara, M., Ohki, M., Gritli, I., Rosenkvist, J., and Hattori, K. (2010). Role of neutrophil-derived matrix metalloproteinase-9 in tissue regeneration. Histol Histopathol 25, 765-770.
Hsieh, Y.C., Wu, T.Z., Liu, D.P., Shao, P.L., Chang, L.Y., Lu, C.Y., Lee, C.Y., Huang, F.Y., and Huang, L.M. (2006). Influenza pandemics: past, present and future. J Formos Med Assoc 105, 1-6.
Hussain, M., Galvin, H.D., Haw, T.Y., Nutsford, A.N., and Husain, M. (2017). Drug resistance in influenza A virus: the epidemiology and management. Infect Drug Resist 10, 121-134.
Hussell, T., and Bell, T.J. (2014). Alveolar macrophages: plasticity in a tissue-specific context. Nature Reviews Immunology 14, 81-93.
Hussell, T., Pennycook, A., and Openshaw, P.J. (2001). Inhibition of tumor necrosis factor reduces the severity of virus-specific lung immunopathology. Eur J Immunol 31, 2566-2573.
Imai, Y., Kuba, K., Neely, G.G., Yaghubian-Malhami, R., Perkmann, T., van Loo, G., Ermolaeva, M., Veldhuizen, R., Leung, Y.H., Wang, H., et al. (2008). Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235-249.
International Union of Immunological Societies/World Health Organization Subcommittee on chemokine, n. (2001). Chemokine/chemokine receptor nomenclature. J Leukoc Biol 70, 465-466.
Iwasaki, A., and Pillai, P.S. (2014). Innate immunity to influenza virus infection. Nat Rev Immunol 14, 315-328.
Iwasaki, H., Takeuchi, O., Teraguchi, S., Matsushita, K., Uehata, T., Kuniyoshi, K., Satoh, T., Saitoh, T., Matsushita, M., Standley, D.M., and Akira, S. (2011). The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol 12, 1167-1175.
Jaworski, M., and Thome, M. (2016). The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci 73, 459-473.
Jin, Y.J., Park, I., Hong, I.K., Byun, H.J., Choi, J., Kim, Y.M., and Lee, H. (2011). Fibronectin and vitronectin induce AP-1-mediated matrix metalloproteinase-9 expression through integrin alpha(5)beta(1)/alpha(v)beta(3)-dependent Akt, ERK and JNK signaling pathways in human umbilical vein endothelial cells. Cell Signal 23, 125-134.
Julkunen, I., Melen, K., Nyqvist, M., Pirhonen, J., Sareneva, T., and Matikainen, S. (2000). Inflammatory responses in influenza A virus infection. Vaccine 19 Suppl 1, S32-37.
Julkunen, I., Sareneva, T., Pirhonen, J., Ronni, T., Melen, K., and Matikainen, S. (2001). Molecular pathogenesis of influenza A virus infection and virus-induced regulation of cytokine gene expression. Cytokine Growth Factor Rev 12, 171-180.
Kaji, M., Watanabe, A., and Aizawa, H. (2003). Differences in clinical features between influenza A H1N1, A H3N2, and B in adult patients. Respirology 8, 231-233.
Karin, M., and Greten, F.R. (2005). NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5, 749-759.
Kim, B., Ahn, K.K., Ha, Y., Lee, Y.H., Kim, D., Lim, J.H., Kim, S.H., Kim, M.Y., Cho, K.D., Lee, B.H., and Chae, C. (2009). Association of tumor necrosis factor-alpha with fever and pulmonary lesion score in pigs experimentally infected with swine influenza virus subtype H1N2. J Vet Med Sci 71, 611-616.
Kolli, D., Gupta, M.R., Sbrana, E., Velayutham, T.S., Chao, H., Casola, A., and Garofalo, R.P. (2014). Alveolar macrophages contribute to the pathogenesis of human metapneumovirus infection while protecting against respiratory syncytial virus infection. Am J Respir Cell Mol Biol 51, 502-515.
Kong, M.Y., Clancy, J.P., Peng, N., Li, Y., Szul, T.J., Xu, X., Oster, R., Sullender, W., Ambalavanan, N., Blalock, J.E., and Gaggar, A. (2014). Pulmonary matrix metalloproteinase-9 activity in mechanically ventilated children with respiratory syncytial virus. Eur Respir J 43, 1086-1096.
Le Goffic, R., Pothlichet, J., Vitour, D., Fujita, T., Meurs, E., Chignard, M., and Si-Tahar, M. (2007). Cutting Edge: Influenza A Virus Activates TLR3-Dependent Inflammatory and RIG-I-Dependent Antiviral Responses in Human Lung Epithelial Cells. The Journal of Immunology 178, 3368-3372.
Lee, Y.H., Lai, C.L., Hsieh, S.H., Shieh, C.C., Huang, L.M., and Wu-Hsieh, B.A. (2013). Influenza A virus induction of oxidative stress and MMP-9 is associated with severe lung pathology in a mouse model. Virus Res 178, 411-422.
Lemaitre, M., Carrat, F., Rey, G., Miller, M., Simonsen, L., and Viboud, C. (2012). Mortality Burden of the 2009 A/H1N1 Influenza Pandemic in France: Comparison to Seasonal Influenza and the A/H3N2 Pandemic. PLoS One 7, e45051.
Lemjabbar, H., Gosset, P., Lechapt-Zalcman, E., Franco-Montoya, M.L., Wallaert, B., Harf, A., and Lafuma, C. (1999). Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am J Respir Cell Mol Biol 20, 903-913.
Li, H., He, H., Gong, L., Fu, M., and Wang, T.T. (2016). Short Communication: Preferential Killing of HIV Latently Infected CD4(+) T Cells by MALT1 Inhibitor. AIDS Res Hum Retroviruses 32, 174-177.
Liu, Y., Mei, J., Gonzales, L., Yang, G., Dai, N., Wang, P., Zhang, P., Favara, M., Malcolm, K.C., Guttentag, S., and Worthen, G.S. (2011). IL-17A and TNF-alpha exert synergistic effects on expression of CXCL5 by alveolar type II cells in vivo and in vitro. J Immunol 186, 3197-3205.
Mc Guire, C., Wieghofer, P., Elton, L., Muylaert, D., Prinz, M., Beyaert, R., and van Loo, G. (2013). Paracaspase MALT1 deficiency protects mice from autoimmune-mediated demyelination. J Immunol 190, 2896-2903.
Mei, J., Liu, Y., Dai, N., Favara, M., Greene, T., Jeyaseelan, S., Poncz, M., Lee, J.S., and Worthen, G.S. (2010). CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity 33, 106-117.
Mittal, R., Patel, A.P., Debs, L.H., Nguyen, D., Patel, K., Grati, M., Mittal, J., Yan, D., Chapagain, P., and Liu, X.Z. (2016). Intricate Functions of Matrix Metalloproteinases in Physiological and Pathological Conditions. J Cell Physiol 231, 2599-2621.
Mittelstadt, M.L., and Patel, R.C. (2012). AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon beta. PLoS One 7, e42152.
Munir, M., Zohari, S., and Berg, M. (2011). Non-structural protein 1 of avian influenza A viruses differentially inhibit NF-kappaB promoter activation. Virol J 8, 383.
Nagel, D., Spranger, S., Vincendeau, M., Grau, M., Raffegerst, S., Kloo, B., Hlahla, D., Neuenschwander, M., Peter von Kries, J., Hadian, K., et al. (2012). Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 22, 825-837.
Ng, H.H., Narasaraju, T., Phoon, M.C., Sim, M.K., Seet, J.E., and Chow, V.T. (2012). Doxycycline treatment attenuates acute lung injury in mice infected with virulent influenza H3N2 virus: involvement of matrix metalloproteinases. Experimental and molecular pathology 92, 287-295.
Nishikiori, H., Chiba, H., Ariki, S., Kuronuma, K., Otsuka, M., Shiratori, M., Ikeda, K., Watanabe, A., Kuroki, Y., and Takahashi, H. (2014). Distinct compartmentalization of SP-A and SP-D in the vasculature and lungs of patients with idiopathic pulmonary fibrosis. BMC Pulm Med 14, 196.
Noah, T.L., Murphy, P.C., Alink, J.J., Leigh, M.W., Hull, W.M., Stahlman, M.T., and Whitsett, J.A. (2003). Bronchoalveolar lavage fluid surfactant protein-A and surfactant protein-D are inversely related to inflammation in early cystic fibrosis. Am J Respir Crit Care Med 168, 685-691.
Perez de Diego, R., Sanchez-Ramon, S., Lopez-Collazo, E., Martinez-Barricarte, R., Cubillos-Zapata, C., Ferreira Cerdan, A., Casanova, J.L., and Puel, A. (2015). Genetic errors of the human caspase recruitment domain-B-cell lymphoma 10-mucosa-associated lymphoid tissue lymphoma-translocation gene 1 (CBM) complex: Molecular, immunologic, and clinical heterogeneity. J Allergy Clin Immunol 136, 1139-1149.
Perrone, L.A., Plowden, J.K., Garcia-Sastre, A., Katz, J.M., and Tumpey, T.M. (2008). H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog 4, e1000115.
Rajagopalan, S., Meng, X.P., Ramasamy, S., Harrison, D.G., and Galis, Z.S. (1996). Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. Implications for atherosclerotic plaque stability. J Clin Invest 98, 2572-2579.
Ramirez, M.I., Millien, G., Hinds, A., Cao, Y., Seldin, D.C., and Williams, M.C. (2003). T1α, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birth. Developmental Biology 256, 62-73.
Rebeaud, F., Hailfinger, S., Posevitz-Fejfar, A., Tapernoux, M., Moser, R., Rueda, D., Gaide, O., Guzzardi, M., Iancu, E.M., Rufer, N., et al. (2008). The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol 9, 272-281.
Reis, A.L., and McCauley, J.W. (2013). The influenza virus protein PB1-F2 interacts with IKKbeta and modulates NF-kappaB signalling. PLoS One 8, e63852.
Richter, C., Juan, M.H., Will, J., Brandes, R.P., Kalinke, U., Akira, S., Pfeilschifter, J.M., Hultqvist, M., Holmdahl, R., and Radeke, H.H. (2009). Ncf1 provides a reactive oxygen species-independent negative feedback regulation of TLR9-induced IL-12p70 in murine dendritic cells. J Immunol 182, 4183-4191.
Ricou, B., Nicod, L., Lacraz, S., Welgus, H.G., Suter, P.M., and Dayer, J.M. (1996). Matrix metalloproteinases and TIMP in acute respiratory distress syndrome. Am J Respir Crit Care Med 154, 346-352.
Ruland, J., Duncan, G.S., Wakeham, A., and Mak, T.W. (2003). Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749-758.
Russell, R.E., Culpitt, S.V., DeMatos, C., Donnelly, L., Smith, M., Wiggins, J., and Barnes, P.J. (2002). Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26, 602-609.
Salomon, R., and Webster, R.G. (2009). The influenza virus enigma. Cell 136, 402-410.
Schneider, C., Nobs, S.P., Heer, A.K., Kurrer, M., Klinke, G., van Rooijen, N., Vogel, J., and Kopf, M. (2014). Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog 10, e1004053.
Seo, J.H., Miyamoto, N., Hayakawa, K., Pham, L.D., Maki, T., Ayata, C., Kim, K.W., Lo, E.H., and Arai, K. (2013). Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury. J Clin Invest 123, 782-786.
Shihab, P.K., Al-Roub, A., Al-Ghanim, M., Al-Mass, A., Behbehani, K., and Ahmad, R. (2015). TLR2 and AP-1/NF-kappaB are involved in the regulation of MMP-9 elicited by heat killed Listeria monocytogenes in human monocytic THP-1 cells. J Inflamm (Lond) 12, 32.
Shin, M.H., Moon, Y.J., Seo, J.E., Lee, Y., Kim, K.H., and Chung, J.H. (2008). Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression. Free Radic Biol Med 44, 635-645.
Shukla, V., Shakya, A.K., Dhole, T.N., and Misra, U.K. (2013). Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of children with Japanese encephalitis virus infection. Arch Virol 158, 2561-2575.
Slepushkin, V.A., Staber, P.D., Wang, G., McCray, P.B., Jr., and Davidson, B.L. (2001). Infection of human airway epithelia with H1N1, H2N2, and H3N2 influenza A virus strains. Mol Ther 3, 395-402.
Staal, J., Driege, Y., Bekaert, T., Demeyer, A., Muyllaert, D., Van Damme, P., Gevaert, K., and Beyaert, R. (2011). T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. EMBO J 30, 1742-1752.
Sun, G., Ota, C., Kitaoka, S., Chiba, Y., Takayanagi, M., Kitamura, T., Yamamoto, K., Fujie, H., Mikami, H., Uematsu, M., et al. (2015). Elevated serum levels of neutrophil elastase in patients with influenza virus-associated encephalopathy. J Neurol Sci 349, 190-195.
Tacon, C.E., Wiehler, S., Holden, N.S., Newton, R., Proud, D., and Leigh, R. (2010). Human rhinovirus infection up-regulates MMP-9 production in airway epithelial cells via NF-{kappa}B. Am J Respir Cell Mol Biol 43, 201-209.
Tang, F.S., Van Ly, D., Spann, K., Reading, P.C., Burgess, J.K., Hartl, D., Baines, K.J., and Oliver, B.G. (2016). Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma. Respirology 21, 172-179.
Tate, M.D., Pickett, D.L., van Rooijen, N., Brooks, A.G., and Reading, P.C. (2010). Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J Virol 84, 7569-7580.
To, E.E., Broughton, B.R., Hendricks, K.S., Vlahos, R., and Selemidis, S. (2014). Influenza A virus and TLR7 activation potentiate NOX2 oxidase-dependent ROS production in macrophages. Free Radic Res 48, 940-947.
Uehata, T., Iwasaki, H., Vandenbon, A., Matsushita, K., Hernandez-Cuellar, E., Kuniyoshi, K., Satoh, T., Mino, T., Suzuki, Y., Standley, D.M., et al. (2013). Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 153, 1036-1049.
Vanderbilt, J.N., Allen, L., Gonzalez, R.F., Tigue, Z., Edmondson, J., Ansaldi, D., Gillespie, A.M., and Dobbs, L.G. (2008). Directed expression of transgenes to alveolar type I cells in the mouse. Am J Respir Cell Mol Biol 39, 253-262.
Vlahos, R., Stambas, J., Bozinovski, S., Broughton, B.R., Drummond, G.R., and Selemidis, S. (2011). Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog 7, e1001271.
Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., and Werb, Z. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411-422.
Wang, S., Quang Le, T., Chida, J., Cisse, Y., Yano, M., and Kido, H. (2010). Mechanisms of matrix metalloproteinase-9 upregulation and tissue destruction in various organs in influenza A virus infection. J Med Invest 57, 26-34.
Wu, W., Booth, J.L., Duggan, E.S., Wu, S., Patel, K.B., Coggeshall, K.M., and Metcalf, J.P. (2010). Innate immune response to H3N2 and H1N1 influenza virus infection in a human lung organ culture model. Virology 396, 178-188.
Yabluchanskiy, A., Ma, Y., Iyer, R.P., Hall, M.E., and Lindsey, M.L. (2013). Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda) 28, 391-403.
Yadav, A., Saini, V., and Arora, S. (2010). MCP-1: chemoattractant with a role beyond immunity: a review. Clin Chim Acta 411, 1570-1579.
Yeo, S.J., Kim, S.J., Kim, J.H., Lee, H.J., and Kook, Y.H. (1999). Influenza A virus infection modulates the expression of type IV collagenase in epithelial cells. Arch Virol 144, 1361-1370.
Yoo, S.H., Jung, K.C., Kim, J.H., Sung, S.W., Chung, J.H., Shim, Y.S., Lee, S.D., and Chung, D.H. (2005). Expression patterns of markers for type II pneumocytes in pulmonary sclerosing hemangiomas and fetal lung tissues. Archives of pathology & laboratory medicine 129, 915-919.
Yoshida, H., Kong, Y.Y., Yoshida, R., Elia, A.J., Hakem, A., Hakem, R., Penninger, J.M., and Mak, T.W. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739-750.
Yu, J.W., Jeffrey, P.D., Ha, J.Y., Yang, X., and Shi, Y. (2011). Crystal structure of the mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1) paracaspase region. Proc Natl Acad Sci U S A 108, 21004-21009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20350-
dc.description.abstractA型流感病毒在全球造成嚴重的感染,甚至造成重症患者死亡;而不同的流感病毒株在臨床症狀上亦有所不同。為瞭解流感病毒致病機轉,我們以A/WSN/33 (H1N1)及A/Panama-like (H3N2)兩種不同的A型流感病毒株以氣管內注射感染C57BL/6小鼠並且比較其肺部免疫病理現象。與Panama-like病毒株相比,WSN病毒株感染之小鼠有較嚴重的肺臟損傷及細胞浸潤,同時伴隨更高量的活性氧物種 (Reactive oxygen species) 及活性氮 (Reactive Nitrogen Species) 的產生。若小鼠因NCF1缺陷而無法產生超氧化物,則會減輕流感病毒造成的肺臟損傷。更有趣的是,我們發現僅有WSN病毒株感染可在肺臟中誘發高量的基質金屬蛋白酵素9 (Matrix Metalloproteinase-9),而Panama-like病毒株則無此現象,並且NCF1缺陷也會減少該蛋白酵素的產生。
基質金屬蛋白酵素9可降解胞外基質並且參與肺部組織的病理變化。目前已知嗜中性球與肺泡巨噬細胞為肺部內基質金屬蛋白酵素9之產生細胞。我們以氣管注射的方式使小鼠感染WSN病毒株,證實嗜中性球與肺泡巨噬細胞都會產生基質金屬蛋白酵素9,然而該酵素在嗜中性球的表現持續且不受調控。與嗜中性球不同,流感病毒與類鐸受體7之促效劑可引發巨噬細胞產生基質金屬蛋白酵素9並且受到MALT1蛋白之調控。另外,肺泡巨噬細胞產生的基質金屬蛋白酵素9是透過NF-κB 而非AP-1訊息傳導途徑調控。流感病毒與類鐸受體7之促效劑會使巨噬細胞內MALT1蛋白活化並且進一步降解NF-κB的負調控蛋白CYLD,但是不影響RelB蛋白。透過MALT1抑制劑的實驗,我們證實了CYLD蛋白減少是由於類鐸受體7之促效劑活化MALT1蛋白所致。有趣的是,在流感病毒感染的MALT1缺失小鼠的肺臟中,不止是基質金屬蛋白酵素9產生較少,同時TNF與IL-6也較少。與正常小鼠相較,MALT1缺失小鼠感染A型流感病毒時有較少的體重下降以及較高的存活率,可見基質金屬蛋白酵素9在流感病毒引發疾病嚴重程度中扮演重要的角色。我們的研究首度證實MALT1調控肺泡巨噬細胞基質金屬蛋白酵素9的產生,並且證明MALT1與流感病毒引發的疾病嚴重度相關。
zh_TW
dc.description.abstractInfluenza A virus (IAV) infection causes significant morbidity and mortality worldwide. Infection by different strains of IAV presents different clinical pictures. We infected C57BL/6 mice intratracheally with influenza A/WSN/33 (H1N1) and A/Panama-like (H3N2) viruses and compared their immunopathologies in the lungs. There was more severe lung pathology accompanied by massive myeloid cell infiltration in mice infected by WSN virus than by Panama-like virus. WSN virus infection also induced production of reactive oxygen and nitrogen species (ROS/RNS). Neutrophil cytosolic factor 1 (NCF1, phox47) deficiency ameliorated lung pathology in infected mice. Interestingly, infection by WSN virus but not by Panama-like virus induced high levels of matrix metalloproteinase-9 (MMP-9), and NCF1 deficiency ablated MMP-9 expression in the lungs.
MMP-9 degrades extracellular matrix and is involved in the pathology of pulmonary diseases. Both neutrophils and alveolar macrophages are known to be MMP-9 producers in the lungs. In mice intratracheally infected by WSN virus, both neutrophils and alveolar macrophages produced MMP-9. Neutrophils constitutively expressed MMP-9 and its production was not regulated. Production of MMP-9 by macrophages stimulated with IAV or Toll-like receptor 7 (TLR7) agonist was regulated by mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1). In addition, MMP-9 production in alveolar macrophages was mediated by NF-κB but not by AP-1. IAV- and TLR7 agonist-induced activation of MALT1 resulted in reduction of the level of cylindromatosis (CYLD), a negative regulator of NF-κB, but not RelB in macrophages. By using MALT1 inhibitor, we demonstrated TLR7 agonist-induced reduction of CYLD was MALT1 activity-dependent. Interestingly, MALT1 deficiency not only reduced the level of MMP-9, but also that of TNF and IL-6 in the lungs after infection. MALT1-deficient mice sustained less body weight loss and longer survival after IAV infection compared to WT mice. We demonstrated a novel role of MALT1 in MMP-9 production by alveolar macrophages and revealed the correlation between MALT1 and the severity of influenza infection.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:45:56Z (GMT). No. of bitstreams: 1
ntu-106-D97449001-1.pdf: 26346874 bytes, checksum: 4b243b3b643b721c021564cab58ad5c2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAbstract ................................................................................................................................................ i
中文摘要 ............................................................................................................................................. iii
Abbreviations .................................................................................................................................... iv
List of Figures ................................................................................................................................... xii
CHAPTER Ⅰ Introduction ................................................................................................................. 1
1.1 Influenza A virus (IAV) infection is a global health issue in the present age ........................ 2
1.2. The severity of disease and the strain of IAV ....................................................................... 2
1.3. MMP-9 is involved in tissue remodeling and injury in influenza and other diseases .......... 3
1.4. The contribution of neutrophils and macrophages to MMP-9 production ............................ 4
1.5. The role of alveolar macrophages in IAV infection .............................................................. 5
1.6. TLRs and MMP-9 production in IAV infection .................................................................... 5
1.7. MALT1 positively regulates NF-κB signaling in lymphocytes ............................................ 6
CHAPTER Ⅱ Aims of the Study ....................................................................................................... 8
Ⅰ. To study host immune response that results in severe vs. mild disease in mice infected by
different strains of IAV ................................................................................................................. 9
Ⅱ. To investigate the regulation of MMP-9 in alveolar macrophages upon IAV infection .......... 9
CHAPTER Ⅲ Materials and Methods .......................................................................................... 11
Part I. Materials .......................................................................................................................... 12
3.1. Mice ............................................................................................................................ 12
3.2. Cells ............................................................................................................................ 13
3.2.1 MH-S cells ........................................................................................................ 13
3.2.2 Primary alveolar macrophages .......................................................................... 13
3.2.3 Primary neutrophils ........................................................................................... 13
3.2.4 Thioglycollate-elicited peritoneal macrophages ............................................... 13
3.3. Antibodies ................................................................................................................... 14
3.3.1 Antibody array................................................................................................... 14
3.3.2 ELISA kit .......................................................................................................... 14
3.3.3 Western blot ...................................................................................................... 14
3.3.4 Antibodies for Immunofluorescence assay (IFA) & Flow cytometric .............. 15
3.4. Inhibitors ..................................................................................................................... 16
3.5. RT-qPCR primer sequence ......................................................................................... 16
3.6. Solutions ..................................................................................................................... 17
3.6.1 Complete RPMI 1640 medium ......................................................................... 17
3.6.2 Complete DMEM medium ................................................................................ 18
3.6.3 Hank’s balanced salt solution (HBSS, 1x) ........................................................ 18
3.6.4 RBC lysis buffer ................................................................................................ 18
3.6.5 PBS (20x) .......................................................................................................... 18
3.6.6 Buffers of zymography ..................................................................................... 19
3.7. Hypotonic buffer of Nucleus/Cytosol fractionation ............................................ 21
3.8. Sotring buffer ...................................................................................................... 21
3.9. Chemical and reagents ........................................................................................ 22
3.10. Disposables ....................................................................................................... 24
3.11. Equipments ........................................................................................................ 25
Part Ⅱ Methods ................................................................................................................... 25
3.12. Viral propagation, infection, and inactivation ................................................... 25
3.13. Histology and immunohistochemistry .............................................................. 26
3.14. Zymography ...................................................................................................... 27
3.15. Immunofluorescence assay (IFA) ..................................................................... 27
3.16. Cytokine protein array ...................................................................................... 28
3.17. Detection of free radical production ................................................................. 29
3.18. In vivo administration of MMP-2/MMP-9 inhibitor ......................................... 29
3.19. TLR agonists and inhibitors .............................................................................. 30
3.20. Harvest bronchoalveolar lavage fluid ............................................................... 30
3.21. ELISA ............................................................................................................... 30
3.22. Microarray ......................................................................................................... 30
3.23. Quantitative real-time PCR (qPCR) .................................................................. 31
3.24. Western blotting ................................................................................................ 31
3.25. Nucleus/Cytosol fractionation........................................................................... 32
3.26. Bone marrow derived macrophages differentiation .......................................... 32
3.27. BAL cell phenotyping and sorting .................................................................... 33
3.28. Total protein assay ............................................................................................. 33
3.29. Hematoxylin and eosin stain ............................................................................. 33
3.30. LDH Cytotoxicity Assay ................................................................................... 33
3.31. Statistical analysis ............................................................................................. 34
CHAPTER Ⅳ Results ..................................................................................................................... 35
4.1. WSN virus infection induces more severe pathology than Panama-like strain .................. 36
4.2. Cellular infiltration in the lungs of WSN virus-infected mice is more severe than Panamalike
virus infection ..................................................................................................................... 37
4.3. WSN infection induces strong cytokine/chemokine in the lungs of mice .......................... 38
4.4. WSN virus infection induces the up-regulation of active/latent forms of MMP-9 ............. 39
4.5. Pharmacological inhibition of MMP-9 partially reduces lung pathology caused by WSN
virus ............................................................................................................................................ 40
4.6. WSN virus infection induces ROS production and phospholipid oxidation in lungs ......... 40
4.7. Severe lung injury in infection by WSN virus is associated with oxidative stress ............. 41
4.8. IAV and TLR7-induced MMP-9 production in alveolar macrophage is MALT1-dependent
.................................................................................................................................................... 42
4.9. NF-κB signaling regulates IAV- and TLR7-mediated MMP-9 production in macrophages
.................................................................................................................................................... 43
4.10. CYLD but not RelB nor regnase-1 is reduced by MALT1 activity in macrophages ........ 44
4.11. Enhanced MMP-9 production in IAV-infected mice is MALT1-dependent ..................... 45
4.12. MALT1-deficient mice sustain less disease severity after IAV infection ......................... 46
4.13. The concentration of inhibitors applied in the study are not affect cell viability ............. 46
CHAPTER Ⅴ Discussion ................................................................................................................. 47
5.1. Contribution of the study .................................................................................................... 48
5.2. The ability of IAV to induce CXCL6 and CCL2 production in the host is important to the
pathogenicity of the virus ........................................................................................................... 49
5.3. IAV-induced oxidative stress not only contributes to the pathogenesis but also to MMP-9
production in lungs..................................................................................................................... 50
5.4. The roles of MMP-9 and TIMP-1 in pulmonary disease .................................................... 50
5.5. The biological significance of alveolar macrophage production of MMP-9 in IAV infection
.................................................................................................................................................... 51
5.6. TLR7 in addition to TLR3 is important to MMP-9 induction in IAV infection ................. 52
5.7. Role of NF-κB and AP-1 in MMP-9 production ................................................................ 53
5.8. Regulation of NF-κB activation by MALT1 ....................................................................... 54
5.9. Scaffold and paracaspase functions of MALT1 .................................................................. 55
5.10. MALT1 modulates proinflammatory cytokine production in vivo ................................... 55
5.11 The role of MALT1 in Toll-like receptor signaling ............................................................ 56
5.12. The role of MALT1 in viral infection ............................................................................... 57
5.13. Summary ........................................................................................................................... 57
References ......................................................................................................................................... 59
Figures ............................................................................................................................................... 75
Appendix Publications ................................................................................................................... 144
dc.language.isoen
dc.title探討基質金屬蛋白酵素9於流感病毒感染中之角色與調控zh_TW
dc.titleThe role and regulation of MMP-9 production
in influenza virus infection
en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee黃立民(Li-Min Huang),張淑媛(Sui-Yuan Chang),顧家綺(Chia-Chi Ku),董馨蓮(Shin-Lian Doong),陳念榮(Nien-Jung Chen)
dc.subject.keyword肺泡巨噬細胞,A型流感病毒,基質金屬蛋白酵素9,肺部發炎反應,類鐸受體7,zh_TW
dc.subject.keywordAlveolar macrophages,Influenza A virus,Matrix metalloproteinase-9,Pulmonary inflammation,Toll-like receptor 7,MALT1,en
dc.relation.page144
dc.identifier.doi10.6342/NTU201704309
dc.rights.note未授權
dc.date.accepted2017-10-23
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
25.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved