Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20332
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊嘉揚(Jia-Yang Juang)
dc.contributor.authorYu-Chen Chenen
dc.contributor.author陳俞蓁zh_TW
dc.date.accessioned2021-06-08T02:45:25Z-
dc.date.copyright2020-12-25
dc.date.issued2020
dc.date.submitted2020-11-12
dc.identifier.citation[1] T. Minami, 'Transparent conducting oxide semiconductors for transparent electrodes,' Semiconductor Science and Technology, vol. 20, no. 4, pp. S35-S44, 2005.
[2] F. Wu et al., 'Effect of annealing treatment on structural, electrical, and optical properties of Ga-doped ZnO thin films deposited by RF magnetron sputtering,' Thin Solid Films, vol. 520, no. 2, pp. 703-707, 2011.
[3] W. T. Yen, Y. C. Lin, P. C. Yao, J. H. Ke, and Y. L. Chen, 'Effect of post-annealing on the optoelectronic properties of ZnO:Ga films prepared by pulsed direct current magnetron sputtering,' Thin Solid Films, vol. 518, no. 14, pp. 3882-3885, 2010.
[4] D. L. Zhu et al., 'Optimization of process parameters for the electrical properties in Ga-doped ZnO thin films prepared by r.f. magnetron sputtering,' Applied Surface Science, vol. 298, pp. 208-213, 2014.
[5] H. R. Fallah, M. Ghasemi, A. Hassanzadeh, and H. Steki, 'The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation,' Materials Research Bulletin, vol. 42, no. 3, pp. 487-496, 2007.
[6] I. S. Kim, E.-K. Jeong, D. Y. Kim, M. Kumar, and S.-Y. Choi, 'Investigation of p-type behavior in Ag-doped ZnO thin films by E-beam evaporation,' Applied Surface Science, vol. 255, no. 7, pp. 4011-4014, 2009.
[7] F. K. Shan et al., 'Studies of ZnO Thin Films On Sapphire (0001) Substrates Deposited by Pulsed Laser Deposition,' Journal of Electroceramics, vol. 13, no. 1, pp. 189-194, 2004.
[8] X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, 'Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N2 and O2,' Physica B: Condensed Matter, vol. 388, no. 1, pp. 145-152, 2007.
[9] T. Prasada Rao and M. C. Santhoshkumar, 'Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis,' Applied Surface Science, vol. 255, no. 8, pp. 4579-4584, 2009.
[10] T. Prasada Rao, M. C. Santhosh Kumar, and N. Sooraj Hussain, 'Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis,' Journal of Alloys and Compounds, vol. 541, pp. 495-504, 2012.
[11] M. Gao, X. Wu, J. Liu, and W. Liu, 'The effect of heating rate on the structural and electrical properties of sol–gel derived Al-doped ZnO films,' Applied Surface Science, vol. 257, no. 15, pp. 6919-6922, 2011.
[12] N. Yamamoto, H. Makino, Y. Sato, and T. Yamamoto, 'Controlled formation of ZnO fine-pattern transparent electrodes by wet-chemical etching,' ECS Transactions, vol. 35, no. 8, pp. 165-172, 2019.
[13] D.-K. Lee, J. Bang, M. Park, J.-H. Lee, and H. Yang, 'Organic acid-based wet etching behaviors of Ga-doped ZnO films sputter-deposited at different substrate temperatures,' Thin Solid Films, vol. 518, no. 14, pp. 4046-4051, 2010/05/03/ 2010.
[14] J. Y. Park, H. S. Kim, D. H. Lee, K. H. Kwon, and G. Y. Yeom, 'A study on the etch characteristics of ITO thin film using inductively coupled plasmas,' Surface and Coatings Technology, vol. 131, no. 1, pp. 247-251, 2000.
[15] C. J. Huang, Y. K. Su, and S. L. Wu, 'The effect of solvent on the etching of ITO electrode,' Materials Chemistry and Physics, vol. 84, no. 1, pp. 146-150, 2004.
[16] Z. H. Li, E. S. Cho, and S. J. Kwon, 'A new laser direct etching method of indium tin oxide electrode for application to alternative current plasma display panel,' Applied Surface Science, vol. 255, no. 24, pp. 9843-9846, 2009.
[17] D.-W. Kang, S.-H. Kuk, K.-S. Ji, S.-W. Ahn, and M.-K. Han, 'Highly transparent and high haze bilayer Al-doped ZnO thin film employing oxygen-controlled seed layer,' Japanese Journal of Applied Physics, vol. 49, no. 3, p. 031101, 2010.
[18] L. Ding et al., 'Highly transparent ZnO bilayers by LP-MOCVD as front electrodes for thin-film micromorph silicon solar cells,' Solar Energy Materials and Solar Cells, vol. 98, pp. 331-336, 2012.
[19] L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, and C. Ballif, 'Relaxing the conductivity/transparency trade-off in MOCVD ZnO Thin films by hydrogen plasma,' Advanced Functional Materials, vol. 23, no. 41, pp. 5177-5182, 2013.
[20] J. Chantana, Y. Ishino, Y. Kawano, T. Nishimura, and T. Minemoto, 'Mobility improvement of Zn1-xMgxO:Al prepared under room temperature by co-sputtering through optimizations of Al and Mg contents,' Materials Science in Semiconductor Processing, vol. 109, p. 104921, 2020.
[21] K. Ellmer, 'Past achievements and future challenges in the development of optically transparent electrodes,' Nature Photonics, vol. 6, no. 12, pp. 809-817, 2012.
[22] C.-S. Lee, C.-H. Jeon, B.-T. Lee, and S.-H. Jeong, 'Abrupt conversion of the conductivity and band-gap in the sputter grown Ga-doped ZnO films by a change in growth ambient: Effects of oxygen partial pressure,' Journal of Alloys and Compounds, vol. 742, pp. 977-985, 2018.
[23] G. Gonçalves, E. Elangovan, P. Barquinha, L. Pereira, R. Martins, and E. Fortunato, 'Influence of post-annealing temperature on the properties exhibited by ITO, IZO and GZO thin films,' Thin Solid Films, vol. 515, no. 24, pp. 8562-8566, 2007.
[24] Q. Nian, M. Y. Zhang, B. D. Schwartz, and G. J. Cheng, 'Ultraviolet laser crystallized ZnO:Al films on sapphire with high Hall mobility for simultaneous enhancement of conductivity and transparency,' Applied Physics Letters, vol. 104, no. 20, p. 201907, 2014.
[25] S. O. El hamali, W. M. Cranton, N. Kalfagiannis, X. Hou, R. Ranson, and D. C. Koutsogeorgis, 'Enhanced electrical and optical properties of room temperature deposited Aluminium doped Zinc Oxide (AZO) thin films by excimer laser annealing,' Optics and Lasers in Engineering, vol. 80, pp. 45-51, 2016.
[26] W.-T. Hsiao, S.-F. Tseng, K.-C. Huang, and D. Chiang, 'Electrode patterning and annealing processes of aluminum-doped zinc oxide thin films using a UV laser system,' Optics and Lasers in Engineering, vol. 51, no. 1, pp. 15-22, 2013.
[27] R. Xia et al., 'Precision excimer laser annealed Ga-doped ZnO electron transport layers for perovskite solar cells,' vol. 8, no. 32, pp. 17694-17701-17694-17701doi: 10.1039/c8ra03119c.
[28] W.-T. Hsiao et al., 'Effect on structural, optical and electrical properties of aluminum-doped zinc oxide films using diode laser annealing,' Optics Laser Technology, vol. 68, pp. 41-47, 2015.
[29] G. K. Bhaumik, A. K. Nath, and S. Basu, 'Laser annealing of zinc oxide thin film deposited by spray-CVD,' Materials Science and Engineering: B, vol. 52, no. 1, pp. 25-31, 1998.
[30] G. Jo, J.-H. Ji, K. Masao, J. G. Ha, S.-K. Lee, and J.-H. Koh, 'CO 2 laser annealing effects for Al-doped ZnO multilayered films,' Ceramics International, vol. 44, 08/01 2018.
[31] G. Jo and J.-H. Koh, 'Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications,' Ceramics International, vol. 45, no. 5, pp. 6190-6197, 2019.
[32] 黃京淇, 雷射輔助噴射式大氣電漿鍍製微米級鎵摻雜氧化鋅薄膜導線研究及電漿驟冷效應分析與改良. 2019.
[33] Q. Xu et al., 'Laser annealing effect on optical and electrical properties of Al doped ZnO films,' Optics Laser Technology, vol. 45, pp. 513-517, 2013.
[34] S. De et al., 'Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios,' ACS Nano, vol. 3, no. 7, pp. 1767-1774, 2009.
[35] M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, 'Chiral tunnelling and the Klein paradox in graphene,' Nature Physics, vol. 2, no. 9, pp. 620-625, 2006.
[36] Z. L. Wang, 'Zinc oxide nanostructures: growth, properties and applications,' Journal of Physics: Condensed Matter, vol. 16, no. 25, pp. R829-R858, 2004/06/08 2004.
[37] Y. C. Lin, T. Y. Chen, L. C. Wang, and S. Y. Lien, 'Comparison of AZO, GZO, and AGZO Thin Films TCOs Applied for a-Si Solar Cells,' Journal of The Electrochemical Society, vol. 159, no. 6, pp. H599-H604, 2012.
[38] T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, 'Effect of thermal annealing on electrical properties of transparent conductive Ga-doped ZnO films prepared by ion-plating using direct-current arc discharge,' Thin Solid Films, vol. 517, no. 10, pp. 3134-3137, 2009.
[39] F. S. Khalid and R. Awang, 'Effect of deposition times on structure of Ga-doped ZnO thin films as humidity sensor,' AIP Conference Proceedings, vol. 1614, no. 1, pp. 14-19, 2014.
[40] 莊達人, VLSI 製造技術. 高立圖書, 2011.
[41] F. C. Matacotta and G. Ottaviani, Science and Technology of Thin Films. WORLD SCIENTIFIC, 1995.
[42] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing. 2010.
[43] H. O. Pierson, Handbook of Chemical Vapor Deposition. William Andrew Publishing, 1999.
[44] V. R. Katti et al., 'Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation,' Sensors and Actuators B: Chemical, vol. 96, no. 1, pp. 245-252, 2003.
[45] C. Cantalini et al., 'NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation,' Sensors and Actuators B: Chemical, vol. 31, no. 1, pp. 81-87, 1996.
[46] N. Bouhssira et al., 'Influence of annealing temperature on the properties of ZnO thin films deposited by thermal evaporation,' Applied Surface Science, vol. 252, no. 15, pp. 5594-5597, 2006.
[47] M.-S. Hwang, H. Seob Jeong, W. M. Kim, and Y. W. Seo, 'Properties of Co-deposited indium tin oxide and zinc oxide films using a bipolar pulse power supply and a dual magnetron sputter source,' Journal of Vacuum Science Technology A, vol. 21, no. 4, pp. 1399-1403, 2003.
[48] 張勁燕, 半導體製程設備. 五南圖書出版, 2005.
[49] S.-M. Park, T. Ikegami, and K. Ebihara, 'Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition,' Thin Solid Films, vol. 513, no. 1, pp. 90-94, 2006.
[50] K. S. Usha, R. Sivakumar, C. Sanjeeviraja, V. Sathe, V. Ganesan, and T. Y. Wang, 'Improved electrochromic performance of a radio frequency magnetron sputtered NiO thin film with high optical switching speed,' RSC Advances, vol. 6, no. 83, pp. 79668-79680, 2016.
[51] L. Filipovic, 'Topography Simulation of Novel Processing Techniques.' [Online]. Available: https://www.iue.tuwien.ac.at/phd/filipovic/node56.html.
[52] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn, and R. F. Hicks, 'Deposition of silicon dioxide films with an atmospheric-pressure plasma jet,' Plasma Sources Science and Technology, vol. 7, no. 3, pp. 286-288, 1998.
[53] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, 'Atmospheric pressure plasmas: A review,' Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
[54] A. Schutze, J. Jeong, S. Babayan, J. Park, G. Selwyn, and R. Hicks, 'The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources,' Plasma Science, IEEE Transactions on, vol. 26, pp. 1685-1694, 1999.
[55] U. Reitz, J. G. H. Salge, and R. Schwarz, 'Pulsed barrier discharges for thin film production at atmospheric pressure,' Surface and Coatings Technology, vol. 59, no. 1, pp. 144-147, 1993.
[56] H. Xiao, Introduction to Semiconductor Manufacturing Technology. Prentice Hall, 2015.
[57] K. Fricke, H. Steffen, T. von Woedtke, K. Schröder, and K.-D. Weltmann, 'High rate etching of polymers by means of an atmospheric pressure plasma Jet,' Plasma Processes and Polymers, vol. 8, no. 1, pp. 51-58, 2011.
[58] J. Pelletier and A. Anders, 'Plasma-based ion implantation and deposition: a review of physics, technology, and applications,' IEEE Transactions on Plasma Science, vol. 33, no. 6, pp. 1944-1959, 2005.
[59] L. Wang, W. Ning, M. Fu, C. Wu, and S. Jia, 'An experimental study of photoresist material etching by an atmospheric-pressure plasma jet with Ar/air mixed gas,' Journal of Plasma Physics, vol. 79, no. 5, pp. 683-689, 2013.
[60] S. L. Kaplan and P. W. Rose, 'Plasma surface treatment of plastics to enhance adhesion,' International Journal of Adhesion and Adhesives, vol. 11, no. 2, pp. 109-113, 1991.
[61] L. Miao, S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko, and S. Toh, 'The improvement of optical reactivity for TiO2 thin films by N2–H2 plasma surface-treatment,' Journal of Crystal Growth, vol. 260, no. 1, pp. 118-124, 2004.
[62] D. F. O'Kane and K. L. Mittal, 'Plasma cleaning of metal surfaces,' Journal of Vacuum Science and Technology, vol. 11, no. 3, pp. 567-569, 1974/05/01 1974.
[63] B. Lin, Z. Fu, and Y. Jia, 'Green luminescent center in undoped zinc oxide films deposited on silicon substrates,' Applied Physics Letters, vol. 79, no. 7, pp. 943-945, 2001.
[64] M.-C. Li, C.-C. Kuo, S.-H. Peng, S. Chen, and C.-C. Lee, 'Influence of hydrogen on the properties of Al and Ga-doped ZnO films at room temperature,' Applied optics, vol. 50, pp. C197-200, 2011.
[65] 陳冠曄, 噴射式大氣電漿系統之設計架設與大面積氧化鋅鎵薄膜均勻度之改善. 2016.
[66] 陳文凱, 噴射式大氣電漿系統沉積鎵摻雜氧化鋅薄膜之傾斜角及軌跡效應研究與雷射導引加熱系統之架設測試. 2018.
[67] 杨晓冬, 邵建新, 廖生鸿, 谭锦业, 周杰, and 蒋跃文, '刀口法测量高斯光束光斑半径研究,' 激光与红外, 2009.
[68] 陳于壹, 噴射式大氣電漿系統之設計架設與多次沉積氧化鋅鎵薄膜性質之量測與模擬. 2016.
[69] S.-T. Zhang et al., 'Tuning the properties of F:SnO 2 (FTO) nanocomposites with S:TiO 2 nanoparticles – promising hazy transparent electrodes for photovoltaics applications,' Journal of Materials Chemistry C, vol. 5, p. 91, 2016.
[70] 小俠. '場發射掃描式電子顯微鏡 FE-SEM JSM-7800F.' https://weiter.pixnet.net/blog/post/43096732-%E5%A0%B4%E7%99%BC%E5%B0%84%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1-fe-sem-jsm-7800f-prime-%E5%8E%9F (accessed.
[71] Angle Resolved XPS for the Characterisation of Self Assembled Monolayers, 2008.
[72] 國立台灣科技大學貴儀儀器中心. '多功能高功率 X 光繞射儀.' https://www.sppic.ntust.edu.tw/files/15-1105-51522,c5703-1.php?Lang=zh-tw (accessed.
[73] 國立清華大學貴重儀器中心. '二次離子質譜儀.' http://nscric.site.nthu.edu.tw/p/404-1186-122130.php?Lang=zh-tw (accessed.
[74] M. S. Haque, H. A. Naseem, and W. D. Brown, 'Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability,' Thin Solid Films, vol. 308-309, pp. 68-73, 1997.
[75] J.-Y. Juang, T.-S. Chou, H.-T. Lin, Y.-F. Chou, and C.-C. Weng, 'Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet,' Applied Surface Science, vol. 314, pp. 1074-1081, 2014.
[76] R. Hong, J. Shao, H. He, and Z. Fan, 'Enhancement of near-band-edge photoluminescence of ZnO thin films in sandwich configuration at room temperature,' Journal of Applied Physics, vol. 99, no. 9, p. 093520, 2006.
[77] P. M. R. Kumar et al., 'On the properties of indium doped ZnO thin films,' Semicond. Sci. Technol., vol. 20, no. 2, pp. 120-126, 2004, doi: 10.1088/0268-1242/20/2/003.
[78] H. Peelaers, E. Kioupakis, and C. Walle, 'Fundamental limits on optical transparency of transparent conducting oxides: Free-carrier absorption in SnO2,' Applied Physics Letters, vol. 100, 2012.
[79] W. G. Haines and R. H. Bube, 'Effects of heat treatment on the optical and electrical properties of indium–tin oxide films,' Journal of Applied Physics, vol. 49, no. 1, pp. 304-307, 1978.
[80] A. Miyake, T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto, 'Structural, electrical and optical properties of Ga-doped ZnO films on cyclo-olefin polymer substrates,' Thin Solid Films, vol. 517, no. 10, pp. 3130-3133, 2009.
[81] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. Pearson College Div, 2001.
[82] S. Liang and X. Bi, 'Structure, conductivity, and transparency of Ga-doped ZnO thin films arising from thickness contributions,' Journal of Applied Physics, vol. 104, no. 11, p. 113533, 2008.
[83] 汪建民, 材料分析. 中國材料科學學會, 2014.
[84] L. L. Yang et al., 'A SIMS study on Mg diffusion in Zn0.94Mg0.06O/ZnO heterostructures grown by metal organic chemical vapor deposition,' Applied Surface Science, vol. 257, no. 20, pp. 8629-8633, 2011.
[85] F.-H. Wang, K.-N. Chen, C.-M. Hsu, M.-C. Liu, and C.-F. Yang, 'Investigation of the structural, electrical, and optical properties of the nano-scale GZO thin films on glass and flexible polyimide substrates,' Nanomaterials, vol. 6, no. 5, 2016.
[86] Richard P. Gunawardane and C. R. Arumainayagam, Auger Electron Spectroscopy (Handbook of Applied Solid State Spectroscopy). Springer, Boston, MA, 2006.
[87] M. N. Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, 'XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films,' Thin Solid Films, vol. 280, no. 1, pp. 20-25, 1996.
[88] S. S. Shinde, P. S. Shinde, Y. W. Oh, D. Haranath, C. H. Bhosale, and K. Y. Rajpure, 'Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films,' Applied Surface Science, vol. 258, no. 24, pp. 9969-9976, 2012.
[89] B. Du Ahn, S. Hoon Oh, C. Hee Lee, G. Hee Kim, H. Jae Kim, and S. Yeol Lee, 'Influence of thermal annealing ambient on Ga-doped ZnO thin films,' Journal of Crystal Growth, vol. 309, no. 2, pp. 128-133, 2007.
[90] E. L. Ratcliff et al., 'Surface composition, work function, and electrochemical characteristics of gallium-doped zinc oxide,' Thin Solid Films, vol. 520, no. 17, pp. 5652-5663, 2012.
[91] T. P. Rao and M. C. S. Kumar, 'Resistivity stability of Ga doped ZnO thin Films with heat treatment in air and oxygen atmospheres,' Journal of Crystallization Process and Technology, vol. Vol.02No.02, p. 8, 2012, Art no. 18649.
[92] B.-K. Shin et al., 'Preparation of Ga-doped ZnO films by pulsed dc magnetron sputtering with cylindrical rotating target for thin film solar cell applications,' Applied Surface Science, vol. 258, no. 2, pp. 834-838, 2011.
[93] K.-J. Ahn, S. Lee, W.-J. Kim, G. Y. Yeom, and W. Lee, 'Characteristics of Ga-doped ZnO films deposited by pulsed DC magnetron sputtering at low temperature,' Materials Science in Semiconductor Processing, vol. 16, no. 6, pp. 1957-1963, 2013.
[94] K. Ellmer and A. Bikowski, 'Intrinsic and extrinsic doping of ZnO and ZnO alloys,' Journal of Physics D: Applied Physics, vol. 49, no. 41, p. 413002, 2016.
[95] C. L. Hinkle et al., 'Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning,' Applied Physics Letters, vol. 94, no. 16, p. 162101, 2009.
[96] B. Ayachi, T. Aviles, J.-P. Vilcot, and C. Sion, 'Rapid thermal annealing effect on the spatial resistivity distribution of AZO thin films deposited by pulsed-direct-current sputtering for solar cells applications,' Applied Surface Science, vol. 366, pp. 53-58, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20332-
dc.description.abstract目前透明導電薄膜以銦錫氧化物(Indium tin oxide, ITO)為主流,但銦為稀有金屬,其價格日益攀升,鎵摻雜氧化鋅(Gallium doped zinc oxide, GZO)因為具備寬能隙(> 3 eV)、高導電性等特性,為適合的替代材料之一。本研究使用噴射式大氣電漿(Atmospheric pressure plasma jet, APPJ)鍍製GZO薄膜,此法的優點是不需要使用真空腔室與能用於大面積薄膜沉積。
本研究深入探討雷射退火對以大氣電漿法沉積的GZO薄膜之影響,雷射源選用二氧化碳雷射(波長為10600 nm),二氧化碳雷射很適合用於加熱沉積在玻璃上的薄膜,因為其對玻璃有相當小的光學穿透深度(~1.66 μm)。透過選擇適當雷射功率,除了能提升薄膜的導電性,亦能提升薄膜整體的均勻度。由於薄膜鍍製過程中受到非刻意大氣退火,剛沉積完成的薄膜上某些區域堆積在晶粒邊界的鎵氧團簇含量較多,這些鎵氧團簇會影響自由載子的移動,從而降低霍爾遷移率,所以薄膜的導電性呈現區域性落差。經由雷射退火可以消除晶粒邊界的鎵氧團簇,因此薄膜的導電度、均勻度皆獲得改善,除此之外,退火後薄膜光學性質亦有微幅提升。
在諸多應用中,透明導電薄膜最常被當作透明電極使用,有別於主流、繁複的透明電極製作法─ 先沉積一層薄膜後續再經過光微影蝕刻技術以製成,本研究透過二氧化碳雷射結合噴射式大氣電漿系統,設計並建構出一套系統得以一步驟性的做出線寬為350 μm的GZO透明導電圖樣,完成諸多展示並對圖樣的光電性質進行分析。
zh_TW
dc.description.abstractTransparent conductive film is mainly made of Indium tin oxide (ITO). However, indium is a rare metal with rising price. Therefore, many researchers intend to find substitute materials and gallium-doped zinc oxide (GZO) turns out to be one of appropriate alternatives with wide band gap (> 3 eV) and high conductivity. In this research, we apply atmospheric pressure plasma jet (APPJ) to deposit GZO thin film. APPJ is a cost-effective way to deposit thin film since it does not require a vacuum chamber. Another strength of APPJ is that it is applicable for deposition of film on large area.
One part of the study is digging into CO2 laser (wavelength = 10600 nm) annealing effect on GZO film deposited with APPJ. The CO2 laser possesses low optical depth (~1.66 μm) for glass, and is thus suitable for thermally annealing the film deposited on glass substrates. It is discovered that not only is the film’s conductivity enhanced but film’s uniformity is also improved after laser annealing of appropriate power. The main reason is the elimination of Ga-O clusters. Due to unintentional thermal annealing in atmosphere during manufacture, some regions of as-deposited film contain more Ga-O clusters, such as GaOx and Ga2O3, at grain boundaries than others. These clusters serve as electron traps and degrade the mobility of free carriers in films. As a result, the conductivity of the as-deposited film differs from region to region. After laser annealing, the amount Ga-O clusters decreases considerably at the regions which initially possess higher amount of Ga-O clusters and the film’s crystallinity is enhanced a little bit. Therefore, the conductivity and uniformity of film is both improved. In addition, the optical properties of film are also slightly elevated.
The other part of the study is about fabricating transparent conductive patterns with a novel method CO2 laser assisted atmospheric pressure plasma jet. Traditionally, fabrication of transparent conductive patterns contains a series of procedures which include film deposition, photolithography and etching. In the method of CO2 laser-assisted atmospheric pressure plasma jet, the lengthy processes for making transparent conductive patterns are concentrated into one step and no vacuum chamber is required. In this study, we design and construct a laser assisted APPJ system, and then demonstrate several transparent conductive patterns and analyze their optoelectronic properties.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:45:25Z (GMT). No. of bitstreams: 1
U0001-2307202015505200.pdf: 26027654 bytes, checksum: b90cf37e67262100769d6db4ebed7be8 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 I
中文摘要 III
ABSTRACT III
目錄 V
圖目錄 VIII
表目錄 XII
符號表 XIII
第一章 緒論 1
1.1 透明導電薄膜概論 1
1.2 研究動機與目的 3
1.2.1 二氧化碳雷射薄膜退火 3
1.2.2 雷射輔助噴射式大氣電漿透明導電圖樣鍍製 4
第二章 文獻回顧與理論基礎 5
2.1 文獻回顧 5
2.1.1 透明導電薄膜雷射薄膜退火處理 5
2.1.2 透明電極製備 9
2.2 GZO薄膜結構與光電特性 10
2.3 薄膜沉積理論 12
2.4 常見薄膜沉積法 14
2.4.1 蒸鍍法 (Evaporation) 14
2.4.2 脈衝雷射沉積 (Pulsed laser deposition) 15
2.4.3 濺鍍法 (Sputtering) 16
2.4.4 分子束磊晶(Molecular beam epitaxy) 17
2.4.5 化學氣相沉積(Chemical vapor deposition, CVD) 17
2.4.6 噴霧熱解法(Spray pyrolysis) 17
2.4.7 大氣電漿 (Atmosphere pressure plasma) 18
2.4.8 溶膠凝膠法 (Sol gel) 22
2.5 電漿原理 23
2.6 常見退火處理法 27
2.6.1 火爐熱退火 (Furnace annealing) 27
2.6.2 雷射熱退火 (Laser annealing) 28
第三章 實驗方法與儀器設備 29
3.1實驗流程與系統架設 29
3.1.1 二氧化碳雷射薄膜退火 29
3.1.2 雷射輔助噴射式大氣電漿透明導電圖樣鍍製 36
3.3 系統細部架設與參數設定 40
3.2.1 大氣電漿薄膜鍍製系統 40
3.2.2 二氧化碳雷射薄膜退火系統 46
3.2.3 雷射輔助噴射式大氣電漿圖樣鍍製系統 50
3.3 薄膜檢測分析設備 52
3.3.1 電性分析 52
3.3.2 光學分析 57
3.3.3 膜厚分析 58
3.3.4 表面形貌分析 59
3.3.6 化學電子能譜分析 (X-ray photoelectron spectroscopy, XPS) 60
3.3.5 晶體結構分析 61
3.3.7 縱深元素分析 62
3.3.8 熱成像分析 64
第四章 結果與討論 65
4.1 二氧化碳雷射薄膜退火 65
4.1.1 膜厚分析 65
4.1.2 電性分析 66
4.1.3 光學分析 76
4.1.4 晶體結構分析 81
4.1.5 表面形貌分析 84
4.1.6 縱深元素分析 88
4.1.7 化學電子能譜分析 91
4.2 雷射輔助噴射式大氣電漿導電圖樣鍍製 98
4.2.1 系統改良與參數調整 98
4.2.2 樣本展示 99
4.2.3 電性分析 102
4.2.4 光學分析 105
第五章 結論與未來展望 106
5.1 結論 106
5.2 未來展望 107
參考文獻 108
著作目錄 120
附錄 121
dc.language.isozh-TW
dc.title雷射輔助噴射式大氣電漿系統開發與應用於鍍製透明導電薄膜與圖樣
zh_TW
dc.titleDevelopment of Laser-Assisted Atmospheric Pressure Plasma Jet System and Its Application in Fabricating Highly Transparent Conductive Films and Patternsen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee劉建豪(Chien-Hao Liu),周元昉(Yuan-Fang Chou),李明蒼(Ming-Tsang Lee),蔡佳霖(Jia-Lin Tsai)
dc.subject.keyword大氣電漿,透明導電薄膜,氧化鋅摻雜鎵,雷射退火,透明電極,透明導電圖樣,zh_TW
dc.subject.keywordAtmospheric pressure plasma jet,Transparent conductive oxide,Gallium doped zinc oxide,Laser annealing,Laser-assisted manufacture,Transparent conductive electrode,Patterning,en
dc.relation.page131
dc.identifier.doi10.6342/NTU202001784
dc.rights.note未授權
dc.date.accepted2020-11-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
U0001-2307202015505200.pdf
  未授權公開取用
25.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved