請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20321
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賀詩琳(Sze-Ling Ho) | |
dc.contributor.author | Hui-Hsin Wang | en |
dc.contributor.author | 王趐心 | zh_TW |
dc.date.accessioned | 2021-06-08T02:45:07Z | - |
dc.date.copyright | 2020-09-29 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-23 | |
dc.identifier.citation | 劉家瑄、林殿順 (2019) 。臺灣東北海域礦產資源潛能調查—震測及地熱流調查研究 (4/4) 總論及礦產資源資料庫。經濟部中央地質調查所報告第108-13號,計畫編號108-5226904000-03-01,共172頁。 劉家瑄、江協堂、戚務正 (2018)。臺灣東北海域礦產資源潛能調查—震測及地熱流調查研究 (3/4) 地熱流調查與流體移棲模式研究。經濟部中央地質調查所報告第107-13-B號,計畫編號107-5226904000-05-01,共63頁。 蘇志杰、江威德、王兆璋 (2017a) 。臺灣東北海域礦產資源潛能調查—地球化學與海床觀測調查研究 (2/4) 總論與地球化學調查研究。經濟部中央地質調查所報告第106-14-B號,計畫編號106-5226904000-05-03,共156頁。 蘇志杰、江威德、王兆璋 (2018) 。臺灣東北海域礦產資源潛能調查—地球化學與海床觀測調查研究 (3/4) 地球化學調查研究。經濟部中央地質調查所報告第107-15-A號,計畫編號107-5226904000-05-03,共220頁。 蘇志杰、陳信宏、江威德 (2017b) 。臺灣東北海域礦產資源潛能調查—地球化學與海床觀測調查研究 (2/4) 海床表面礦物影像調查與採樣。經濟部中央地質調查所報告第106-14-B號,計畫編號106-5226904000-05-03,共156頁。 蘇志杰、陳信宏、江威德 (2019) 。臺灣東北海域礦產資源潛能調查—地球化學與海床觀測調查研究 (4/4) 海床表面礦物影像調查與採樣。經濟部中央地質調查所報告第108-15-B號,計畫編號108-5226904000-03-03,共68頁。 Bernett, P. R. O., Watson, J., Connelly, D. (1986). A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 88, 304–305. doi: 10.1017/S0269727000014846. Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., Stetter, K. O. (1997). Pyrolobus fumarii, gen. And sp. Nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles: Life Under Extreme Conditions, 1(1), 14–21. doi: 10.1007/s007920050010. Blumenberg, M., Seifert, R., Reitner, J., Pape, T., Michaelis, W. (2004). Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences, 101(30), 11111–11116. doi: 10.1073/pnas.0401188101. Bouloubassi, I., Aloisi, G., Pancost, R. D., Hopmans, E., Pierre, C., Sinninghe Damsté, J. S. (2006). Archaeal and bacterial lipids in authigenic carbonate crusts from eastern Mediterranean mud volcanoes. Organic Geochemistry, 37(4), 484–500. doi: 10.1016/j.orggeochem.2005.11.005. Boyd, E. S., Pearson, A., Pi, Y., Li, W.-J., Zhang, Y. G., He, L., Zhang, C. L., Geesey, G. G. (2011). Temperature and pH controls on glycerol dibiphytanyl glycerol tetraether lipid composition in the hyperthermophilic crenarchaeon Acidilobus sulfurireducens. Extremophiles, 15(1), 59–65. doi: 10.1007/s00792-010-0339-y. Chaban, B., Ng, S. Y. M., Jarrell, K. F. (2006). Archaeal habitats—From the extreme to the ordinary. Canadian Journal of Microbiology, 52(2), 73–116. doi: 10.1139/w05-147. Chen, S.-C., Hsu, S.-K., Tsai, C.-H., Ku, C.-Y., Yeh, Y.-C., Wang, Y. (2010). Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31(1), 133–147. doi: 10.1007/s11001-010-9097-6. Chen, T.-T., Paull, C. K., Liu, C.-S., Klaucke, I., Hsu, H.-H., Su, C.-C., Gwiazda, R., Caress, D. W. (2019). Discovery of numerous pingos and comet-shaped depressions offshore southwestern Taiwan. Geo-Marine Letters, 1-15. doi: 10.1007/s00367-019-00577-z. Chuang, P.-C., Yang, T. F., Hong, W.-L., Lin, S., Sun, C.-H., Lin, A. T.-S., Chen, J.-C., Wang, Y., Chung, S.-H. (2010). Estimation of methane flux offshore SW Taiwan and the influence of tectonics on gas hydrate accumulation: Methane flux offshore SW Taiwan. Geofluids, 10(4), 497–510. doi: 10.1111/j.1468-8123.2010.00313.x. Chuang, P.-C. and Y., Chuang, P.-C., Yang, T.-F., Lin, S., Lee, H.-F., Lan, T. F., Hong, W.-L., Liu, C.-S., Chen, J.-C., Wang, Y.-S. (2006). Extremely High Methane Concentration in Bottom Water and Cored Sediments from Offshore Southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 903-920. doi: 10.3319/TAO.2006.17.4.903(GH) Collett, T. S., Johnson, A. H., Knapp, C. C., Boswell, R. (2009). Natural Gas Hydrates: A Review. AAPG Special Volumes, 146–219. doi: 10.1306/13201101M891602. Colín-García, M. (2016). Hydrothermal vents and prebiotic chemistry: A review. Boletín de La Sociedad Geológica Mexicana, 68(3), 599–620. doi: 10.18268/BSGM2016v68n3a13. DeLong, E. F., King, L. L., Massana, R., Cittone, H., Murray, A., Schleper, C., Wakeham, S. G. (1998). Dibiphytanyl Ether Lipids in Nonthermophilic Crenarchaeotes. Applied and Environmental Microbiology, 64(3), 1133–1138. doi: 10.1128/AEM.64.3.1133-1138.1998. De Rosa, M., Gambacorta, A. (1988). The lipids of archaebacteria. Progress in Lipid Research, 27(3), 153–175. doi: 10.1016/0163-7827(88)90011-2. Englezos, P., Lee, J. D. (2005). Gas hydrates: A cleaner source of energy and opportunity for innovative technologies. Korean Journal of Chemical Engineering, 22(5), 671–681. doi: 10.1007/BF02705781. Gabitto, J. F., Tsouris, C. (2010). Physical Properties of Gas Hydrates: A Review. Journal of Thermodynamics, 2010, 1–12. doi: 10.1155/2010/271291. Golyshina, O. V., Yakimov, M. M., Lünsdorf, H., Ferrer, M., Nimtz, M., Timmis, K. N., Wray, V., Tindall, B. J., Golyshin, P. N. (2009). Acidiplasma aeolicum gen. Nov., sp. Nov., a euryarchaeon of the family Ferroplasmaceae isolated from a hydrothermal pool, and transfer of Ferroplasma cupricumulans to Acidiplasma cupricumulans comb. Nov. International Journal of Systematic and Evolutionary Microbiology, 59(Pt 11), 2815–2823. doi: 10.1099/ijs.0.009639-0. Gontharet, S., Stadnitskaia, A., Bouloubassi, I., Pierre, C., Damsté, J. S. S. (2009). Palaeo methane-seepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea). Marine Geology, 261(1), 105–113. doi: 10.1016/j.margeo.2008.11.006. Haase, K. M., Petersen, S., Koschinsky, A., Seifert, R., Devey, C. W., Keir, R., Lackschewitz, K. S., Melchert, B., Perner, M., Schmale, O., Süling, J., Dubilier, N., Zielinski, F., Fretzdorff, S., Garbe‐Schönberg, D., Westernströer, U., German, C. R., Shank, T. M., Yoerger, D., … Weber, S. (2007). Young volcanism and related hydrothermal activity at 5°S on the slow-spreading southern Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, 8(11). doi: 10.1029/2006GC001509. Haase, K. M., Petersen, S., Koschinsky, A., Seifert, R., Devey, C. W., Keir, R., Lackschewitz, K. S., Melchert, B., Perner, K., Schmale, O., Süling, J., Dubilier, N., Zielinski, F., Fretzdorff, S., Garbe-Schönberg, C.-D., Westernstroer, U., German, C. R., Shank, T. M., Yoerger, D., Giere, O., Küver, J., Marbler, H., Mawick, J., Mertens, C., Stöber, U., Walter, M., Ostertag-Henning, C., Paulick, H., Peters, M., Strauss, H., Sander, S., Stecher, J., Warmuth, M., Weber, S. (2009). Fluid compositions and mineralogy of precipitates from Mid Atlantic Ridge hydrothermal vents at 4°48’S . PANGAEA. doi: 10.1594/PANGAEA.727454. Hoefs, M., Schouten, S., De Leeuw, J. W., King, L. L., Wakeham, S. G., Damste, J. (1997). Ether Lipids of Planktonic Archaea in the Marine Water Column. Applied and Environmental Microbiology, 63(8), 3090–3095. Hopmans, E. C., Schouten, S., Sinninghe Damsté, J. S. (2016). The effect of improved chromatography on GDGT-based palaeoproxies. Organic Geochemistry, 93, 1–6 doi: 10.1016/j.orggeochem.2015.12.006. Hopmans, E. C., Schouten, S., Pancost, R. D., van der Meer, M. T., Sinninghe Damsté, J. S. (2000). Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry: RCM, 14(7), 585–589. doi: 10.1002/(SICI)1097-0231(20000415)14:7<585::AID-RCM913>3.0.CO;2-N. Hopmans, E. C., Weijers, J. W. H., Schefuß, E., Herfort, L., Sinninghe Damsté, J. S., Schouten, S. (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth and Planetary Science Letters, 224(1), 107–116. doi: 10.1016/j.epsl.2004.05.012. Huber, R., Dyba, D., Huber, H., Burggraf, S., Rachel, R. (1998). Sulfur-inhibited Thermosphaera aggregans sp. Nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. International Journal of Systematic and Evolutionary Microbiology, 48(1), 31–38. doi: 10.1099/00207713-48-1-31. Intergovernmental Panel on Climate Change, Edenhofer, O. (2014). Climate change 2014: Mitigation of climate change: Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Itoh, T., Suzuki, K., Sanchez, P. C., Nakase, T. (1999). Caldivirga maquilingensis gen. Nov., sp. Nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. International Journal of Systematic and Evolutionary Microbiology, 49(3), 1157–1163. doi: 10.1099/00207713-49-3-1157. Itoh, T., Suzuki, K., Sanchez, P. C., Nakase, T. (2003). Caldisphaera lagunensis gen. Nov., sp. Nov., a novel thermoacidophilic crenarchaeote isolated from a hot spring at Mt Maquiling, Philippines. International Journal of Systematic and Evolutionary Microbiology, 53(Pt 4), 1149–1154. doi: 10.1099/ijs.0.02580-0. Jahn, U., Summons, R., Sturt, H., Grosjean, E., Huber, H. (2004). Composition of the lipids of Nanoarchaeum equitans and their origin from its host Ignicoccus sp. Strain KIN4/I. Archives of Microbiology, 182(5), 404–413. doi: 10.1007/s00203-004-0725-x. Jung, M.-Y., Park, S.-J., Min, D., Kim, J.-S., Rijpstra, W. I. C., Damsté, J. S. S., Kim, G.-J., Madsen, E. L., Rhee, S.-K. (2011). Enrichment and Characterization of an Autotrophic Ammonia-Oxidizing Archaeon of Mesophilic Crenarchaeal Group I.1a from an Agricultural Soil. Applied and Environmental Microbiology, 77(24), 8635–8647. doi: 10.1128/AEM.05787-11. Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Koç, N., Hopmans, E. C., Damsté, J. S. S. (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: Implications for past sea surface temperature reconstructions. Geochimica et Cosmochimica Acta, 74(16), 4639–4654. doi: 10.1016/j.gca.2010.05.027. Klein, F., Grozeva, N. G., Seewald, J. S. (2019). Abiotic methane synthesis and serpentinization in olivine-hosted fluid inclusions. Proceedings of the National Academy of Sciences, 116(36), 17666–17672. doi: 10.1073/pnas.1907871116. Knappy, C. S., Nunn, C. E. M., Morgan, H. W., Keely, B. J. (2011). The major lipid cores of the archaeon Ignisphaera aggregans: Implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids. Extremophiles: Life Under Extreme Conditions, 15(4), 517–528. doi: 10.1007/s00792-011-0382-3. Kvenvolden, K. A. (1995). A review of the geochemistry of methane in natural gas hydrate. Organic Geochemistry, 23(11), 997–1008. doi: 10.1016/0146-6380(96)00002-2. Langworthy, T. A., Pond, J. L. (1986). Archaebacterial ether lipids and chemotaxonomy. Systematic and Applied Microbiology, 7(2), 253–257. doi: 10.1016/S0723-2020(86)80015-7. Langworthy, T. A., Tornabene, T. G., Holzer, G. (1982). Lipids of Archaebacteria. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie, 3(2), 228–244. doi: 10.1016/S0721-9571(82)80036-7. Lanzotti, V., De Rosa, M., Trincone, A., Basso, A. L., Gambacorta, A., Zillig, W. (1987). Complex lipids from Desulfurococcus mobilis, a sulfur-reducing archaebacterium. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 922(2), 95–102. doi: 10.1016/0005-2760(87)90142-1. Lin, L.-H., Wu, L.-W., Cheng, T.-W., Tu, W.-X., Lin, J.-R., Yang, T. F., Chen, P.-C., Wang, Y., Wang, P.-L. (2014). Distributions and assemblages of microbial communities along a sediment core retrieved from a potential hydrate-bearing region offshore southwestern Taiwan. Journal of Asian Earth Sciences, 92, 276–292. doi: 10.1016/j.jseaes.2014.02.014. Locarnini, R. A., A. V. Mishonov, O. K. Baranova, T. P. Boyer, M. M. Zweng, H. E. Garcia, J. R. Reagan, D. Seidov, K. Weathers, C. R. Paver, and I. Smolyar. (2018). World Ocean Atlas 2018, Volume 1: Temperature. A. Mishonov Technical Ed.; NOAA Atlas NESDIS 81, 52 pp. Macalady, J.L., Vestling, M.M., Baumler, D., Boekelheide, N., Kaspar, C.W., Banfield, J.F., 2004. Tetraether-linked membrane monolayers in Ferroplasma spp.: a key tosurvival in acid. Extremophiles, 8, 411–419. doi: 10.1007/s00792-004-0404-5. Nichols, P. D., Franzmann, P. D. (1992). Unsaturated diether phospholipids in the Antarctic methanogen Methanococcoides burtonii. FEMS Microbiology Letters, 98(1–3), 205–208. doi: 10.1111/j.1574-6968.1992.tb05515.x. Pancost, R. D, Hopmans, E. C., Sinninghe Damsté, J. S. (2001). Archaeal lipids in Mediterranean cold seeps: Molecular proxies for anaerobic methane oxidation. Geochimica et Cosmochimica Acta, 65(10), 1611–1627. doi: 10.1016/S0016-7037(00)00562-7. Pancost, Richard D., Zhang, C. L., Tavacoli, J., Talbot, H. M., Farrimond, P., Schouten, S., Sinninghe Damsté, J. S., Sassen, R. (2005). Lipid biomarkers preserved in hydrate-associated authigenic carbonate rocks of the Gulf of Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology, 227(1), 48–66. doi: 10.1016/j.palaeo.2005.04.035. Perevalova, A. A., Bidzhieva, S. Kh., Kublanov, I. V., Hinrichs, K.-U., Liu, X. L., Mardanov, A. V., Lebedinsky, A. V., Bonch-Osmolovskaya, E. A. (2010). Fervidicoccus fontis gen. Nov., sp. Nov., an anaerobic, thermophilic crenarchaeote from terrestrial hot springs, and proposal of Fervidicoccaceae fam. Nov. And Fervidicoccales ord. Nov. International Journal of Systematic and Evolutionary Microbiology, 60(9), 2082–2088. doi: 10.1099/ijs.0.019042-0. Philp, R. P., Lewis, C. A. (1987). Organic Geochemistry of Biomarkers. Annual Review of Earth and Planetary Sciences, 15(1), 363–395. doi: 10.1146/annurev.ea.15.050187.002051 Pi, Y., Ye, Q., Jiang, H., Wang, P., Li, S., Noakes, J., Culp, R., Dong, H., Zhang, C. (2009). Archaeal Lipids and 16S rRNA Genes Characterizing Non-hydrate and Hydrate-Impacted Sediments in the Gulf of Mexico. Geomicrobiology Journal, 26(4), 227–237. doi: 10.1080/01490450902889411. Pitcher, A., Hopmans, E. C., Mosier, A. C., Park, S.-J., Rhee, S.-K., Francis, C. A., Schouten, S., Damsté, J. S. S. (2011). Core and Intact Polar Glycerol Dibiphytanyl Glycerol Tetraether Lipids of Ammonia-Oxidizing Archaea Enriched from Marine and Estuarine Sediments. Applied and Environmental Microbiology, 77(10), 3468–3477. doi: 10.1128/AEM.02758-10. Pitcher, A., Rychlik, N., Hopmans, E. C., Spieck, E., Rijpstra, W. I. C., Ossebaar, J., Schouten, S., Wagner, M., Sinninghe Damsté, J. S. (2010). Crenarchaeol dominates the membrane lipids of Candidatus Nitrososphaera gargensis, a thermophilic Group I.1b Archaeon. The ISME Journal, 4(4), 542–552. doi: 10.1038/ismej.2009.138. Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H. P., Zillig, W. (1995). Picrophilus gen. nov., fam. nov.: A novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. Journal of Bacteriology, 177(24), 7050–7059. doi: 10.1128/jb.177.24.7050-7059.1995. Schouten, S., Hopmans, E. C., Sinninghe Damsté, J. S. (2013a). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54, 19–61. doi: 10.1016/j.orggeochem.2012.09.006. Schouten, S., Hopmans, E. C., Pancost, R. D., Damste, J. S. (2000). Widespread occurrence of structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles. Proceedings of the National Academy of Sciences of the United States of America, 97(26), 14421–14426. doi: 10.1073/pnas.97.26.14421. Schouten, S., Hopmans, E. C., Schefuß, E., Sinninghe Damsté, J. S. (2002). Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? Earth and Planetary Science Letters, 204(1), 265–274. doi: 10.1016/S0012-821X(02)00979-2. Schouten, S., Wakeham, S. G., Hopmans, E. C., Damsté, J. S. S. (2003). Biogeochemical Evidence that Thermophilic Archaea Mediate the Anaerobic Oxidation of Methane. Applied and Environmental Microbiology, 69(3), 1680–1686. doi: 10.1128/AEM.69.3.1680-1686.2003. Schouten, S., Huguet, C., Hopmans, E. C., Kienhuis, M. V. M., Sinninghe Damsté, J. S. (2007). Analytical Methodology for TEX86 Paleothermometry by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization-Mass Spectrometry. Analytical Chemistry, 79(7), 2940–2944. doi: 10.1021/ac062339v. Schouten, S., Hopmans, E. C., Baas, M., Boumann, H., Standfest, S., Könneke, M., Stahl, D. A., Damsté, J. S. S. (2008). Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota. Applied and Environmental Microbiology, 74(8), 2433–2440. doi: 10.1128/AEM.01709-07. Schouten, S., Hopmans, E. C., Rosell‐Melé, A., Pearson, A., Adam, P., Bauersachs, T., Bard, E., Bernasconi, S. M., Bianchi, T. S., Brocks, J. J., Carlson, L. T., Castañeda, I. S., Derenne, S., Selver, A. D., Dutta, K., Eglinton, T., Fosse, C., Galy, V., Grice, K., Hinrichs, K. U., Huang, Y., Huguet, A., Huguet, C., Hurley, S., Ingalls, A., Jia, G., Keely, B., Knappy, C., Kondo, M., Krishnan, S., Lincoln, S., Lipp, J., Mangelsdorf, K., Martínez‐García, A., Ménot, G., Mets, A., Mollenhauer, G., Ohkouchi, N., Ossebaar, J., Pagani, M., Pancost, D. D., Pearson, E. J., Peterse, F., Reichart, G. J., Schaeffer, P., Shimitt, G., Schwark, L., Shah, S. R., Smith, R. W., Smittenberg, R. H., Summons, R. E., Takano, Y., Talbot, H. M., Talyor, K. W. R., Tarozo, R., Uchida, M., Dongen, B. E. V., Mooy, B. A. S. V., Wang, J., Warren, C., Weijers, J. W. H., Werne, J. W. H., Werne, J. P., Woltering, M., Xie, S., Yamamoto, M., Yang, H., Zhang, C. L., Zhang, Y., Zhao, M., Damsté, J. S. S. (2013b). An interlaboratory study of TEX86 and BIT analysis of sediments, extracts, and standard mixtures. Geochemistry, Geophysics, Geosystems, 14(12), 5263–5285. doi: 10.1002/2013GC004904. Sinninghe Damsté, J. S., Rijpstra, W. I. C., Hopmans, E. C., Prahl, F. G., Wakeham, S. G., Schouten, S. (2002). Distribution of membrane lipids of planktonic Crenarchaeota in the Arabian Sea. Applied and Environmental Microbiology, 68(6), 2997–3002. doi: 10.1128/aem.68.6.2997-3002.2002. Sinninghe Damsté, J.S., Rijpstra, W.I.C., Hopmans, E.C., Jung, M.Y., Kim, J.G., Rhee, S.K., Stieglmeier, M., Schleper, C. (2012). Intact polar and core glycerol dibiphytanyl glycerol tetraether lipids of group I.1a and I.1b thaumarchaeota in soil. Applied and Environmental Microbiology, 78(19), 6866–6874. doi: 10.1128/AEM.01681-12. Sprott, G. D., Ferrante, G., Ekiel, I. (1994). Tetraether lipids of Methanospirillum hungatei with head groups consisting of phospho-N, N-dimethylaminopentanetetrol, phospho-N, N, N-trimethylaminopentanetetrol, and carbohydrates. Biochimica Et Biophysica Acta, 1214(3), 234–242. doi: 10.1016/0005-2760(94)90069-8. Stadnitskaia, A., Nadezhkin, D., Abbas, B., Blinova, V., Ivanov, M. K., Sinninghe Damsté, J. S. (2008). Carbonate formation by anaerobic oxidation of methane: Evidence from lipid biomarker and fossil 16S rDNA. Geochimica et Cosmochimica Acta, 72(7), 1824–1836. doi: 10.1016/j.gca.2008.01.020. Stewart, K., Kassakian, S., Krynytzky, M., Dijulio, D., Murray, J. W. (2007). Oxic, suboxic, and anoxic conditions in the Black Sea. The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement, 1–21. doi: 10.1007/978-1-4020-5302-3_1. Sturt, H. F., Summons, R. E., Smith, K., Elvert, M., Hinrichs, K.-U. (2004). Intact polar membrane lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry—New biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry, 18(6), 617–628. doi: 10.1002/rcm.1378. Takayanagi, S., Kawasaki, H., Sugimori, K., Yamada, T., Sugai, A., Ito, T., Yamasato, K., Shioda, M. (1996). Sulfolobus hakonensis sp. Nov., a Novel Species of Acidothermophilic Archaeon. International Journal of Systematic and Evolutionary Microbiology, 46(2), 377–382. doi: 10.1099/00207713-46-2-377. Talukder, A. R. (2012). Review of submarine cold seep plumbing systems: Leakage to seepage and venting. Terra Nova, 24(4), 255–272. doi: 10.1111/j.1365-3121.2012.01066.x. Thurl, S., Schäfer, W. (1988). Lipids from the sulphur-dependent archaebacterium Thermoproteus tenax. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism, 961(2), 253–261. doi: 10.1016/0005-2760(88)90120-8. Trincone, A., Nicolaus, B., Palmieri, G., De Rosa, M., Huber, R., Huber, G., Stetter, K. O., Gambacorta, A. (1992). Distribution of Complex and Core Lipids within New Hyperthermophilic Members of the Archaea Domain. Systematic and Applied Microbiology, 15(1), 11–17. doi: 10.1016/S0723-2020(11)80130-X Uda, I., Sugai, A., Itoh, Y. H., Itoh, T. (2004). Variation in Molecular Species of Core Lipids from the Order Thermoplasmales Strains Depends on the Growth Temperature. Journal of Oleo Science, 53(8), 399–404, doi: 10.5650/jos.53.399 van der Meer, M. T. J., Schouten, S., Rijpstra, W. I. C., Fuchs, G., Sinninghe Damsté, J. S. (2001). Stable carbon isotope fractionations of the hyperthermophilic crenarchaeon Metallosphaera sedula. FEMS Microbiology Letters, 196(1), 67–70. doi: 10.1111/j.1574-6968.2001.tb10542.x. Völkl, P., Huber, R., Drobner, E., Rachel, R., Burggraf, S., Trincone, A., Stetter, K. O. (1993). Pyrobaculum aerophilum sp. Nov., a novel nitrate-reducing hyperthermophilic archaeum. Applied and Environmental Microbiology, 59(9), 2918–2926. doi: 10.1128/AEM.59.9.2918-2926.1993. Wakeham, S. G., Hopmans, E. C., Schouten, S., Sinninghe Damsté, J. S. (2004). Archaeal lipids and anaerobic oxidation of methane in euxinic water columns: A comparative study of the Black Sea and Cariaco Basin. Chemical Geology, 205(3), 427–442. doi: 10.1016/j.chemgeo.2003.12.024. Wakeham, S. G., Lewis, C. M., Hopmans, E. C., Schouten, S., Sinninghe Damsté, J. S. (2003). Archaea mediate anaerobic oxidation of methane in deep euxinic waters of the Black Sea. Geochimica et Cosmochimica Acta, 67(7), 1359–1374. doi: 10.1016/S0016-7037(02)01220-6. Wang, P.-L., Chiu, Y.-P., Cheng, T.-W., Chang, Y.-H., Tu, W.-X., Lin, L.-H. (2014). Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Frontiers in Microbiology, 5, 121. doi: 10.3389/fmicb.2014.00121. Weijers, J. W. H., Schouten, S., Spaargaren, O. C., Sinninghe Damsté, J. S. (2006). Occurrence and distribution of tetraether membrane lipids in soils: Implications for the use of the TEX86 proxy and the BIT index. Organic Geochemistry, 37(12), 1680–1693. doi: 10.1016/j.orggeochem.2006.07.018. Weijers, J. W. H., Schouten, S., van den Donker, J. C., Hopmans, E. C., Sinninghe Damsté, J. S. (2007). Environmental controls on bacterial tetraether membrane lipid distribution in soils. Geochimica et Cosmochimica Acta, 71(3), 703–713. doi: 10.1016/j.gca.2006.10.003. Yoga, Y., Morii, H. (2005). Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects. Bioscience, Biotechnology, and Biochemistry, 69(11), 2019–2034. doi: 10.1271/bbb.69.2019. Zhang, C. L., Pancost, R. D., Sassen, R., Qian, Y., Macko, S. A. (2003). Archaeal lipid biomarkers and isotopic evidence of anaerobic methane oxidation associated with gas hydrates in the Gulf of Mexico. Organic Geochemistry, 34(6), 827–836. doi: 10.1016/S0146-6380(03)00003-2. Zhang, X., Zhai, S., Yu, Z., Guo, K., Wang, S. (2019). Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes. Geological Journal, 54(1), 605–613. doi: 10.1002/gj.3209. Zhang, Y. G., Zhang, C. L., Liu, X.-L., Li, L., Hinrichs, K.-U., Noakes, J. E. (2011). Methane Index: A tetraether archaeal lipid biomarker indicator for detecting the instability of marine gas hydrates. Earth and Planetary Science Letters, 307(3), 525–534. doi: 10.1016/j.epsl.2011.05.031. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20321 | - |
dc.description.abstract | 溫室氣體排放會造成氣候變遷,甲烷為溫室氣體的一種。在地質時間尺度上天然氣水合物分解釋放出的甲烷對全球氣候有影響。欲了解氣候變化, Zhang et al. (2011) 建立用於追蹤過去是否含有天然氣水合物解離和現存甲烷的代用指標–Methane Index (MI) 。 MI 為基於沈積物Glycerol dialkyl glycerol tetraethers (GDGTs) 相對分佈所建立,其 GDGTs 來源為古菌脂膜脂質化合物。海洋沈積物 GDGTs 主要由浮游性 Thaumarchaeota 提供,其相對分佈可做為海水溫度的代用指標,稱 TEX86 (TetraEther indeX of 86 carbon atoms)。而與甲烷相關的 Euryarchaeota 膜脂內含的 GDGTs 分佈不同於 Thaumarchaeota ,因此當 Euryarchaeota 大量存在於沈積物時會影響沈積物的 GDGTs 相對分佈從而影響 MI 。正常海洋沈積物 MI 值通常小於 0.3 ,當沈積物MI值大於 0.3 時,被認為是天然氣水合物影響環境的典型特徵。 MI 不僅用於偵測是否含有甲烷還作為控制 TEX86 的數據質量,但與甲烷濃度之間的關係尚未經過測試和量化。因此本研究選用來自熱液、冷泉、泥火山含不同甲烷濃度 (0 ~ 1650μM) 的沈積物對 MI 的可用性進行測試。結果表明海洋沈積物顯示正常海洋環境中典型 GDGTs 分佈其 MI 值小於 0.3 ,且不隨甲烷濃度 (0 ~ 400 μM) 變化;相反地,陸地泥火山甲烷範圍介於 150 ~ 1650 μM ,GDGTs 分佈特徵為 GDGT-0 ~ 2 相對較高, MI 值高於 0.7 。 進一步對比海洋與陸地沈積物的古菌群落,發現冷泉沈積物古菌 Thaumarchaeota 和 Euryarchaeota 相對含量約各半,但 GDGT-0 ~ 3 相對含量卻不比受甲烷影響區域高。另擇表層海洋沈積物進行 TEX86 計算,將重建溫度對比近數十年的海水溫度,發現重建溫度皆落在表水至水深 100 公尺的範圍內。由此表示此區域海洋沈積物中大部分的 GDGTs 皆來自浮游性 Thaumarchaeota ,而不受陸源或沈積物中嗜甲烷古菌 Euryarchaeota 製造的 GDGTs 影響。此發現與樣本的低Branched and Isoprenoid Tetraethers (BIT) 和 MI 值一致。由結果得出 MI 可以用於評估 TEX86 於海水溫度重建的可用性,但對於甲烷濃度的敏感度取決於沈積環境。 | zh_TW |
dc.description.abstract | The emission of greenhouse gases such as methane can cause climate change. On geological time scale, methane released by the dissociation of gas hydrate is known to have consequences on global climate. To understand the link between methane and climate change, Zhang et al. (2011) established Methane Index (MI), a proxy used to track hydrate and methane in the past. MI is based on the GDGT distribution in marine sediments. In marine sediments, GDGTs are mainly originated from planktonic archaea Thaumarchaeota, and its relative distribution can be used as a proxy for seawater temperature, called TEX86. The GDGT profile in methane-associated Euryarchaeotal membrane lipids are different from that in Thaumarchaeotal membrane, thus when Euryarchaeota exists in large quantities in marine sediments it will affect the sedimentary GDGT distributions, hence also the MI value. MI value in normal marine sediments is typically < 0.3. Sedimentary MI value > 0.3 is considered typical of gas hydrate impacted setting. MI is used not only to detect the presence of methane but also to monitor the applicability of sedimentary TEX86 for seawater temperature reconstruction. However, the relationship between methane concentration has not been tested nor quantified. In this study, we selected sediments from diverse settings (hydrothermal, cold seep, mud volcano) on and off Taiwan, containing a range of methane concentrations (0 ~ 1650 μM) to assess the applicability of MI. The results show that the distribution of GDGTs in marine sediments off Taiwan belong to a normal marine environment. At these sites, MI values are less than 0.3 and do not change with methane concentration (0 ~ 400 μM). In contrast, GDGT-0 ~ 2 are relatively high and the MI values are higher than 0.7 for mud volcano samples with 150 to 1650 μM methane concentration. By further comparing with the archaeal community in marine and terrestrial sediments, we found that the relative abundance of Thaumarchaeota and Euryarchaeota are approximately 1:1 in cold seep sediment, but the relative content of GDGT-0~3 is not high as is typical for hydrate-impacted sediments. Further, temperatures reconstructed from TEX86 in surface marine sediments fall within the range of decadal average of seawater temperature for surface water to a depth of 100 meters. This shows that the majority of the GDGTs in the marine sediments originate from planktonic Thaumarchaeota, and are not affected by the GDGTs produced by the methanotrophic Euryarchaeota in the sediment. This finding is consistent with the low BIT and MI values in these samples. Our findings suggest that MI can be used to assess the applicability of TEX86 for seawater temperature reconstruction, but its sensitivity to methane concentration depends on the sedimentary environment. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:45:07Z (GMT). No. of bitstreams: 1 U0001-1308202020555700.pdf: 6396740 bytes, checksum: 168b4d115ded45c3f819603cca5b4764 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員審定書 I 摘要 II Abstract IV 目錄 VI 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 甘油二烷基甘油四醚 (Glycerol Dialkyl Glycerol Tetraethers) 3 1.3 脂膜脂質代用指標 6 1.4 Methane Index (MI) 7 1.5 GDGTs 測量 11 1.6 研究目的 12 第二章 研究材料方法 14 2.1 研究區域 14 2.2 沈積物樣本前處理 38 2.3 液相層析質譜儀 42 2.3.1 原理 42 2.3.2 設定方法 44 2.3.3 數據處理及計算 48 第三章 分析方法設定的結果與討論 50 3.1 液相層析質譜儀硬體設定之結果與討論 50 3.2 液相層析質譜儀軟體設定之結果與討論 51 第四章 站位樣本之結果與討論 63 4.1 GDGTs 相對分佈與代用指標 63 4.1.1 GDGTs 相對分佈 63 4.1.2 受天然氣水合物影響的沈積物中 MI 值呈現 65 4.1.3 MI 與甲烷濃度比較 67 4.1.4 MI 和古菌群落的比較 69 4.1.5 TEX86 與 BIT數值 71 4.2 討論 74 4.2.1 MI和甲烷及天然氣水合物存在與否的關係 74 4.2.2 與獲得高 MI 值的前人研究比較 80 4.2.3 臺灣附近含低 MI 值的冷泉及熱液區 82 4.2.4 MI 對 TEX86 重建水溫的質量控制 84 4.2.5 MI 之應用性 86 第五章 結論 87 參考文獻 89 | |
dc.language.iso | zh-TW | |
dc.title | 古菌脂膜脂質代用指標對沈積物中甲烷濃度的敏感性 | zh_TW |
dc.title | Sensitivity of archaeal membrane lipid-based proxies to methane concentration in sediments | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王珮玲(Pei-Ling Wang),蘇志杰(Chih-Chieh Su),陳明德(Min-Te Chen) | |
dc.subject.keyword | 甲烷,甘油二烷基甘油四醚,Methane Index,代用指標,TEX86, | zh_TW |
dc.subject.keyword | methane,glycerol dialkyl glycerol tetraether,Methane Index,proxy,TEX86, | en |
dc.relation.page | 102 | |
dc.identifier.doi | 10.6342/NTU202003323 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-24 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 海洋研究所 | zh_TW |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1308202020555700.pdf 目前未授權公開取用 | 6.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。