Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20313
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 陳怡然(Yi-Jan Chen) | |
dc.contributor.author | Yen-Yu Pan | en |
dc.contributor.author | 潘彥宇 | zh_TW |
dc.date.accessioned | 2021-06-08T02:44:53Z | - |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-12-22 | |
dc.identifier.citation | [1] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[2] B. Razavi, RF Microelectronics, Pearson, 2012. [3] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, John Wiley & Sons, 2005. [4] R. B. Staszewski and P. T. Balsara, All-Digital Frequency Synthesizer in Deep-Submicron CMOS, New York : Wiley, 2006. [5] 劉深淵,楊清淵,“鎖相迴路”,滄海書局,2006。 [6] Z. Cheng, X. Zheng, M. J. Deen, H. Peng, “Recent developments and design challenges of high-performance ring oscillator CMOS time-to-digital converters,” IEEE Trans. Electron Devices, vol. 63, no. 1, pp. 235-251, Jan. 2016. [7] P. Dudek, S. Szczepanski, and J. V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240-247, Feb. 2000. [8] E. Temporiti, C. Weltin-Wu, D. Baldi, R. Tonietto, and F. Svelto, “A 3 GHz fractional all-digital PLL with a 1.8 MHz bandwidth implementing spur reduction techniques,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 824-834, Mar. 2009. [9] J. Yu, F. F. Dai, and R. C. Jaeger, “A 12-bit Vernier ring time-to-digital converter in 0.13 m CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 830-842, Apr. 2010. [10] P. Lu, A. Liscidini, and P. Andreani, “A 3.6 mW, 90 nm CMOS gated-Vernier time-to-digital converter with an equivalent resolution of 3.2 ps,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1626–1635, Jul. 2012. [11] M. Lee, and A. A. Abidi, “A 9 b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 769-777, Apr. 2008. [12] S.-K. Lee, Y.-H. Seo, H.-J. Park, and J.-Y. Sim, “A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18m CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2874-2881, Dec. 2010. [13] M. Z. Straayer, and M. H. Perrott, “A multi-path gated ring oscillator TDC with first-order noise shaping,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1089-1098, Apr. 2009. [14] A. Elshazly, S. Rao, B. Young, and P. K. Hanumolu, “A noise-shaping time-to-digital converter using switched-ring oscillator─analysis, design, and measurement techniques,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1184-1197, May. 2014. [15] K. S. Kim, Y.-H. Kim, W. S. Yu, and S. H. Cho, “A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1009-1017, Apr. 2013. [16] J.-S. Kim, Y.-H. Seo, Y. Suh, H.-J. Park, and J.-Y. Sim, “A 300-MS/s, 1.76-ps-resolution, 10-b asynchronous pipelined time-to-digital converter with on-chip digital background calibration in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 516–526, Feb. 2013. [17] K. S. Kim, W. S. Yu, and S. H. Cho, “A 9 bit, 1.12 ps resolution 2.5b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register,” IEEE J. Solid-State Circuits, vol. 49, no. 4, pp. 1007-1016, Apr. 2014. [18] L. Vercesi, A. Liscidini, and R. Castello, “Two-dimensions Vernier time-to-digital converter,” IEEE J. Solid-State Circuits,, vol. 45, no 8, pp. 1504-1512, Aug. 2010. [19] S. Kim, S. Hong, K. Chang, H. Ju, J. Shin, B. Kim, Hong-June Park, and Jae-Yoon Sim, “A 2 GHz synthesized fractional-N ADPLL with dual-referenced interpolating TDC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 391-400, Feb. 2016. [20] R. B. Staszewski, C.-M. Hung, N. Barton, M.-C. Lee, and D. Leipold, “A digitally controlled oscillator in a 90 nm digital CMOS process for mobile phones,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2469-2482, Dec 2005. [21] K.-C. Choi, S.-W. Lee, B.-C. Lee, and W.-Y. Choi, “A time-to-digital converter based on a multiphase reference clock and a binary counter with a novel sampling error corrector,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 59, no. 3, pp. 143–147, Mar. 2012. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20313 | - |
dc.description.abstract | 全數位鎖相迴路一直是個熱門的主題,因為數位電路的特性,可以快速的替換到不同製程上。而傳統的小數型鎖相迴路運用利用二元式相位偵測器或是時間數位時間轉換器來偵測輸入頻率與參考頻率之間的時間差。而本論文提出頻率倍率計算器來取代原先的二元式相位偵測器和時間數位時間轉換器的功能來達到更快速的鎖定。
本論文提出的頻率倍率計算器,計算輸入訊號與參考頻率之間的倍率,由全數位的方式實現,透過數學的統計運算,能不受製程限制,突破最小時間解析度,單一個反相器的時間延遲,因為統計的特性,可以免去傳統架構設計上達到高解析度需要的複雜校正電路。若不考慮面積和功耗的情況下,根據數學模型推論可以依要求幾乎無限制的提高時間解析度直到應用所需要的量級。 在使用0.13微米CMOS製程實現的頻率倍率計算器,晶片面積為0.96 × 0.7 mm2,實際電路面積為 0.375 × 0.145 mm2,根據量測結果,在1.2 V供應電壓下,使用平行化的128組時間延遲單位以及7組參考頻率周期的狀況下,量測的頻率範圍在135-850 MHz之間,其算出的倍率準確度可以在小數點後兩位以內,並且鎖定時間只需要兩個參考頻率的時間。 | zh_TW |
dc.description.abstract | Digital PLLs have become popular because of easy adaptation to different CMOS technology. The conventional approach of developing fractional-N PLLs utilizes bang-bang phase frequency detector (BBPFD) and time-to-digital converter (TDC) to detect the timing difference between the scaled signal and reference clock. This thesis presents the first frequency ratio calculator (FRC) as an alternative function block to BBPFDs and TDCs in digital PLLs for fast locking.
In this thesis, a technique of Frequency Ratio Calculator (FRC) is proposed. The FRC gives out both the integer and fraction of the frequency ratio between an input signal and a reference clock by statistical means. Based on derived statistic model and system architecture, high resolution of the converter is achieved. The minimum resolution will not restrict by the minimum gate delay of inverter chain available in a process technology. Also, due to intrinsic statistical property, the FRC reveals fully insensitive characteristics against device/process variation of fabrication technology. Therefore, design complexity of calibration circuit required in tradition design can be avoided. According to derived mathematical model, the minimum resolution of proposed FRC can achieve almost unlimited order of magnitude, without considering area and power consumption. The FRC is implemented in 0.13 um CMOS technology. The chip size is 0.96 × 0.7 mm2, and the core size is 0.375 × 0.145 mm2. The FRC was tested under a supply voltage of 1.2V. In the frequency range between 135 MHz and 850 MHz, the measured ration accuracy is smaller than 0.01 and the calculation time only takes up two periods of reference clock. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T02:44:53Z (GMT). No. of bitstreams: 1 ntu-106-R04943125-1.pdf: 5576364 bytes, checksum: 0822e0820aa9d308ee4e174667254971 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 中文摘要----------------------------IV
ABSTRACT----------------------------VI 目錄-------------------------------VIII 圖目錄-------------------------------X 表格目錄----------------------------XVI Chapter 1 緒論-------------------------1 1.1 研究動機----------------------------1 1.1 論文架構----------------------------2 Chapter 2 時間數位轉換器簡介-------------3 2.1 反相器延遲線時間數位轉換器------------5 2.2 游標尺延遲線時間數位轉換器------------7 2.3 時間放大器時間數位轉換器--------------12 2.4 環型振盪器時間數位轉換器--------------15 2.5 管線化時間數位轉換器------------------20 2.6 內插式時間數位轉換器------------------24 2.7 結論----------------------------26 Chapter 3 頻率倍率計算器理論與模型分析-----27 3.1 頻率倍率計算器數學理論分析-------------27 3.2 頻率倍率計算器誤差分析-----------------34 3.3 頻率倍率計算器行為分析------------------36 Chapter 4 0.13µm頻率倍率計算器架構設計------49 4.1 頻率倍率計算器架構設計------------------49 4.1.1 頻率倍率器基本架構-------------------49 4.1.2 切換邏輯計數電路---------------------53 4.1.3 兩級正反器同步器---------------------56 4.1.4 頻率倍率器算器架構-------------------58 4.2 電路模擬----------------------------60 4.3 FPGA驗證----------------------------70 4.4 晶片布局與腳位說明-------------------73 Chapter 5 晶片量測----------------------75 5.1 印刷電路板設計-----------------------75 5.2 量測環境設定-------------------------79 5.3 量測結果與討論-----------------------81 Chapter 6 結論--------------------------90 6.1 結論--------------------------------90 參考文獻--------------------------------91 | |
dc.language.iso | zh-TW | |
dc.title | 0.13 µm CMOS 頻率倍率計算器 | zh_TW |
dc.title | 0.13 µm CMOS Frequency Ratio Calculator | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊家驤,劉宗德 | |
dc.subject.keyword | 時間數位轉換器,全數位頻率合成器,頻率倍率計算器,快速鎖定, | zh_TW |
dc.subject.keyword | TDC,ADPLL,FRC,Fast Locking Technique, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201704489 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-12-25 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
Appears in Collections: | 電子工程學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf Restricted Access | 5.45 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.