Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 昆蟲學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20303
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈聖峰
dc.contributor.authorMing Liuen
dc.contributor.author劉銘zh_TW
dc.date.accessioned2021-06-08T02:44:37Z-
dc.date.copyright2018-01-27
dc.date.issued2018
dc.date.submitted2018-01-04
dc.identifier.citationAllport, D. A., E. A. Styles, and S. Hsieh. 1994. Shifting intentional set: exploring the dynamic control of tasks. Pp. 421-452 in C. U. M. Moscovitch, ed. Attention and performance 15: conscious and nonconscious information processing. MIT Press, Cambridge, MA.
Arrington, C. M. and G. D. Logan. 2004. The cost of a voluntary task switch. Psychol. Sci. 15:610-615.
Ashmole, N. P. 1963. The regulation of numbers of tropical oceanic birds. Ibis 103b:458-473.
Badyaev, A. V. and C. K. Ghalambor. 2001. Evolution of life histories along elevational gradients: trade-off between parental care and fecundity. Ecology 82:2948-2960.
Bennett, P. M. and I. P. F. Owens. 2002. Evolutionary ecology of birds- life histories, mating systems and extinction. Oxford University Press, Oxford.
Blount, J. D., D. C. Houston, and A. P. Møller. 2000. Why egg yolk is yellow. Trends Ecol. Evol. 15:47-49.
Blount, J. D., D. C. Houston, P. F. Surai, and A. P. Møller. 2004. Egg-laying capacity is limited by carotenoid pigment availability in wild gulls Larus fuscus. Proc. R. Soc. Lond. B 271:S79-S81.
Boyce, A. J., B. G. Freeman, A. E. Mitchell, and T. E. Martin. 2015. Clutch size declines with elevation in tropical birds. Auk 132:424-432.
Boyle, W. A. 2008. Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia 155:397-403.
Burley, N. 1980. Clutch overlap and clutch size: alternative and complementary reproductive tactics. Am. Nat. 115:223-246.
Deerenberg, C., C. H. de Kogel, and G. F. J. Overkamp. 1996. Costs of reproduction in the zebra finch Taeniopygia guttata: manipulation of brood size in the laboratory. J. Avian Biol. 27:321-326.
Doligez, B. and J. Clobert. 2003. Clutch size reduction as a response to increased nest predation rate in the collared flycatcher. Ecology 84:2582-2588.
Drent, R. H. and S. Daan. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68:225-252.
Eden, S. F., A. G. Horn, and M. L. Leonard. 1989. Food provisioning lowers inter-clutch interval in moorhens Gallinula chloropus. Ibis 131:429-432.
Ellers, J. and J. J. M. Van Alphen. 2002. A trade-off between diapause duration and fitness in female parasitoids. Ecol. Entomol. 27:279-284.
Farnsworth, G. L., T. R. Simons, and J. Brawn. 2001. How mant baskets? Clutch sizes that maximize annual fucundity of multiple-brooded birds. Auk 118:973-982.
Griebeler, E. M., T. Caprano, and K. BÖHning-Gaese. 2010. Evolution of avian clutch size along latitudinal gradients: do seasonality, nest predation or breeding season length matter? J. Evol. Biol. 23:888-901.
Hau, M., M. Wikelski, H. Gwinner, and E. Gwinner. 2004. Timing of reproduction in a Darwin's finch: temporal opportunism under spatial constraints. Oikos 106:489-500.
Hopper, K. R. 1999. Risk-spreading and bet-hedging in insect population biology. Annu. Rev. Entomol. 44:535-560.
Hopper, K. R., J. A. Rosenheim, T. Prout, and S. J. Oppenheim. 2003. Within-generation bet hedging: a seductive explanation? Oikos 101:219-222.
Houston, A. I., P. A. Stephens, I. L. Boyd, K. C. Harding, and J. M. McNamara. 2007. Capital or income breeding? A theoretical model of female reproductive strategies. Behav. Ecol. 18:241-250.
Huang, J., E. D. Walker, P. Y. Giroux, J. Vulule, and J. R. Miller. 2005. Ovipositional site selection by Anopheles gambiae: influences of substrate moisture and texture. Med. Vet. Entomol. 19:442-450.
Jetz, W., C. H. Sekercioglu, and K. Böhning-Gaese. 2008. The worldwide variation in avian clutch size across species and space. PLoS Biol. 6:e303.
Kiesel, A., M. Steinhauser, M. Wendt, M. Falkenstein, K. Jost, A. M. Philipp, and I. Koch. 2010. Control and interference in task switching- a review. Psychol. Bull. 136:849.
Koch, I., S. Schuch, K. P. L. Vu, and R. W. Proctor. 2011. Response-repetition effects in task switching- dissociating effects of anatomical and spatial response discriminability. Acta Psychol. (Amst.) 136:399-404.
Lack, D. 1954. The natural regulation of animal numbers. Oxford University Press, Oxford.
Lima, S. L. 2009. Predators and the breeding bird: behavioral and reproductive flexibility under the risk of predation. Biol Rev (Camb) 84:485-513.
Martin, T. E. 1987. Food as a limit on breeding birds: a life-history perspective. Annu. Rev. Ecol. Syst. 18:453-487.
—. 1996. Life history evolution in tropical and south temperate birds: what do we really know? J. Avian Biol. 27:263-272.
Martin, T. E., J. Scott, and C. Menge. 2000. Nest predation increases with parental activity: separating nest site and parental activity effects. Proc. R. Soc. Lond. B 267:2287-2293.
McKinnon, L., P. A. Smith, E. Nol, J. L. Martin, F. I. Doyle, K. F. Abraham, H. G. Gilchrist, R. I. G. Morrison, and J. Bêty. 2010. Lower predation risk for migratory birds at high latitudes. Science 327:326-327.
McNamara, J. M., Z. Barta, M. Wikelski, and A. I. Houston. 2008. A theoretical investigation of the effect of latitude on avian life histories. Am. Nat. 172:331-345.
Meiran, N. 2000. Modeling cognitive control in task-switching. Psychol. Res. 63:234-249.
Møller, A. P. 1990. Nest predation selects for small nest size in the blackbird. Oikos 57:237-240.
—. 1993. Ectoparasites increase the cost of reproduction in their hosts. J. Anim. Ecol. 62:309-322.
—. 1997. Parasitism and the evolution of host life history. Pp. 105-127. Host-parasite evolution: general principles and avian models. Oxford University Press, Oxford.
—. 2007. Interval between clutches, fitness, and climate change. Behav. Ecol. 18:62-70.
Monsell, S. 2003. Task switching. Trends Cogn. Sci. 7:134-140.
Moreau, R. E. 1944. Clutch-size: a comparative study, with special reference to African birds. Ibis 86:286-347.
Nwaogu, C. J., M. W. Dietz, B. I. Tieleman, and W. Cresswell. 2017. Breeding limits foraging time: evidence of interrupted foraging response from body mass variation in a tropical environment. J. Avian Biol. 48:563-569.
Pincheira-Donoso, D. and J. Hunt. 2017. Fecundity selection theory: concepts and evidence. Biol Rev (Camb) 92:341-356.
Pöysä, H., M. Pesonen, C. Associate Editor: Tim, and B. L. Editor: Jonathan. 2007. Nest predation and the evolution of conspecific brood parasitism: from risk spreading to risk assessment. Am. Nat. 169:94-104.
Ricklefs, R. E. 1977. A note on the evolution of clutch size in altricial birds. Pp. 193-214 in B. Stonehouse, and C. Perrins, eds. Evol. Ecol. Macmillan Education, London.
—. 1980. Geographical variation in clutch size among passerine birds: Ashmole's hypothesis. Auk 97:38-49.
Ridley, A. R. and N. J. Raihani. 2008. Task partitioning increases reproductive output in a cooperative bird. Behav. Ecol. 19:1136-1142.
Rogers, R. D. and S. Monsell. 1995. Costs of a predictible switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124:207-231.
Rubenstein, D. R. 2007. Temporal but not spatial environmental variation drives adaptive offspring sex allocation in a plural cooperative breeder. Am. Nat. 170:155-165.
Rubinstein, J. S., D. E. Meyer, and J. E. Evans. 2001. Executive control of cognitive processes in task switching. J. Exp. Psychol. Hum. Percept. Perform. 27:763-797.
Sarhan, A. and H. Kokko. 2007. Multiple mating in the glanville fritillary butterfly: a case of within-generation bet-hedging? Evolution 61:606-616.
Schantz, T. v., S. Bensch, M. Grahn, D. Hasselquist, and H. Wittzell. 1999. Good genes, oxidative stress and condition-dependent sexual signals. Proc. R. Soc. Lond. B 266:1-12.
Skutch, A. F. 1949. Do tropical birds rear as many young as they can nourish? Ibis 91:430-455.
Smith, H. G., H. Källander, and J.-Å. Nilsson. 1987. Effect of experimentally altered brood size on frequency and timing of second clutches in the great tit. Auk 104:700-706.
Starrfelt, J. and H. Kokko. 2012. Bet-hedging- a triple trade-off between means, variances and correlations. Biol Rev (Camb) 87:742-755.
Steinhauser, M. and R. Hübner. 2009. Distinguishing response conflict and task conflict in the stroop task: evidence from ex-Gaussian distribution analysis. J. Exp. Psychol. Hum. Percept. Perform. 35:1398-1412.
Xu, L., C. Zhou, Y. Xiao, P. Zhang, Y. Tang, and Y. Xu. 2012. Insect oviposition plasticity in response to host availability: the case of the tephritid fruit fly Bactrocera dorsalis. Ecol. Entomol. 37:446-452.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20303-
dc.description.abstract儘管窩卵數 (一次繁殖嘗試所產的子代個數) 在大自然中的適應已有相當多的討論,一般認為生物 (尤其是昆蟲與鳥類研究) 應該在較長的季節中減少窩卵數以換取更多繁殖嘗試的觀點並非完全正確。實際觀察中,窩卵數常常隨緯度升高、繁殖季減短而增加;然而,窩卵數卻隨海拔升高、繁殖季減短而減少,此現象被稱為產卵趨勢悖論。對於這相反的變化趨勢,多數假說 (如conservative bet-hedging) 沒有辦法提供合理解釋。在此研究中,我們提出多工任務處理假說以處理不可預期的變動環境中,繁殖季長短與窩卵數的關係。藉由個體為本模式 (individual-based model) 與解析模式 (analytical model) ,我們讓小窩卵數的策略因為比較高的切換任務 (繁殖與回復) 頻率而成為比較多工任務的策略;大窩卵數策略則反之,成為較不多工的策略。我們的模式顯示小窩卵數策略在短繁殖季條件下表現優於其他策略,因為繁殖所需的儲備能量與回復時間較短,可以在嚴格時間限制下,減少潛在浪費的能量。另一方面,我們的模式也顯示代表分擔風險 (bet-hedging) 的小窩卵數策略不會隨繁殖失敗率的平均或變異數改變而有不同的相對表現,即趨勢沒有發生變化。因此,節省時間應是短季節中小窩卵數策略的主要優勢。當我們同時考慮多工處理、季節性、與窩卵數依賴性捕食三樣假說時,產卵趨勢悖論就能被完整解釋。最終,我們的模式提供一個新的方法與觀點來了解變動環境中的生活史演化,特別是那些先前被認為是世代內分擔風險的案例更可被重新檢視。zh_TW
dc.description.abstractAlthough the adaptive nature of clutch size variation has been studied for decades, the common belief that organisms, especially insects and birds, should decrease their clutch size (i.e. number of offspring per single reproductive attempt) to try more nesting attempts with an increase in breeding season length does not always hold true. Empirically, clutch size is often found to decrease with breeding season length along latitudinal gradients, but it has an opposite pattern along elevational gradient (fecundity gradient paradox). Most hypotheses to explain variation in clutch size with breeding season length (e.g. conservative bet-hedging) fail to explain these biogeographic patterns with latitude and elevation. Here, we propose a multitasking hypothesis for the evolution of clutch size in relation to the breeding season length in fluctuating environments. Using both individual-based and analytical models, we showed that laying smaller clutches represents a multitasking strategy because such a strategy has a higher switching rate between breeding and foraging than a large clutch size strategy. Our model demonstrates that the small clutch size strategy is favored in shorter breeding seasons because less time and energy are wasted under severe time constraints for multiple breeding attempts within a season. Our model also showed that bet-hedging strategy is not favored by nature selection under high mean and variance of predation risk even in longer breeding season. Thus, saving time is likely the primary benefit favoring the evolution of small clutches sizes in shorter breeding season in birds. The fecundity gradient paradox is solved when multitasking, seasonality, and clutch size-dependent predation are considered at the same time. Ultimately, our models provide a new approach for understanding life history evolution under fluctuating environments, especially those cases that have previously been considered to be within-generation bet-hedging strategies.en
dc.description.provenanceMade available in DSpace on 2021-06-08T02:44:37Z (GMT). No. of bitstreams: 1
ntu-107-R04632018-1.pdf: 6161170 bytes, checksum: bd9596cf639ad6551afee5486988a7cb (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iv
Abstract v
Contents vi
List of tables viii
List of figures ix
1. Introduction 1
1.1 Brief review on existing theories of clutch size in fluctuating environment 1
1.2 Empirical patterns and the fecundity gradient paradox 2
1.3 The importance of dynamic number of reproductive attempts 3
1.4 The multitasking hypothesis 4
1.5 Research aims 6
2. The individual-based model 8
3. Results 11
3.1 Model assumptions: trade-offs between multitasking and concentrating on a single task 11
3.2 Breeding season length— multitasking or bet-hedging? 12
3.3 Nest failure rate— mean and variance of environmental conditions 14
3.4 Clutch-size dependent predation hypothesis 14
3.5 Seasonality hypothesis 15
4. The analytical approximation of the multitasking model (contributed by Siew-Ann Cheong) 16
5. Discussion 22
5.1 The significance of research 22
5.2 Resolving the fecundity gradient paradox— the elevational gradients 23
5.3 Resolving the fecundity gradient paradox— the latitudinal gradients 24
5.4 Concluding marks 26
6. References 28
7. Tables 32
8. Figures 34
9. Appendix 45
9.1 Clutch size reduction through breeding season 45
9.2口試過程問答與討論 47
dc.language.isozh-TW
dc.title多任務處理如何影響最佳窩卵數在變動環境中的演化zh_TW
dc.titleMultitasking and the evolution of optimal clutch size in fluctuating environmenten
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.coadvisor張俊哲
dc.contributor.oralexamcommittee謝志豪,王慧瑜,三木健
dc.subject.keyword窩卵數,繁殖季長度,變動環境,生活史,分擔風險,zh_TW
dc.subject.keywordclutch size,breeding season length,environmental fluctuation,life history,bet-hedging strategy,en
dc.relation.page49
dc.identifier.doi10.6342/NTU201800017
dc.rights.note未授權
dc.date.accepted2018-01-04
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept昆蟲學研究所zh_TW
顯示於系所單位:昆蟲學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved