請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20287完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳右人(Iou-Zen Chen) | |
| dc.contributor.author | Yung-Tung Chen | en |
| dc.contributor.author | 陳詠彤 | zh_TW |
| dc.date.accessioned | 2021-06-08T02:44:11Z | - |
| dc.date.copyright | 2021-02-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-18 | |
| dc.identifier.citation | 王美琪、 陳盈潔、曾志正. 2014. 熷烏龍茶-經反覆烘焙與陳放轉化出的精製烏龍茶. 農林學報.63(2):83-90. 平山勳. 1933. 臺灣社會經濟史全集 Vol.1. 台灣經濟史學會出版, 臺北市. P.99-102. 甘子能. 1982. 茶中的游離胺基酸. 食品工業. 14 (4): 14-20. 甘子能. 1984. 茶葉化學入門.行政院農委會茶業改良場林口分場, 臺北. 108pp. 吳傑成. 1980. 探討茶樹生育之季節與三種主要化學成分含量之關係. 茶改場68年年報. P.59-65. 李汝和(編)、郭輝(譯). 1970. 巴達維亞城日記. 臺灣省文獻會發行. 李倩、王玉、丁兆堂、張新富. 2010. 嶗山綠茶兒茶素組成含量變化分析. 西南農業學報 3:670-673. 李朝凱. 2017. 臺灣茶文化探源(二):種茶的起源. <http://www.npva.url.tw/main/台灣>. 林木連,蔡右任、張清寬、陳國任、楊勝勳、陳英玲、賴正南、陳玄、張如華. 2003. 台灣的茶葉. 遠足文化出版社. 新北市. 臺灣. 林書妍、陳英玲、陳右人. 2005. 海拔高度對茶菁中兒茶素含量與茶菁品質之影響. 中國園藝 50:578. 林書妍. 2013. 部分發酵茶茶菁、製程及成茶中可溶性化學成分與揮發性有機化合物之研究. 臺灣大學園藝系博士學位論文. 臺北. 林書妍、陳國任. 2013. 茶葉的香氣分析.茶葉專訊84:9-10. 林偉盛. 1998. 荷據時期東印度公司在台灣貿易. 臺灣大學歷史系博士論文. 臺北. 阮逸明、張如華、張連發. 1989. 不同烘焙溫度與時間對包種茶化學成分與品質之影響. 臺灣茶葉研究會報. 8:71. 姚念周. 2012. 感官品評與實務應用. 樞紐科技顧問股份有限公司. 新竹. 范增平. 1992. 臺灣茶業發展史.台北市茶商業同業公會.臺北. 臺灣. 范嘉綺. 2009. 減壓低溫對茶葉含水量與內容物之影響. 臺灣園藝 55:262. 范嘉琦. 2010. 烘焙方法對茶葉中咖啡因含量之影響. 臺灣大學園藝學研究所學位論文. 臺北. 范嘉綺、楊美珠、陳右人、陳英玲、李金龍、吳俊達、阮素芬. 2012. 烘焙溫度、時間及次數對台茶13號包種茶咖啡因及兒茶素類含量之影響. 臺灣茶葉研究彙報 31:53-72. 徐英祥、蔡永生、張如華、郭寬褔、林金池. 1998. 包種茶炭焙技術之研究(I)烘焙方法與時間對半球型包種茶品質及貯藏性之影響. 臺灣茶業研究彙報. 17:39-60. 區少梅、蔡永生、張如華. 1988. 包種茶酚類化合物分析方法之比較與評估. 台灣茶業研究彙報. 7:43-61. 區少梅. 2012. 食品感官品評及實習. 華格納出版. 臺中. 許嫌瑤. 1993. 荷據時期臺灣的茶業—臺灣茶葉史研究之一. 臺北文獻直字104期:29-43. 許賢瑤. 2005. 日治時代臺灣包種茶的生產與交易. 臺北文獻.151:137-173. 陳右人. 1988. 茶園耕作. 教育部職業學校延教班試用教材. 陳右人. 1992. 台灣茶業之回顧與展望. 園藝產業回顧與展望研討會專刊. 臺大園藝系刊行. P.127-146. 陳右人. 2006. 台灣茶樹育種. 植物種苗. 8(2):1-20. 陳右人. 2012. 臺灣茶葉產銷歷史概況介紹. 101年度行政院農委會茶業改良場茶葉入門研習班講義集. 行政院農業委員會茶業改良場. 桃園. 臺灣. 陳右人. 2013. 台灣茶業的發展歷程. 新活水雜誌 49:45-49;50:93-96. 陳英玲. 1987. 茶葉化學. 茶葉技術訓練講義集. 行政院農業委員會茶業改良場. 桃園. 臺灣. P.303-307. 陳清泉、尤新輝、孫智斌、程竹青.1996. 焙火條件對烏龍茶茶湯品質之影響. 食品科學. 23(2):308-319. 陳清泉. 2002. 兒茶素抑制葡萄糖攝取及降血糖之效應. 食品工業. 34: 38-51. 陳麗夙. 1999. 台灣茶類香氣品質快速分析及茶類判斷之研究. 國立中興大學食品科學系研究所碩士論文. 臺中. 吳振鐸. 1985. 台灣茶葉的分類. 台灣茶葉研究彙報. 4:155-158. 張如華。1982。利用HPLC分析茶中植物鹼含量變化之研究。 台灣省茶業改良場年報 51-57. 張惠娟. 2000. 非酵素性醣化與老化. 化學. 58(2): 359-366. 梁坤晃. 1987. 茶葉焙火. 茶葉技術訓練講義集. 行政院農業委員會茶業改良場. 桃園. 臺灣. P.291-302. 郭寬福. 2012. 茶葉烘焙技術. 101年度行政院農委會茶業改良場茶葉初階班講義集. 行政院農業委員會茶業改良場. 桃園. 臺灣. 郭賓崇;陳盈潔;曾志正. 2011. 利用串聯液相層析質譜儀(LC/MS/MS)與氣相層析質譜儀(GC/MS)鑑定烏龍老茶製備過程中化學成分的變化. 化工58(1):101-111. 楊美珠、李志仁、陳國任、陳右人. 2011. 貯放時間對包種茶品質相關化學成分之影響. 第二屆茶業科技研討會專刊. P.169-181. 楊美珠、劉銘純、黃騰鋒、陳國任. 2012. 包種茶低溫乾燥過程中凝結水生成量與其揮發性物質之變化. 臺灣茶葉研究彙報. 31:73-84. 楊美珠. 2018. 茶葉兒茶素之代謝機制與生物活性. 臺灣大學園藝系博士學位論文. 臺北. 經濟部統計處. 2019. 產業經濟統計簡訊《337》. <https://www.moea.gov.tw/Mns/dos/bulletin/Bulletin.aspx?kind=9 html=1 menu_id=18808 bull_id=6099>. 劉澤民. 2003. 臺灣何時開始種茶?. 臺灣文獻別冊第6集 p.3-13. 劉伯康,莊朝琪. 2016. 食品感官品評:理論與實務(第二版). 新文京書局.台北. 賴正南、陳右人. 2013. 臺灣茶產業發展與展望. 臺灣茶葉研究彙報. 32:1-12 賴正南(編). 2001. 茶葉技術推廣手冊-製茶技術.行政院農委會茶業改良場, 桃園.90pp. 蔡永生. 1989. 包種茶茶湯滋味及水色與非揮發性化學成份關係之研究. 國立中興大學食品科技研究所碩士論文.臺中. 蔡怡婷、蔡憲宗、郭介煒. 2011. 文山包種茶不同年份茶葉品質變化之研究. 嘉大農林學報. 8(1):67 – 79. 羅利巧. 2015. 茶湯水色與茶湯內容物含量之關係. 臺灣大學園藝學研究所學位論文. 臺北.+ 蘇煜倫、林金池、侯金日. 2010. 焙火處理對不同海拔茶區茶葉化學成份及品質之影響. 嘉大農林學報. 7(2): 17-32. Angerosa, Franc, Roberta Mostallino, Carla Basti,and RaffaellaVito. 2000. Virgin olive oil odour notes: their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chemistry. 68(3): 283-287 Baigrie B.O. 1988. Food manufacture. 8:21-24. Chen, A.O., Y.S. Tsai and W.T.F. Chiu. 1992. Off-flavor of tea. P. 75-410. In: G. Charalambous (Ed.), Off-Flavors in Foods and Beverages. Elsevier Science Publishers B.V. All rights reserved. Chen, Y. J., Kuo, P.C. and Yang, M.L. 2013. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Research International. 53:732-743. Cho, J. Y., M. Mizutani, B. I. Shimizu, T. Kinoshita, M. Ogura, K. Tokoro, M. L. Lin, and K. Sakata. 2007. Chemical profiling and gene expression profiling during the manufacturing process of Taiwan oolong tea “Oriental Beauty”. Bioscience, Biotechnology, and Biochemistry 71: 1476-1486. Cirico, T. L. and S. T. Ornaye. 2006. Additive or synergetic effects of phenolic compounds on human low density lipoprotein oxidation. Food and Chemical Toxicology 44:510-516. Cloughley, J.B. 1981. Storage deterioration in Central African tea: Changes in chemical composition, sensory characteristics and price evaluation. J. Sei. Food Agric. 32:1213-1223. Dou, J., V.S. Lee and J.T.C. Tzen. 2007. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. Journal of Agricultural and Food Chemistry. 55:7462-7468. Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry Preventive Medicine. 21(3):334-350. Guo, W.F., N. Sasaki, M. Fukuda, A. Yagi, N, Watanabe, and K. Sakata. 1998. Isolation of an aroma precursor of benzaldehyde from tea leaves (Camellia sinenesis var. sinensis cv. Yabukita). Bioscience, Biotechnology, and Biochemistry 62:2052-2054. Friedman, M., S. Y. Kim, S. J. Lee, G. P. Han, J. S. Han, K. R. Lee, and N. Kozukue. 2005. Distribution of catechins, theaflavins, caffeine, and theobromine in 77 teas consumed in the United Sates. Journal of Food Science 70(9): 550-559. Harbowy, M. E. and D. A. Balentine. 1997. Tea Chemistry. Critical Reviews in Plant Sciences 16(5): 415-480. Heath, H.B. and G. Reineccius. 1986. Flavor Chemistry and Technology, AVI Publishing. Westport. Hengel, M., Shibamoto, T.. 2013. Carcinogenic 4(5)-methylimidazole found inbeverages, sauces, and caramel colors: chemical properties, analysis, andbiological activities, J. Agric. Food Chem. 61:780–789. Hollnagel A. and L.W. Kroh. 2000. Degradation of oligosaccharides in nonenzymaticbrowning by formation of-dicarbonyl compounds via a “peeling off”mechanism, J. Agric. Food Chem. 48:6219–6226. Hollnagel A. and L.W. Kroh. 2002. 3-Deoxypentosulose: an-dicarbonyl compoundpredominating in nonenzymatic browning of oligosaccharides in aqueoussolution, J. Agric. Food Chem. 50:1659–1664. Iwasa, K. 1975. Methods of chemical analysis of green tea. Japan Agriculture Research Quarterly 9(3):161-4(Japanes) Juneja, L. R., Chu, D. C., Okubo, T., Nagato, Y., and Yokogoshi, H. 1999. Ltheanine- a unique amino acid of green tea and its relaxation effect in humans. Trends in Food Science Technology. 10:199-204. Jyoti Kanwar, Mujtaba Taskeen, Imthiyaz Mohammad, Congde Huo, Tak Hang Chan, and Qing Ping Do. Recent advances on tea polyphenols. 2012. Front Biosci (Elite Ed) 4:111–131. Kobayashi A., Tachiyama K., Kawakami M., Yamanishi T., Juan I. M., Chiu W. T. F. 1985. Effects of solar-withering and turn over treatment during indoor-withering on the formation of pouchong tea aroma. Agric. Biol. Chem. 49:1655–1660. Lin, S.Y., Y.L. Chen, C.L. Lee, C.Y. Cheng, S.F. Roam and I.Z. Chen. 2013. Monitoring volatile compound profiles and chemical compositions during the process of manufacturing semi-fermented oolong tea. J. of Horticulture Science and Biotechnology. 88:159-164. Lin, S.Y., L.C. Lo, I.Z. Chen and P.A. Chen. 2016. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. of Food and Drug Analysis 24:500-507. Mamati, G. E., Y. Liang, and J. Lu. 2006. Expression of basic genes involved in tea polyphenol synthesis in relation to accumulation of catechins and total tea polyphenols. Journal of the Science of Food and Agriculture 86:459-464. Melanie Franks, Peter Lawrence, Alireza Abbaspourrad and Robin Dando. 2018. The Influence of Water Composition on Flavor and Nutrient Extraction in Green and Black Tea. Nutrients 11(1):80. Mizutani, M., H. Nakanishi, J. Ema, S.J. Ma, E. Noguchi, M. Inohara-Ochiai, M. Fukuchi-Mizutani, M. Nakao, and K. Sakata. 2002. Cloning of β-primeverosidase from tea leaves, a key enzyme in tea aroma formation. Plant Physiology 130:2164-2176. Nakagawa, M. Anan, T. 1979. A simple determination method of total amino acidsin tea. Chagyo Kenkyu Hokoku 50:56–61(Japanes) Nishikitani, M., Kubota, Kobayashi, K. A.1996. Geranyl 6-O-alpha-l-arabinopyranosyl-beta-d-glucopyranoside isolated as an aroma precursorfrom leaves of a green tea cultivar. Biosci. Biotechnol. Biochem. 60:929–931. Obanda, M., P. O. Owuor, R. Mang’oka, and M. M. Kavoi. 2004. Changes in threarubigin fractions and theaflavin levels due to variations in processing conditions and their influence on black tea liquor brightness and total colour. Food Chemistry 85: 163-173. Owuor, P. and M. Obanda. 2007. The use of green tea (Camellia sinensis) leaf flavan-3-ol composition in predicting plain black tea quality potential. Food Chemistry100: 873-884. P. Winterhalter. 1998. Carotenoid-derived aroma compounds: an overview. Abstr.Pap. Amer. Chem. Soc. 219 (2000) 219, U25. Ravichandran, R. and R. Parthiban. 1998. The impact of processing techniques on tea volatiles. Food Chemistry 62: 347-353. Roberts, D.D., A.P. Mordehai, T.E. Acree. 1994. Detection and partial character-ization of eight beta-damascenone precursors in apples (Malus domesticaBorkh. Cv. Empire), J. Agric. Food Chem. 42:345–349. Sanderson, G. W. and H. N. Graham. 1973. The formation of black tea aroma. Journal of Agricultural and Food Chemistry 21: 576-585. Sarry, J.-E. and Z. Günata 2004. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chemistry 87: 509-521. Sawynok, J. 2011. Caffeine and pain. Pain 152(4):726-729. Saxby, M.J., Morton, I. D. and Macleod , A. J. (Eds). 1982. Food Flavours. Part A: Introduction. Elsevier. p.439 - 457. Schuh, C. and P. Schieberle. 2006. Characterization of the key aroma compounds in the beverage prepared from Dajeeling black tea: Quantitative differences between tea leaves and infusion. Journal of Agricultural and Food Chemistry 54: 916-924. Sivapalan, K. 1982. Storage of Black Tea: A Review. Tea Quarterly 51(4):185-189. Su, E.Z., T. Xia and L.P. Gao. 2010. Immobilization of beta-glucosidase and itsaroma-increasing effect on tea beverage, Food Bioprod. Process. 88:83–89. T. Takeo, T. Tsushida. 1980. Changes in lipoxygenase activity in relationto lipid degradation in plucked tea shoots. Phytochemistry 19:2521–2522. T. Takeo. 1981. Black tea aroma and its formation. Part 1. Production of linalooland geraniol by hydrolytic breakdown of bound froms in disrupted teashoots, Phytochemistry. 20:2145–2147. Ruther, Joachim Sven Kleier. 2005. Plant–Plant Signaling: Ethylene Synergizes Volatile Emission In Zea mays Induced by Exposure to (Z)-3-Hexen-1-ol. Journal of Chemical Ecology. 31:2217–2222 Wang, Dongmei ,Kiyoshi Ando, Kae Morita, Kikue Kubota, and Akio Kobayashi. 1994. Optical isomers of linalool and linalool oxides in tea aroma. Biosci. Biotech. Biochem. 58 (11):2050-2053 Wang, L. F., J. Y. Lee, J. O. Chung, J. H. Baik, S. So, and S. K. Park. 2008. Discrimination of teas with different degrees of fermentation by SPME–GC analysis of the characteristic volatile flavour compounds. Food Chemistry 109:196-206 Wickremasinghe RL, Perera KPWC. 1972. Chemical changes during storage of black tea. Tea Q. 43(4):147-152. Wierda, Rana Lori, Graham Fletcher, Lina Xu, and Jean-Pierre Dufour. 2006. Analysis of Volatile Compounds as Spoilage Indicators in Fresh King Salmon (Oncorhynchus tshawytscha) During Storage Using SPME−GC−MS. Journal of Agricultural and Food Chemistry. 54 (22):8480-8490 Yamanishi, T., M. Kosuge, Y. Tokitomo, and R. Maeda. 1980. Flavor constituents of pouchong tea and a comparison of the aroma pattern with jasmine tea. Agric. Biol. Chem. 44(9)2139-2142. Yao, L., N. Caffin, R. Dárcy, Y. Jiang, J. Shi, R. Singanusong, X. Liu, N. Datta, Y.Kakuda, and Y. Xu. 2005. Seasonal variations of phenolic compounds in Australia-grown tea (Camellia sinensis). Journal of Agricultural and Food Chemistry 53: 6477-6483. Z. Yang, S. Baldermann, N. Watanabe. 2013. Recent studies of the volatile com-pounds in tea, Food Res. Int. 53:585–599. Zhu,Y. X.,H. Huang, and Y.Y.Tu. 2006. A review of recent studies in China on the possible beneficial health effects of tea. International Journal of Food Science Technology 41:333-340. S. Tsuge, H. Ohtani, C. Watanabe. 2011. Pyrolysis-GC/MS data. book of syn-thetic polymers: pyrograms, thermograms and MS of pyrolyzates 1st ed. Elsevier. Amsterdam. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/20287 | - |
| dc.description.abstract | 臺灣所生產的茶葉形式,可由臺灣茶業之發展過程中找尋到其脈絡。1970年代前,臺灣茶業多以生產出口之商業用茶為主;1970年代後,隨著臺灣經濟發展快速工資成本提高,加上臺幣升值,臺茶外銷競爭力大幅下降,而轉為內銷。雖然,國人飲茶風氣盛行,但受工商社會時間應用之影響,便利性的飲茶方式漸成為風行,主要消費方式為沖泡的茶與飲料茶。其中,茶類飲料更在2018年創下新臺幣962億元的產值。由於要求其原料茶葉成本低廉,因此仍以粗製茶或篩分後之次級茶為其原料。粗製茶極易因吸潤與吸收環境氣味,含水量提高,加上暴露在空氣中,容易因脂質氧化而形成油耗味(以下稱為陳味),完全掩蓋茶原有香味,形成帶有異味(Off-flavor)的茶。通常為了降低茶葉中的水分,以及去除異味或是提高茶葉香氣,會以再烘焙的方式,來修飾茶葉品質。本研究探討帶有異味(含有環境氣味與油耗味)的粗製茶,在不同溫度及不同時間的烘焙下,揮發性與非揮發性內容物之改變,並同時討論其對茶葉品質之影響。 將帶有陳味供飲料使用的四季春副茶(以下稱為陳味副茶),以熱風循環式焙茶機(俗稱箱型茶葉烘焙機),烘焙溫度設定在:80℃、90℃、100℃與110℃下,分別處理1小時、4小時、8小時與12小時。烘焙完成後之茶葉進行總多元酚類、總游離胺基酸、個別兒茶素、沒食子酸與咖啡因與揮發性物質分析和茶葉感官品評。 陳味副茶以不同的烘焙溫度與時間處理後,總多元酚類以及咖啡因含量之變化,在不同的烘焙溫度與時間處理下未達到顯著的差異。總游離胺基酸含量則隨著烘焙的時間延長與溫度愈高,含量會顯著減少,由於胺基酸為梅納反應的原料之一,其含量的變化可能與烘焙強度有關。 個別兒茶素中,游離型兒茶素類之表沒食子兒茶素(-)-Epigallocatechin (EGC)和表兒茶素(-)-Epicatechin (EC) 含量之變化,在不同烘焙溫度處理之間有顯著差異,長時間烘焙下,溫度愈高,含量下降的愈多。兒茶素(+)-Catechin (C)含量之變化,在高溫烘焙下,時間愈長則含量增加。酯型兒茶素類的沒食子兒茶素沒食子酸酯 (–)-gallocatechin-3-gallate (GCG)和表兒茶素沒食子酸 Epicatechin-3-gallate (ECG)含量之變化,不管烘焙溫度起溫為低或高,兩者之含量皆在1小時候顯著的下降,之後烘焙時間拉長,含量變化並不大。表沒食子兒茶素沒食子酸(–)-Epigallocatechin-3-gallate (EGCG)在高溫長時間下,含量有較大且顯著的下降趨勢。咖啡因與沒食子酸之含量沒有顯著之差異。 以氣相層析質譜儀分析在不同的烘焙溫度和時間處理後之陳味副茶,可獲得50種可辨認之揮發性化合物,由烘焙前的陳味副茶中偵測到的可辨認之物質有20種,多為醇類、醛類與酮類,少部分芳樟醇氧化物;其中,1-戊烯-3-醇(1-Penten-3-ol)、2-戊烯-1-醇(2-Penten-1-ol)、己醛(Hexanal)、3-己烯-1-醇(3-Hexen-1-ol)、2,5-呋喃二酮,3,4-二甲基-(2,5-Furandione, 3,4-dimethyl-)和碳酸2-(5-甲基-5-乙烯基四氫呋喃-2-基)丙-2-基乙酯(Ethyl 2-(5-methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate) 是通常可在較低檔的綠茶中被發現,屬於較負面之揮發物質;苯甲醛(Benzaldehyde)具有特殊杏仁味;己醛(Hexanal)帶有刺激性的青草味,兩者皆是容易在陳年紅茶中被發現的負面揮發性物質。 陳味副茶經過不同的溫度與時間烘焙處理後,可偵測到有明顯氣味描述之化合物約有23種,屬於較負面之揮發性物質如:丙酸(Propanoic acid)、月桂烷(Dodecane)與十四烷(Tetradecane),是帶有腐敗、不清爽的油脂味;2-已烯醛(2-Hexenal)、4-庚烯醛(4-Heptenal)、水芹醛(Heptanal)具有略帶刺激的青草或油脂氣味等,大致隨烘焙時間延長與溫度提高而減少;右旋檸檬烯(D-Limonene)、苯甲醇(Benzenemethanol)、樟腦(+)-2-Bornanone與反式-β-金合歡烯((E)-.beta.-Farnesene)等,具有正向的揮發性物質會提高;呋喃類之芳香化合物(具有煙燻、肉桂之香氣)更是明顯增加。 感官品評之結果顯示:香氣部分烘焙溫度愈高、烘焙時間愈長,異味感受程度隨之降低,焙火香氣感受度隨之增加且整體香氣品質提升;滋味部分,苦味的感受值與不同之烘焙溫度與時間處理上無顯著的差異;澀味感受隨烘焙溫度愈高有降低之趨勢;甜味的感受值和整體的滋味喜好程度與不同之烘焙溫度與烘焙時間處理上有顯著的差異,烘焙溫度提高與烘焙時間拉長有助於整體滋味的提升。 | zh_TW |
| dc.description.abstract | The form of tea produced in Taiwan can be traced to the development of Taiwan’s tea industry. Before the 1970s, Taiwan's tea industry was mostly based on the production of commercial tea for export; after the 1970s, with the rapid economic development of Taiwan, wage costs increased, coupled with the appreciation of the Taiwan dollar, the competitiveness of Taiwan's tea export declined sharply and turned to domestic sales. Although the Chinese people are prevalent in drinking tea, but due to the influence of time in the industrial and commercial society, convenient tea drinking methods have gradually become popular, and the main consumption methods are brewed tea and beverage tea. Among them, tea beverages set an output value of NT$96.2 billion in 2018. Due to the low cost of the raw material tea, crude tea or sieved secondary tea is still used as the raw material. Crude tea is easy to absorb and absorb environmental odors, and the water content increases. In addition, when exposed to the air, it is easy to form oil consumption odor due to lipid oxidation (here in after referred to as aged-flavor), which completely conceals the original aroma of tea and forms to off-flavor tea. Usually in order to reduce the moisture in the tea, remove the peculiar smell or improve the aroma of the tea, the quality of the tea is modified by roasting. This study explores the changes in volatile and non-volatile content of crude tea with off-flavor (including environmental odor and oil consumption) under different temperatures and different times of roasting, and discusses its impact on the quality of tea. The Paochung vice tea with stale flavor for beverages is used in a hot-air circulation roasting machine, and the roasting temperature is set at: 80°C, 90°C, 100°C and 110°C for 1 hour, 4 hours, 8 hours and 12 hours respectively. After roasting, the tea leaves were analyzed for total polyphenols, total free amino acids, individual catechins, gallic acid, caffeine, and volatile compounds, and the tea sensory evaluation. After the off-flavored Poachung vice tea was treated with different roasting temperatures and durations, the changes in total polyphenols and caffeine content did not reach significant differences under different roasting temperatures and times. The total free amino acid content will decrease significantly as the roasting time increases and the temperature is higher. Since the amino acid is one of the raw materials for the Maillard reaction, the change in its content may be related to the roasting intensity. In individual catechins, (-)-Epigallocatechin (EGC) and (-)-Epicatechin (EC) content changes, treated at different roasting temperatures There is a significant difference between them. After long-time roasting, the higher the temperature, the more the content drops. (+)-Catechin (C) content changes, under high temperature roasting, the longer the time the content increases. Changes in the content of (–)-gallocatechin-3-gallate (GCG) and Epicatechin-3-gallate (ECG). Regardless of whether the roasting temperature is low or high, the content of both will decrease significantly within 1 hour, and the roasting time will be extended afterwards, and the content will not change much. (–)-Epigallocatechin-3-gallate (EGCG) has a large and significant downward trend under high temperature and long time. There is no significant difference between the content of caffeine and gallic acid. Using GC-MS to analyze the off-flavored Paochung vice tea after different roasting temperature and time, 50 identifiable volatile compounds can be obtained. The identifiable ones detected in the off-flavored Paochung vice tea before roasting There are 20 kinds of substances, most of which are alcohols, aldehydes and ketones, a small part of linalool oxides; among them, 1-Penten-3-ol, 2-Penten-1-ol, Hexanal, 3-Hexen-1-ol, 3,4-dimethyl-2,5-Furandione, and Ethyl 2-(5- Methyl-5-vinyltetrahydrofuran-2-yl)propan-2-yl carbonate is usually found in lower-grade green tea and is a relatively negative volatile substance; Benzaldehyde has a special almond flavor; Hexanal has a pungent grassy taste, both of which are negative volatile substances that are easily found in aged black tea. After the aged side tea is roasted at different temperatures and times, about 23 compounds with obvious odor descriptions can be detected, which are relatively negative volatile substances such as: Propanoic acid, Dodecane and Tetradecane, it has a rotten, unrefreshing oily smell; 2-Hexenal, 4-Heptenal, and Heptanal have smell of grass or oil, etc., roughly decreases with the extension of baking time and temperature; D-Limonene, Benzenemethanol, (+)-2-Bornanone and (E)-.beta.-Farnesene, etc., have positive volatile substances will increase; furan-like aromatic compounds (with the aroma of smoke and cinnamon) will increase significantly. The results of the sensory evaluation showed that the higher the baking temperature and the longer the baking time of the aroma part, the lower the degree of peculiar smell perception, the increased perception of roasting aroma and the improvement of the overall aroma quality; the taste part, the perception of bitterness and different baking There is no significant difference in temperature and time treatment; the perception of astringency tends to decrease with the higher the baking temperature; the perception of sweetness and the overall taste preference are significantly different from different baking temperatures and baking time treatments, baking The increase in temperature and the longer baking time contribute to the overall taste improvement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T02:44:11Z (GMT). No. of bitstreams: 1 U0001-1802202112402600.pdf: 2920836 bytes, checksum: fdf2341aec69c54ec698a6487a73df5f (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 第一章 前言………………………………………………………………….. 1 第二章 前人研究………………………………………………………………….. 4 一、茶葉之化學成分………………………………………….……...……… 4 (一)茶葉之揮發性成分………………….……………….……………… 4 (二)茶葉之非揮發性成分………………….……………….…………… 6 1.多元酚類………………….……………….………..………..…… 6 2.生物鹼………………….……………….………..………..….…… 8 3.游離胺基酸………………….……………….…………..…………9 4.醣類………………….……………….………..…………..….…… 9 5.色素成分………………….……………….………..………...…… 9 二、茶葉中的異味(Off-flavor) ……………………………….……….....… 10 三、茶葉品評之感官鑑定……………………………….…..………...…… 12 第三章 材料與方法……………………………………………………………….15 一、茶葉材料來源與試驗處理…………………………………………..…14 二、非揮發性物質之分析………………………………………………..…14 (一)總多元酚類、總游離胺基酸、咖啡因之分析………….……..…15 1.總多元酚分析…………………………………………...….……16 2.游離胺基酸分析…………………………………………………16 3.咖啡因之分析……………………………………………………17 (二)個別兒茶素、沒食子酸與咖啡因之分析……………………..…18 三、揮發性物質分析………………………………………………….....…18 四、茶葉之感官品評………………………………………………..………18 五、統計分析方法……………………………….………………….………19 第四章 結果與討論………………………………………………………….. 20 一、非揮發性物質之析…………………………………..……...............…20 (一)總多元酚類、總游離胺基酸、咖啡因之析……………….…..…20 (二)個別兒茶素之分析…………………………………………...……20 二、揮發性物質析…………………………………………………...…..…21 三、茶葉感官評………………………………………………………….…23 參考文獻………………………………………………………………… 50 附錄表一Commonly used terms for the off-flavored tea……………...………. 60 附錄表二感官品評評分表…………………………………………..…………. 62 表目錄 表 1. 烘焙溫度與時間對陳味副茶內容物含量之影響…………………………..25 表 2. 烘焙溫度與時間對陳味副茶游離型兒茶素類含量之影響………………..26 表 3. 烘焙溫度與時間對陳味副茶酯型兒茶素類含量之影響…………………..27 表 4. 烘焙溫度與時間對陳味副茶中咖啡因及沒食子酸含量之影響…………..28 表5. 不同的烘焙處理下,陳味副茶中揮發性化合物波鋒積分面積之對數..….29 表6. 烘焙溫度與時間對陳味副茶感官品評評價之影響。(專家組)……...……....33 表 7. 烘焙溫度與時間對陳味副茶茶感官品評評價之影響。(大眾組)………..…34 圖目錄 圖1. 陳味副茶在不同烘焙時間和溫度處理下,總游離胺基酸含量之變化……35 圖2. 陳味副茶在不同烘焙時間和溫度處理下,EGC含量之變化……………….35 圖3. 陳味副茶在不同烘焙時間和溫度處理下,EC含量之變化…………………36 圖4. 陳味副茶在不同烘焙時間和溫度處理下,C含量之變化………………....36 圖5. 陳味副茶在不同烘焙時間和溫度處理下,GCG含量之變化……………….37 圖6. 陳味副茶在不同烘焙時間和溫度處理下,ECG含量之變化……………….37 圖7. 陳味副茶在不同烘焙時間和溫度處理下,EGCG含量之變化……………..38 圖8.陳味副茶在不同烘焙時間和溫度處理下,1-戊烯-3-醇之積分面積對數..…38 圖9. 陳味副茶在不同烘焙時間和溫度處理下,2-戊烯-1-醇積分面積對數……39 圖10. 陳味副茶在不同烘焙時間和溫度處理下,己醛積分面積對數……….….39 圖11. 陳味副茶在不同烘焙時間和溫度處理下,苯甲醛積分面積對數….…….40 圖12. 陳味副茶在不同烘焙時間和溫度處理下,3-己烯-1-醇積分面積對數….40 圖13. 陳味副茶在不同烘焙時間和溫度處理下,3,4-二甲基-2,5-呋喃二酮積分面積對數………………………………………………………..………………….41 圖14. 陳味副茶在不同烘焙時間和溫度處理下,碳酸2-(5-甲基-5-乙烯基四氫呋喃-2-基)丙-2-基乙酯積分面積對數………………………………….....….41 圖15. 陳味副茶在不同烘焙時間和溫度處理下,丙酸積分面積對數…………...42 圖16. 陳味副茶在不同烘焙時間和溫度處理下,十四烷積分面積對數…….….42 圖17. 陳味副茶在不同烘焙時間和溫度處理下,2-已烯醛積分面積對數………43 圖18. 陳味副茶在不同烘焙時間和溫度處理下,4-庚烯醛積分面積對數………43 圖19. 陳味副茶在不同烘焙時間和溫度處理下,水芹醛積分面積對數…………44 圖20. 陳味副茶在不同烘焙時間和溫度處理下,右旋檸檬烯積分面積對數…..44 圖21. 陳味副茶在不同烘焙時間和溫度處理下,苯甲醇積分面積對數………..45 圖22. 陳味副茶在不同烘焙時間和溫度處理下,樟腦積分面積對數……..........45 圖23. 陳味副茶在不同烘焙時間和溫度處理下,反式-β-金合歡烯積分面積對數…………………………………………………………………………………….46 圖24. 陳味副茶在不同烘焙時間和溫度處理下,呋喃類之芳香化合物積分面積對數…………………………………………………………………………...……..47 圖25. 陳味副茶在不同烘焙時間和溫度處理下,2-正戊基呋喃、3,4-二甲基,2,5呋喃酮積分面積對數………………………………………………….……..…...48 | |
| dc.language.iso | zh-TW | |
| dc.title | 烘焙溫度與時間對球型包種副茶品質改善之影響 | zh_TW |
| dc.title | Effect of Roast Temperature and Duration on Quality Improvement of Ball Type Paochung Vice Tea | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 阮素芬(Su-Feng Roan),楊美珠(Meei-Ju Yang) | |
| dc.subject.keyword | 異味,陳茶,包種茶,烘焙,茶葉揮發性成分,茶多元酚類, | zh_TW |
| dc.subject.keyword | off-flavor,aged tea,Paochung tea,roasting,tea volatile components,tea polyphenols, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU202100736 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-02-18 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1802202112402600.pdf 未授權公開取用 | 2.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
